C^* -algebras I

M. Anoussis University of the Aegean

November 2022

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

3 Gelfand theory for commutative C*-algebras

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ →

The space of all bounded linear operators $T : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is denoted $\mathcal{B}(\mathcal{H})$. It is complete under the norm

$$||T|| = \sup\{||Tx|| : x \in \mathbf{b}_1(\mathcal{H})\}\$$

($b_1(\mathcal{X})$ the closed unit ball of a normed space \mathcal{X}) and is an algebra under composition. Moreover, because it acts on a Hilbert space, it has additional structure: an *involution* $T \to T^*$ defined via

$$\langle T^*x, y \rangle = \langle x, Ty \rangle$$
 for all $x, y \in \mathcal{H}$.

This satisfies

$$\|T^*T\| = \|T\|^2$$
 the C^* property.

C* -algebras the spectrum Gelfand theory for commutative C*-algebras

These fundamental properties of $\mathcal{B}(\mathcal{H})$ (norm-completeness, involution, C^* property) motivate the definition of an abstract C*-algebra.

イロト 人間 とくほ とくほとう

C^* -algebras

Definition

(a) A Banach algebra ${\cal A}$ is a complex algebra equipped with a complete norm which is sub-multiplicative:

 $\|ab\| \le \|a\| \|b\|$ for all $a, b \in \mathcal{A}$.

(b) An involution is a map on \mathcal{A} such that $(a + \lambda b)^* = a^* + \overline{\lambda}b^*$, $(ab)^* = b^*a^*$, $a^{**} = a$ for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

(c) A C*-algebra ${\cal A}$ is a Banach algebra equipped with an involution $a o a^*$ satisfying the C*-condition

$$\|a^*a\| = \|a\|^2$$
 for all $a \in \mathcal{A}$.

C*-algebras

If \mathcal{A} has a unit 1 then necessarily $\mathbf{1}^* = \mathbf{1}$ and $\|\mathbf{1}\| = 1$.

Definition

If $\mathcal A$ is a C*-algebra let

$$\mathcal{A}^{\sim} =: \mathcal{A} \oplus \mathbb{C}$$

$$(a, z)(b, w) =: (ab + wa + zb, zw)$$

 $(a, z)^* =: (a^*, \overline{z})$
 $\|(a, z)\| =: \sup\{\|ab + zb\| : b \in b_1 \mathcal{A}\}$

Thus the norm of \mathcal{A}^{\sim} is defined by identifying each $(a, z) \in \mathcal{A}^{\sim}$ with the operator $L_{(a,z)} : \mathcal{A} \to \mathcal{A} : b \to ab + zb$ acting on the Banach space \mathcal{A} .

C* -algebras the spectrum Gelfand theory for commutative C*-algebras

\mathbb{C}^2 with norm

$$|(x,y)|| = |x| + |y|$$

is not a C^* -algebra.

$$||a^*a|| = ||(1,1)(1,1)|| = ||(1,1)|| = 2$$

$$||a||^2 = ||(1,1)||^2 = 4$$

æ

C* -algebras the spectrum Gelfand theory for commutative C*-algebras

A morphism $\phi: \mathcal{A} \to \mathcal{B}$ between C*-algebras is a linear map that preserves products and the involution.

イロト 人間 とくほ とくほ とう

- \mathbb{C} , the set of complex numbers.
- C(K), the set of all continuous functions $f : K \to \mathbb{C}$, where K is a compact Hausdorff space. With pointwise operations, $f^*(t) = \overline{f(t)}$ and the sup norm, C(K) is an abelian, unital algebra.
- $C_0(X)$, where X is a locally compact Hausdorff space. This consists of all functions $f: X \to \mathbb{C}$ which are continuous and `vanish at infinity': given $\varepsilon > 0$ there is a compact $K_{f,\varepsilon} \subseteq X$ such that $|f(x)| < \varepsilon$ for all $x \notin K_{f,\varepsilon}$. With the same operations and norm as above, this is an abelian C*-algebra.

