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The hypercube

We shall be studying functional inequalities for functions of the
form f : {−1, 1}n → X , where (X , ‖ · ‖X ) is a Banach space. As a
toy model, we will also consider functions f : (Rn, γn)→ X , where
γn is the standard Gaussian measure on Rn.

For a function f : {−1, 1}n → X , we define ∂i f : {−1, 1}n → X as

∂i f (x)
def
=

f (x)− f (x1, . . . ,−xi , . . . , xn)

2
,

where x ∈ {−1, 1}n and i ∈ {1, . . . , n}.



The Efron–Stein inequality

Efron–Stein inequality. Every f : {−1, 1}n → R satisfies

Var(f ) = ‖f − Ef ‖2
2 ≤

n∑
i=1

‖∂i f ‖2
2.

• Observe that this bound is dimension-free.

• The proof is an immediate consequence of Parseval’s identity for
the Walsh basis (which is an orthonormal basis of characters for
the discrete hypercube).



Talagrand’s Lp Poincaré inequality

For p ∈ [1,∞) and f : {−1, 1}n → R, we use the notation

‖∇f ‖p
def
=

E( n∑
i=1

(
∂i f
)2

)p/2
1/p

.

Talagrand’s Lp Poincaré inequality. (1993) For any p ∈ [1,∞),
there exists Cp > 0 such that for any n ∈ N, every function
f : {−1, 1}n → R satisfies

‖f − Ef ‖p ≤ Cp‖∇f ‖p.

Many known proofs relying on isoperimetry, martingales, Bellman
functions, non-commutative tools and semigroup methods.



Vector-valued Poincaré inequalities

Question. For which normed spaces (X , ‖ · ‖X ) do these estimates
extend to X -valued functions?

For f : {−1, 1}n → X , we denote ‖f ‖Lp(X )
def
=
(
E‖f ‖pX

)1/p
.

In the scalar case f : {−1, 1}n → R, Khintchine’s inequality gives

‖∇f ‖p �p

(
E
∥∥∥ n∑

i=1

δi∂i f
∥∥∥p
p

)1/p

.

Therefore, for a function f : {−1, 1}n → X we denote

‖∇f ‖Lp(X )
def
=

(
E
∥∥∥ n∑

i=1

δi∂i f
∥∥∥p
Lp(X )

)1/p

.



Vector-valued Poincaré inequalities (continued)

This vector-valued gradient first appeared in work of Pisier.

Pisier’s inequality. (1986) For any p ∈ [1,∞) and any normed
space (X , ‖ · ‖X ), every function f : {−1, 1}n → X satisfies

‖f − Ef ‖Lp(X ) ≤ 2e log n‖∇f ‖Lp(X ).

This is the discrete counterpart of a famous result in Gauss space.

Maurey–Pisier inequality. (1986) For any p ∈ [1,∞) and any
normed space (X , ‖ · ‖X ), every function f : (Rn, γn)→ X satisfies

‖f − Ef ‖Lp(X ) ≤
π

2

(
Eg ,g ′

∥∥∥ n∑
i=1

g ′i ∂i f (g)
∥∥∥p
X

)1/p

.



Vector-valued Poincaré inequalities (continued)

Definition. A normed space (X , ‖ · ‖X ) has finite cotype if there
exists m ∈ N and ε > 0 such that `m∞ = (Rm, ‖ · ‖∞) does not
embed into X with distortion smaller than 1 + ε.

Talagrand’s counterexample. (1993) The log n factor in Pisier’s
inequality is needed if the space X does not have finite cotype.

Ivanisvili–van Handel–Volberg theorem. (2020) If X has finite
cotype, then for any p ∈ [1,∞) there exists Cp(X ) > 0 such that
for any n ∈ N, every f : {−1, 1}n → X satisfies

‖f − Ef ‖Lp(X ) ≤ Cp(X )‖∇f ‖Lp(X ).



The Bonami–Gross inequality

For a function h : (Ω, µ)→ R+ denote

Ent(h)
def
=

∫
Ω
h log

(
h∫

Ω h dµ

)
dµ.

Bonami–Gross inequality. (1970-1975) For any n ∈ N, every
function f : {−1, 1}n → R satisfies

Ent(f 2) ≤ 2
n∑

i=1

‖∂i f ‖2
2.



The Bonami–Gross inequality (continued)

It is elementary to prove the two-sided bound

1

2
max

{
‖h‖2

2,Ent(h
2)
}
≤ ‖h‖2

L2(log L) ≤ 14 max
{
‖h‖2

2,Ent(h
2)
}
,

where if ψp,a(x) = xp loga(e + xp), we denote

‖h‖Lp(log L)a
def
= inf

{
γ > 0 :

∫
Ω
ψp,a

(
|f |/γ

)
dµ ≤ 1

}
.

