Discrete logarithmic Sobolev inequalities in Banach spaces

Alexandros Eskenazis

Functional Analysis and Operator Algebras Seminar University of Athens

The hypercube

We shall be studying functional inequalities for functions of the form $f : \{-1, 1\}^n \to X$, where $(X, \|\cdot\|_X)$ is a Banach space. As a toy model, we will also consider functions $f : (\mathbb{R}^n, \gamma_n) \to X$, where γ_n is the standard Gaussian measure on \mathbb{R}^n .

For a function $f: \{-1,1\}^n \to X$, we define $\partial_i f: \{-1,1\}^n \to X$ as

$$\partial_i f(x) \stackrel{\text{def}}{=} \frac{f(x) - f(x_1, \ldots, -x_i, \ldots, x_n)}{2},$$

where $x \in \{-1, 1\}^n$ and $i \in \{1, ..., n\}$.

The Efron–Stein inequality

Efron–Stein inequality. Every $f : \{-1, 1\}^n \to \mathbb{R}$ satisfies

$$\operatorname{Var}(f) = \|f - \mathbb{E}f\|_2^2 \leq \sum_{i=1}^n \|\partial_i f\|_2^2.$$

• Observe that this bound is *dimension-free*.

• The proof is an immediate consequence of Parseval's identity for the Walsh basis (which is an orthonormal basis of characters for the discrete hypercube).

Talagrand's L_p Poincaré inequality

For $p \in [1,\infty)$ and $f: \{-1,1\}^n
ightarrow \mathbb{R}$, we use the notation

$$\|\nabla f\|_{p} \stackrel{\text{def}}{=} \left[\mathbb{E} \left(\sum_{i=1}^{n} \left(\partial_{i} f \right)^{2} \right)^{p/2} \right]^{1/p}$$

Talagrand's L_p **Poincaré inequality.** (1993) For any $p \in [1, \infty)$, there exists $C_p > 0$ such that for any $n \in \mathbb{N}$, every function $f : \{-1, 1\}^n \to \mathbb{R}$ satisfies

$$\|f - \mathbb{E}f\|_p \le C_p \|\nabla f\|_p.$$

Many known **proofs** relying on isoperimetry, martingales, Bellman functions, non-commutative tools and semigroup methods.

Vector-valued Poincaré inequalities

Question. For which normed spaces $(X, \|\cdot\|_X)$ do these estimates extend to X-valued functions?

For $f: \{-1,1\}^n \to X$, we denote $\|f\|_{L_p(X)} \stackrel{\text{def}}{=} \left(\mathbb{E}\|f\|_X^p\right)^{1/p}$.

In the scalar case $f: \{-1,1\}^n \to \mathbb{R}$, Khintchine's inequality gives

$$\|\nabla f\|_{p} \asymp_{p} \left(\mathbb{E} \left\| \sum_{i=1}^{n} \delta_{i} \partial_{i} f \right\|_{p}^{p} \right)^{1/p}$$

Therefore, for a function $f: \{-1,1\}^n \to X$ we denote

$$\|\nabla f\|_{L_p(X)} \stackrel{\text{def}}{=} \left(\mathbb{E} \left\| \sum_{i=1}^n \delta_i \partial_i f \right\|_{L_p(X)}^p \right)^{1/p}$$

٠

Vector-valued Poincaré inequalities (continued)

This vector-valued gradient first appeared in work of Pisier.

Pisier's inequality. (1986) For any $p \in [1, \infty)$ and any normed space $(X, \|\cdot\|_X)$, every function $f : \{-1, 1\}^n \to X$ satisfies

$$\|f - \mathbb{E}f\|_{L_p(X)} \le 2e \log n \|\nabla f\|_{L_p(X)}$$

This is the discrete counterpart of a famous result in Gauss space.

Maurey–Pisier inequality. (1986) For any $p \in [1, \infty)$ and any normed space $(X, \|\cdot\|_X)$, every function $f : (\mathbb{R}^n, \gamma_n) \to X$ satisfies

$$\|f - \mathbb{E}f\|_{L_p(X)} \leq \frac{\pi}{2} \left(\mathbb{E}_{g,g'} \left\| \sum_{i=1}^n g'_i \partial_i f(g) \right\|_X^p \right)^{1/p}$$

Vector-valued Poincaré inequalities (continued)

Definition. A normed space $(X, \|\cdot\|_X)$ has *finite cotype* if there exists $m \in \mathbb{N}$ and $\varepsilon > 0$ such that $\ell_{\infty}^m = (\mathbb{R}^m, \|\cdot\|_{\infty})$ does not embed into X with distortion smaller than $1 + \varepsilon$.