C^* -algebras

- $M_n(\mathbb{C})$, the set of all $n \times n$ matrices with complex entries. With matrix operations, $A^* = \text{conjugate transpose}$, and $||A|| = \sup\{||Ax||_2 : x \in \ell^2(n), ||x||_2 = 1\}$, this is a non-abelian, unital algebra.
- $\mathcal{B}(\mathcal{H})$ is a non-abelian, unital C*-algebra.
- $\mathcal{K}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) : \overline{A(b_1(\mathcal{H}))} \text{ compact in } \mathcal{H}\}$: the compact operators. This is a closed selfadjoint subalgebra of $\mathcal{B}(\mathcal{H})$, hence a C*-algebra.

イロン イボン イヨン イヨン 三日

C*-algebras

If X is an index set and \mathcal{A} is a C*-algebra, the Banach space $\ell^{\infty}(X, \mathcal{A})$ of all bounded functions $a : X \to \mathcal{A}$ (with norm $\|a\|_{\infty} = \sup\{\|a(x)\|_{\mathcal{A}} : x \in X\}$) becomes a C*-algebra with pointwise product and involution. Its subspace $c_0(X, \mathcal{A})$ consisting of all $a : X \to \mathcal{A}$ such that $\lim_{x \to \infty} \|a(x)\|_{\mathcal{A}} = 0$ is a C*-algebra. (for each $\varepsilon > 0$ there is a finite subset $X_{a,\varepsilon} \subseteq X$ s.t. $x \notin X_{a,\varepsilon} \Rightarrow \|a(x)\|_{\mathcal{A}} < \varepsilon$).

- If X is a locally compact Hausdorff space then $C_b(X, \mathcal{A})$ is the
- *-subalgebra of $\ell^{\infty}(X, \mathcal{A})$ consisting of continuous bounded functions. It is closed, hence a C*-algebra.

The C*-algebra $C_0(X, \mathcal{A})$ consists of those $f \in C_b(X, \mathcal{A})$ which `vanish at infinity', i.e. such that the function $t \to ||f(t)||_{\mathcal{A}}$ is in $C_0(X)$.

C^* -algebras

Consider subsets of the Cartesian product $\prod A_i$ of a family of C*-algebras:

(i) The direct sum $A_1 \oplus \cdots \oplus A_n$ of C*-algebras is a C*-algebra under pointwise operations and involution and the norm

$$\|(a_1,\ldots,a_n)\| = \max\{\|a_1\|,\ldots,\|a_n\|\}.$$

(ii) Let $\{A_i\}$ be a family of C*-algebras. Their direct product or ℓ^{∞} -direct sum $\bigoplus_{\ell^{\infty}} A_i$ is the subset of the Cartesian product $\prod A_i$ consisting of all $(a_i) \in \prod A_i$ such that $i \to ||a_i||_{A_i}$ is bounded. It is a C*-algebra under pointwise operations and involution and the norm

$$||(a_i)|| = \sup\{||a_i||_{A_i} : i \in I\}$$

イロト イポト イヨト イヨト 一日

(iii) The direct sum or c_0 -direct sum $\bigoplus_{c_0} A_i$ of a family $\{A_i\}$ of C*-algebras is the closed selfadjoint subalgebra of their direct product consisting of all $(a_i) \in \prod A_i$ such that $i \to ||a_i||_{A_i}$ vanishes at infinity. In case $A_i = A$ for all *i*, the direct product is just $\ell^{\infty}(I, A)$ and the direct sum is $c_0(X, A)$.

If \mathcal{A} is a C*-algebra and $n \in \mathbb{N}$, the space $M_n(\mathcal{A})$ of all matrices $[a_{ij}]$ with entries $a_{ij} \in \mathcal{A}$ becomes a *-algebra with product $[a_{ij}][b_{ij}] = [c_{ij}]$ where $c_{ij} = \sum_k a_{ik}b_{kj}$ and involution $[a_{ij}]^* = [d_{ij}]$ where $d_{ij} = a_{ji}^*$. Define a norm on $M_n(\mathcal{A})$ satisfying the C*-condition.