As logarithmic Sobolev inequalities are stronger than Poincaré
inequalities, the Bonami–Gross inequality is equivalent to

‖f − Ef ‖L2(log L) ≤ C‖∇f ‖2,

for a universal constant C > 0.



Talagrand’s Lp logarithmic Sobolev inequality

In order to obtain a quantitative version of Margulis’ graph
connectivity theorem, Talagrand proved the following deep
extension of the Bonami–Gross inequality.

Talagrand’s Lp logarithmic Sobolev inequality. (1993) For any
p ∈ [1,∞), there exists Kp ∈ (0,∞) such that for any n ∈ N,
every f : {−1, 1}n → R satisfies

(∗) ‖f − Ef ‖Lp(log L)p/2 ≤ Kp‖∇f ‖p.

The Gaussian version of Talagrand’s inequality was previously
proven by Ledoux (1988).



Proofs of Talagrand’s inequality (∗)

1. (Talagrand) Step 1. Prove (∗) for characteristic functions of
sets via an intricate induction on the dimension n. This is currently
known as Talagrand’s isoperimetric inequality.

Step 2. Use a layer cake decomposition for the function f and
combine the isoperimetric inequality with a delicate approximate
version of the co-area formula.

This argument is modeled after Ledoux’s proof (1988) in Gauss
space which combines the co-area formula with the Gaussian
isoperimetric inequality.



Proofs of Talagrand’s inequality (∗)

2. (forlklore in Strasbourg of late 1980s?) Concatenate the lower
Riesz transform inequality of Lust-Piquard (1998) asserting that
for every p ∈ (1,∞),

‖∇f ‖p &p ‖∆1/2f ‖p

with a delicate result of Bakry and Meyer (1984) according to
which if L is the negative generator of any hypercontractive
semigroup, then for p ∈ (1,∞) and α > 0,∥∥(−L )af

∥∥
p
&p,a ‖f − Ef ‖Lp(log L)pa .

This argument fails to capture the endpoint case p = 1.



Vector-valued log-Sobolev inequalities

Question. Are there vector-valued versions of Talagrand’s Lp
logarithmic Sobolev inequality?

• The scalar proofs do not extend to interesting normed spaces.

• The semigroup argument of Ivanisvili, van Handel and Volberg
(2020) shows that if X is a normed space of cotype q <∞, then
for any p ∈ [1,∞) every f : {−1, 1}n → X satisfies

‖f − Ef ‖Lp(log L)a(X ) .X ,p,a ‖∇f ‖Lp(X )

for any a < p min{p,2}
2 max{p,q} which is very far from the scalar case.



Gaussian interlude

In 1988, Ledoux proved that for any normed space (X , ‖ · ‖X ),
every smooth function f : (Rn, γn)→ X satisfies the estimate

Ent(‖f ‖2
X ) ≤ 2 Eg ,g ′

∥∥∥ n∑
i=1

g ′i ∂i f (g)
∥∥∥2

X
.

Combined with the Maurey–Pisier inequality (1986) and the
elementary fact about Orlicz norms, we conclude that every
smooth function f : (Rn, γn)→ X satisfies

‖f − Ef ‖L2(log L)(X ) ≤ C Eg ,g ′

∥∥∥ n∑
i=1

g ′i ∂i f (g)
∥∥∥2

X
.

for some universal C > 0.



Proof of Ledoux’s inequality

WLOG assume that γn{f = 0} = 0 and that ‖ · ‖X is smooth on
X \ {0}, i.e. for any v 6= 0 there exists a linear functional D∗v ∈ X ∗

with ‖D∗v‖X∗ ≤ 1 such that for any smooth curve β : (−ε, ε)→ X
with β(0) = v , we have

d

dt

∣∣∣
t=0
‖β(t)‖X =

〈
D∗v ,

d

dt

∣∣∣
t=0

β(t)

〉
.

Then, the Bonami–Gross inequality gives

Ent(‖f ‖2
X ) ≤ 2

n∑
i=1

∥∥∂i‖f ‖X∥∥2

2
= 2 Eg ,g ′

∣∣∣ n∑
i=1

g ′i ∂i‖f ‖X (g)
∣∣∣2

= 2 Eg ,g ′

∣∣∣ n∑
i=1

g ′i
〈
D∗f (g), ∂i f (g)

〉∣∣∣2 = 2Eg ,g ′

∣∣∣〈D∗f (g),

n∑
i=1

g ′i ∂i f (g)
〉∣∣∣2

and the conclusion follows as ‖D∗f (g)‖X∗ ≤ 1 almost surely. 2



The main result

B This use of chain rule seems difficult to adapt when dealing
with discrete derivatives on a graph (e.g. the hypercube).