Talagrand's counterexample. (1993) The log n factor in Pisier's inequality is needed if the space X does not have finite cotype.

Ivanisvili–van Handel–Volberg theorem. (2020) If X has finite cotype, then for any $p \in [1, \infty)$ there exists $C_p(X) > 0$ such that for any $n \in \mathbb{N}$, every $f : \{-1, 1\}^n \to X$ satisfies

 $\|f-\mathbb{E}f\|_{L_p(X)}\leq \mathsf{C}_p(X)\|\nabla f\|_{L_p(X)}.$

The Bonami–Gross inequality

For a function $h:(\Omega,\mu) \to \mathbb{R}_+$ denote

Ent
$$(h) \stackrel{\text{def}}{=} \int_{\Omega} h \log \left(\frac{h}{\int_{\Omega} h \, \mathrm{d}\mu} \right) \, \mathrm{d}\mu.$$

Bonami–Gross inequality. (1970-1975) For any $n \in \mathbb{N}$, every function $f : \{-1, 1\}^n \to \mathbb{R}$ satisfies

$$\operatorname{Ent}(f^2) \leq 2\sum_{i=1}^n \|\partial_i f\|_2^2.$$

The Bonami–Gross inequality (continued)

It is elementary to prove the two-sided bound

$$\frac{1}{2}\max\left\{\|h\|_{2}^{2},\operatorname{Ent}(h^{2})\right\} \leq \|h\|_{L_{2}(\log L)}^{2} \leq 14\max\left\{\|h\|_{2}^{2},\operatorname{Ent}(h^{2})\right\},$$

where if $\psi_{p,a}(x) = x^p \log^a(e + x^p)$, we denote

$$\|h\|_{L_{\rho}(\log L)^{\mathfrak{s}}} \stackrel{\mathrm{def}}{=} \inf \big\{ \gamma > 0 : \int_{\Omega} \psi_{p,\mathfrak{s}} \big(|f|/\gamma \big) \, \mathrm{d}\mu \leq 1 \big\}.$$

As logarithmic Sobolev inequalities are stronger than Poincaré inequalities, the Bonami–Gross inequality is equivalent to

$$\|f - \mathbb{E}f\|_{L_2(\log L)} \leq \mathsf{C}\|\nabla f\|_2,$$

for a universal constant C > 0.

-1

Talagrand's L_p logarithmic Sobolev inequality

In order to obtain a quantitative version of Margulis' graph connectivity theorem, Talagrand proved the following deep extension of the Bonami–Gross inequality.

Talagrand's L_p **logarithmic Sobolev inequality.** (1993) For any $p \in [1, \infty)$, there exists $K_p \in (0, \infty)$ such that for any $n \in \mathbb{N}$, every $f : \{-1, 1\}^n \to \mathbb{R}$ satisfies

(*)
$$\|f - \mathbb{E}f\|_{L_p(\log L)^{p/2}} \leq \mathsf{K}_p \|\nabla f\|_p.$$

The Gaussian version of Talagrand's inequality was previously proven by **Ledoux** (1988).

Proofs of Talagrand's inequality (*)

1. (Talagrand) *Step 1.* Prove (*) for characteristic functions of sets via an intricate induction on the dimension *n*. This is currently known as Talagrand's isoperimetric inequality.

Step 2. Use a layer cake decomposition for the function f and combine the isoperimetric inequality with a delicate approximate version of the co-area formula.

This argument is modeled after **Ledoux's** proof (1988) in Gauss space which combines the co-area formula with the Gaussian isoperimetric inequality.

Proofs of Talagrand's inequality (*)

2. (forlklore in Strasbourg of late 1980s?) Concatenate the lower Riesz transform inequality of **Lust-Piquard** (1998) asserting that for every $p \in (1, \infty)$,

$$\|\nabla f\|_p \gtrsim_p \|\Delta^{1/2} f\|_p$$

with a delicate result of **Bakry** and **Meyer** (1984) according to which if \mathscr{L} is the negative generator of any hypercontractive semigroup, then for $p \in (1, \infty)$ and $\alpha > 0$,

$$\left\| (-\mathscr{L})^a f \right\|_p \gtrsim_{p,a} \| f - \mathbb{E} f \|_{L_p(\log L)^{pa}}.$$

This argument *fails* to capture the endpoint case p = 1.

Vector-valued log-Sobolev inequalities

Question. Are there vector-valued versions of Talagrand's L_p logarithmic Sobolev inequality?