イロト イポト イヨト イヨト

C*-algebras

Suppose \mathcal{A} is $C_0(X)$. Identify $M_n(C_0(X))$ with $C_0(X, M_n)$, i.e. M_n -valued continuous functions on X vanishing at infinity: each matrix $[f_{ij}] \in M_n(C_0(X))$ defines a function $F : X \to M_n : x \to [f_{ij}(x)]$ which is continuous with respect to the norm on M_n . Conversely, if $F : X \to M_n$ is continuous, then its entries f_{ij} given by $f_{ij}(x) = \langle F(x)e_j, e_i \rangle$ form an $n \times n$ matrix of continuous functions.

Define

$$\|[f_{ij}]\| = \|F\|_{\infty} = \sup\{\|F(x)\|_{M_n} : x \in X\}.$$

This satisfies the C*-condition, because the norm on M_n satisfies the C*-condition.

Suppose \mathcal{A} is $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . Identify $M_n(\mathcal{B}(\mathcal{H}))$ with $\mathcal{B}(\mathcal{H}^n)$: Given a matrix $[a_{ij}]$ of bounded operators a_{ij} on \mathcal{H} , we define an operator \mathcal{A} on \mathcal{H}^n by

$$A\begin{bmatrix} \xi_1\\ \vdots\\ \xi_n \end{bmatrix} = \begin{bmatrix} \sum_j a_{1j}\xi_j\\ \vdots\\ \sum_j a_{nj}\xi_j \end{bmatrix}$$

Conversely any $A \in \mathcal{B}(\mathcal{H}^n)$ defines an $n \times n$ matrix of operators a_{ij} on \mathcal{H} by $\langle a_{ij}\xi, \eta \rangle_{\mathcal{H}} = \langle A\xi_j, \eta_i \rangle_{\mathcal{H}^n}$, where $\xi_j \in \mathcal{H}^n$ is the vector having ξ at the *j*-th entry and zeroes elsewhere (and η_i is defined analogously).

イロト イポト イヨト イヨト 二日

Hence one defines the norm $||[a_{ij}]||$ of $[a_{ij}] \in M_n(\mathcal{B}(\mathcal{H}))$ to be the norm ||A|| of the corresponding operator on \mathcal{H}^n .

For
$$n = 2$$
:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} A\xi + B\eta \\ C\xi + D\eta \end{bmatrix}$$

This applies also if \mathcal{A} is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$.

イロト イポト イヨト イヨト

C* -algebras the spectrum Gelfand theory for commutative C*-algebras

Group algebras

Definition

A topological group is a group G which is a topological space such that the maps

$$(x, y) \mapsto xy$$

 $x \mapsto x^{-1}$

イロト 人間 とくほ とくほ とう

3

are continuous.

C* -algebras the spectrum Gelfand theory for commutative C*-algebras

Group algebras

Examples

• G any group with the discrete topology

•
$$(\mathbb{R},+)$$
, (\mathbb{R}^*,\cdot) , (\mathbb{R}^*_+,\cdot)

•
$$(\mathbb{T}, \cdot), \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$$

- $GL(n,\mathbb{R}) = \{A = (a_{ij}) : n \times n \text{ matrix}, a_{ij} \in \mathbb{R}, \text{ det } A \neq 0\}$
- F_n the free group with n-generators

イロン イボン イヨン イヨン 三日

Group algebras

Proposition

G locally compact topological group. Then G has a left invariant measure. This measure is unique up to a scalar, is called the Haar measure and is denoted by $d\mu$.

It satisfies

$$\int_{G} f(ax) d\mu(x) = \int_{G} f(x) d\mu(x)$$

< ≣ >

for $f \in L^1(G)$, $a \in G$.

Group algebras

Definition

 ${\mathcal H}$ Hilbert space and G topological group. A unitary representation π of G is a map $G o {\mathcal B}({\mathcal H})$ such that:

•
$$\pi(x)^*\pi(x) = \pi(x)\pi(x)^* = I, \ \forall x \in G.$$

2 $x \to \pi(x)$ is a homomorphism of groups from G into the group of unitary operators on \mathcal{H} .