Theorem (Cordero-Erausquin, E., 2023)

Let (X , ‖ · ‖X ) be a normed space of finite cotype. For every
p ∈ [1,∞), there exists Kp(X ) > 0 such that for any n ∈ N, every
function f : {−1, 1}n → X satisfies

‖f − Ef ‖Lp(log L)p/2(X ) ≤ Kp(X )‖∇f ‖Lp(X ).



The proof

We shall use a technical inequality from Talagrand’s proof. For a
scalar function h : {−1, 1}n → R, consider the asymmetric gradient

Mh(x) =
( n∑

i=1

∂ih(x)2
+

)1/2
,

where a+ = max{a, 0} and x ∈ {−1, 1}n.

Proposition (Talagrand, 1993)

Let h : {−1, 1}n → R+ be a nonnegative function for which
P{h = 0} ≥ 1

2 . Then,

‖h‖Lp(log L)p/2 ≤ κp‖Mh‖p. (1)



The proof (continued)

Fix a function f : {−1, 1}n → X with Ef = 0, let h = ‖f ‖X and
consider m ≥ 0 a median of h so that

P{h ≤ m} ≥ 1
2 and P{h ≥ m} ≥ 1

2 .

As 0 ≤ h ≤ (h −m)+ + m, we have

‖f ‖Lp(log L)p/2(X ) = ‖h‖Lp(log L)p/2 ≤ ‖(h −m)+‖Lp(log L)p/2 + m.

For the second term observe that

m ≤ 1

P{h ≥ m}

∫
{h≥m}

h ≤ 2‖f ‖L1(X ) ≤ 2C1(X )‖∇f ‖L1(X ),

where the last inequality follows from the the vector-valued L1

Poincaré inequality under finite cotype.



The proof (continued)

To control the first term notice that P{(h −m)+ = 0} ≥ 1
2 , so

‖(h −m)+‖Lp(log L)p/2 ≤ κp‖M(h −m)+‖p,

by Talagrand’s inequality. Moreover, the elementary inequality(
a+ − b+

)
+
≤ (a− b)+

which holds for a, b ∈ R shows that we can further upper bound
this Orlicz norm by

‖(h −m)+‖Lp(log L)p/2 ≤ κp‖M(h −m)‖p = κp‖Mh‖p.



The key lemma

Lemma. For any f : {−1, 1}n → X , we have the pointwise bound

M‖f ‖X (x)2 ≤ Eδ
∥∥∥ n∑

i=1

δi∂i f (x)
∥∥∥2

X
.

Proof. Let v∗x be a normalizing functional of f (x). Then, for every
i ∈ {1, . . . , n}, we have(

‖f (x)‖X−‖f (x1, . . . ,−xi , . . . , xn)‖X
)

+

≤
(
〈v∗x , f (x)〉 − 〈v∗x , f (x1, . . . ,−xi , . . . , xn)〉

)
+

which implies that

M‖f ‖X (x) ≤
n∑

i=1

〈
v∗x , ∂i f (x)

〉2
= Eδ

〈
v∗x ,

n∑
i=1

δi∂i f (x)

〉2

and the conclusion follows as ‖v∗x ‖X∗ ≤ 1.



Finishing the proof

By Kahane’s inequality,(
Eδ
∥∥∥ n∑

i=1

δi∂i f (x)
∥∥∥2

X

)1/2

≤
√

2

(
Eδ
∥∥∥ n∑

i=1

δi∂i f (x)
∥∥∥p
X

)1/p

and thus the lemma implies that

‖Mh‖p ≤
√

2‖∇f ‖Lp(X ).

Putting everything together, if Ef = 0, then we have

‖f ‖Lp(log L)p/2(X ) ≤
√

2κp‖∇f ‖Lp(X ) + 2C1(X )‖∇f ‖L1(X )

and this completes the proof. 2



A refined Pisier inequality

Corollary. For any normed space (X , ‖ · ‖X ), p ∈ [1,∞) and
n ∈ N, every function f : {−1, 1}n → X satisfies

‖f − Ef ‖Lp(log L)p/2(X ) ≤
√

2κp‖∇f ‖Lp(X ) + 4e log n‖∇f ‖L1(X ).



Other results

• An application to the bi-Lipschitz distortion of quotients of the
discrete hypercube with the Hamming metric.

• A general mechanism to boost metric Poincaré inequalities to
metric log-Sobolev inequalities. In particular, we deduce new
vector-valued log-Sobolev inequalities on the symmetric group for
target spaces of martingale type 2.

• Vector-valued Beckner inequalities.

• Some vector-valued inequalities of isoperimetric type improving
recent results of Beltran, Ivanisvili and Madrid (2023).



Thank you!