- The scalar proofs do not extend to interesting normed spaces.
- The semigroup argument of **Ivanisvili**, van Handel and Volberg (2020) shows that if X is a normed space of cotype $q < \infty$, then for any $p \in [1, \infty)$ every $f : \{-1, 1\}^n \to X$ satisfies

$$\|f - \mathbb{E}f\|_{L_p(\log L)^a(X)} \lesssim_{X,p,a} \|\nabla f\|_{L_p(X)}$$

for any $a < \frac{p \min\{p,2\}}{2 \max\{p,q\}}$ which is very far from the scalar case.

Gaussian interlude

In 1988, **Ledoux** proved that for any normed space $(X, \|\cdot\|_X)$, every smooth function $f : (\mathbb{R}^n, \gamma_n) \to X$ satisfies the estimate

$$\operatorname{Ent}(\|f\|_X^2) \leq 2 \mathbb{E}_{g,g'} \Big\| \sum_{i=1}^n g'_i \partial_i f(g) \Big\|_X^2.$$

Combined with the **Maurey–Pisier** inequality (1986) and the elementary fact about Orlicz norms, we conclude that every smooth function $f : (\mathbb{R}^n, \gamma_n) \to X$ satisfies

$$\|f - \mathbb{E}f\|_{L_2(\log L)(X)} \leq C \mathbb{E}_{g,g'} \left\|\sum_{i=1}^n g'_i \partial_i f(g)\right\|_X^2$$

for some universal C > 0.

Proof of Ledoux's inequality

WLOG assume that $\gamma_n \{f = 0\} = 0$ and that $\|\cdot\|_X$ is smooth on $X \setminus \{0\}$, i.e. for any $v \neq 0$ there exists a linear functional $D_v^* \in X^*$ with $\|D_v^*\|_{X^*} \leq 1$ such that for any smooth curve $\beta : (-\varepsilon, \varepsilon) \to X$ with $\beta(0) = v$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \|\beta(t)\|_{X} = \left\langle \mathsf{D}_{\mathsf{v}}^{*}, \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \beta(t) \right\rangle.$$

Then, the Bonami-Gross inequality gives

$$\begin{aligned} &\operatorname{Ent}(\|f\|_X^2) \le 2\sum_{i=1}^n \left\|\partial_i\|f\|_X\right\|_2^2 = 2 \, \mathbb{E}_{g,g'} \Big|\sum_{i=1}^n g'_i \partial_i\|f\|_X(g)\Big|^2 \\ &= 2 \, \mathbb{E}_{g,g'} \Big|\sum_{i=1}^n g'_i \langle \mathsf{D}^*_{f(g)}, \partial_i f(g) \rangle\Big|^2 = 2\mathbb{E}_{g,g'} \Big| \Big\langle \mathsf{D}^*_{f(g)}, \sum_{i=1}^n g'_i \partial_i f(g) \Big\rangle\Big|^2 \end{aligned}$$

and the conclusion follows as $\|\mathsf{D}^*_{f(g)}\|_{X^*} \leq 1$ almost surely.

The main result

 \bigwedge This use of chain rule seems difficult to adapt when dealing with discrete derivatives on a graph (e.g. the hypercube).

Theorem (Cordero-Erausquin, E., 2023)

Let $(X, \|\cdot\|_X)$ be a normed space of finite cotype. For every $p \in [1, \infty)$, there exists $K_p(X) > 0$ such that for any $n \in \mathbb{N}$, every function $f : \{-1, 1\}^n \to X$ satisfies

$$\|f - \mathbb{E}f\|_{L_p(\log L)^{p/2}(X)} \leq \mathsf{K}_p(X) \|\nabla f\|_{L_p(X)}.$$

The proof

We shall use a technical inequality from Talagrand's proof. For a scalar function $h: \{-1, 1\}^n \to \mathbb{R}$, consider the *asymmetric* gradient

$$\mathsf{M}h(x) = \Big(\sum_{i=1}^n \partial_i h(x)_+^2\Big)^{1/2},$$

where $a_{+} = \max\{a, 0\}$ and $x \in \{-1, 1\}^{n}$.

Proposition (Talagrand, 1993)

Let $h: \{-1,1\}^n \to \mathbb{R}_+$ be a nonnegative function for which $\mathbb{P}\{h=0\} \ge \frac{1}{2}$. Then,

$$\|h\|_{L_p(\log L)^{p/2}} \le \kappa_p \|\mathsf{M}h\|_p.$$
 (1)

The proof (continued)

Fix a function $f : \{-1,1\}^n \to X$ with $\mathbb{E}f = 0$, let $h = ||f||_X$ and consider $m \ge 0$ a median of h so that

 $\mathbb{P}\{h \le m\} \ge \frac{1}{2}$ and $\mathbb{P}\{h \ge m\} \ge \frac{1}{2}.$

As $0 \le h \le (h - m)_+ + m$, we have

$$\|f\|_{L_p(\log L)^{p/2}(X)} = \|h\|_{L_p(\log L)^{p/2}} \le \|(h-m)_+\|_{L_p(\log L)^{p/2}} + m.$$

For the second term observe that

$$m \leq \frac{1}{\mathbb{P}\{h \geq m\}} \int_{\{h \geq m\}} h \leq 2\|f\|_{L_1(X)} \leq 2C_1(X)\|\nabla f\|_{L_1(X)},$$

where the last inequality follows from the the vector-valued L_1 Poincaré inequality under finite cotype.

The proof (continued)

To control the first term notice that $\mathbb{P}\{(h-m)_+=0\}\geq rac{1}{2}$, so

$$\|(h-m)_+\|_{L_p(\log L)^{p/2}} \le \kappa_p \|\mathsf{M}(h-m)_+\|_p,$$

by Talagrand's inequality. Moreover, the elementary inequality

$$(a_+-b_+)_+ \leq (a-b)_+$$

which holds for $a, b \in \mathbb{R}$ shows that we can further upper bound this Orlicz norm by

$$\|(h-m)_+\|_{L_p(\log L)^{p/2}} \leq \kappa_p \|\mathsf{M}(h-m)\|_p = \kappa_p \|\mathsf{M}h\|_p.$$

The key lemma

Lemma. For any $f : \{-1,1\}^n \to X$, we have the pointwise bound

$$\mathsf{M} \| f \|_X(x)^2 \leq \mathbb{E}_{\delta} \Big\| \sum_{i=1}^n \delta_i \partial_i f(x) \Big\|_X^2.$$

Proof. Let v_x^* be a normalizing functional of f(x). Then, for every $i \in \{1, ..., n\}$, we have

$$(\|f(x)\|_{X} - \|f(x_{1},\ldots,-x_{i},\ldots,x_{n})\|_{X})_{+} \\ \leq (\langle v_{x}^{*},f(x)\rangle - \langle v_{x}^{*},f(x_{1},\ldots,-x_{i},\ldots,x_{n})\rangle)_{+}$$

which implies that

$$\mathsf{M} \| f \|_{X}(x) \leq \sum_{i=1}^{n} \left\langle v_{x}^{*}, \partial_{i} f(x) \right\rangle^{2} = \mathbb{E}_{\delta} \left\langle v_{x}^{*}, \sum_{i=1}^{n} \delta_{i} \partial_{i} f(x) \right\rangle^{2}$$

and the conclusion follows as $\|v_x^*\|_{X^*} \leq 1$.

Finishing the proof

By Kahane's inequality,

$$\left(\mathbb{E}_{\delta}\left\|\sum_{i=1}^{n}\delta_{i}\partial_{i}f(x)\right\|_{X}^{2}\right)^{1/2} \leq \sqrt{2}\left(\mathbb{E}_{\delta}\left\|\sum_{i=1}^{n}\delta_{i}\partial_{i}f(x)\right\|_{X}^{p}\right)^{1/p}$$

and thus the lemma implies that

$$\|\mathsf{M}h\|_p \leq \sqrt{2} \|\nabla f\|_{L_p(X)}.$$

Putting everything together, if $\mathbb{E}f = 0$, then we have

$$\|f\|_{L_{p}(\log L)^{p/2}(X)} \leq \sqrt{2}\kappa_{p}\|\nabla f\|_{L_{p}(X)} + 2C_{1}(X)\|\nabla f\|_{L_{1}(X)}$$

and this completes the proof.

A refined Pisier inequality

Corollary. For any normed space $(X, \|\cdot\|_X)$, $p \in [1, \infty)$ and $n \in \mathbb{N}$, every function $f : \{-1, 1\}^n \to X$ satisfies

$$\|f - \mathbb{E}f\|_{L_p(\log L)^{p/2}(X)} \le \sqrt{2}\kappa_p \|\nabla f\|_{L_p(X)} + 4e\log n \|\nabla f\|_{L_1(X)}.$$

Other results

• An application to the bi-Lipschitz distortion of quotients of the discrete hypercube with the Hamming metric.

• A general mechanism to boost metric Poincaré inequalities to metric log-Sobolev inequalities. In particular, we deduce new vector-valued log-Sobolev inequalities on the symmetric group for target spaces of martingale type 2.

- Vector-valued Beckner inequalities.
- Some vector-valued inequalities of isoperimetric type improving recent results of **Beltran**, **Ivanisvili** and **Madrid** (2023).

Thank you!