• For each $v \in \mathcal{H}$ the map $x \mapsto \pi(x)v$ is continuous.

Group algebras

Examples

- The trivial representation
- $L^2(G)$ the Hilbert space with inner product

$$\langle f,g\rangle = \int_G f(x)\overline{g(x)}d\mu(x).$$

The representation λ defined by:

$$\lambda(y)f(x)=f(y^{-1}x)$$

イロト イポト イヨト イヨト

is called the left regular representation of G.

C* -algebras the spectrum Gelfand theory for commutative C*-algebras

Group algebras

For $f, g \in L^1(G)$, define

$$f * g(x) = \int_{y \in G} f(xy^{-1})g(y)d\mu(y)$$
$$f^*(x) = \overline{f(x^{-1})}$$

ヘロト 人間 とくほとくほとう

æ

group algebras

 (π, H) representation of G. For $f \in L^1(G)$, $\xi, \eta \in H$ define an operator on $\mathcal H$

$$\langle \pi(f)\xi,\eta
angle = \int_{G} f(x) \langle \pi(x)\xi,\eta
angle \, d\mu(x).$$

Then, $\|\pi(f)\| \leq \|f\|$.

Proposition

 (π,\mathcal{H}) representation of G. Then $f\mapsto \pi(f)=\int_G f(x)\pi(x)d\mu(x)$ satisfies

$$oldsymbol{0}$$
 $\pi: L^1(G) o B(\mathcal{H})$ is linear.

$$(f * g) = \pi(f)\pi(g)$$

3
$$\pi(f^*) = \pi(f)^*$$

$$\ \mathbf{\overline{\pi(L^1(G))H}} = \mathcal{H}$$

イロト 人間 とくほ とくほ とう

Definition

Define a norm on $L^1(G)$

$$\|f\| = \sup_{\pi \in \hat{G}} \|\pi(f)\|.$$

The C^* algebra of $G, C^*(G)$ is the completion of $L^1(G)$ wrt this norm.

 \hat{G} : the set of equivalence classes of irreducible representations.

 π irreducible: there are no invariant subspaces for { $\pi(g):g\in G$ }.

C^{*} -algebras the spectrum Gelfand theory for commutative C*-algebras

Examples

- $C^*(\mathbb{R}) \simeq C_0(\mathbb{R}).$
- $C^*(\mathbb{T}) \simeq C_0(\mathbb{Z}).$
- $C^*(\mathbb{Z}) \simeq C(\mathbb{T}).$

<ロ> (四) (四) (三) (三) (三)

G, λ left regular representation.

Definition von Neumann algebra of G is the wot closure of the span of $\{\lambda(x) : x \in G\}.$

Examples

•
$$vN(\mathbb{R}) = L^{\infty}(\mathbb{R})$$

• vN
$$(\mathbb{T}) = \ell^{\infty}(\mathbb{Z})$$

•
$$vN(\mathbb{Z}) = L^{\infty}(\mathbb{T}).$$

イロン 不良 とくほど 不良 とう

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

- $C^*(F_m)$ not isomorphic to $C^*(F_n)$, for $n \neq m$
- Is $vN(F_2)$ isomorphic to $vN(F_3)$?

Nonexamples:

- *T_n* = {(*a_{ij}*) ∈ *M_n*(ℂ) : *a_{ij}* = 0 for *i* > *j*} (upper triangular matrices).
- M_{oo}(ℂ): infinite matrices with finite support. To define norm (and operations), consider its elements as operators acting on ℓ²(ℕ) with its usual basis. This is a selfadjoint algebra, but not complete.

The spectrum

Definition

 \mathcal{A} unital C*-algebra and $GL(\mathcal{A})$ the group of invertible elements of \mathcal{A} . The spectrum of an element $a \in \mathcal{A}$ is

$$\sigma(a) = \sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \notin GL(\mathcal{A})\}.$$

If $\mathcal A$ is non-unital, the spectrum of $a\in\mathcal A$ is defined by

$$\sigma(a) = \sigma_{\mathcal{A}^{\sim}}(a).$$

-≣->

In this case, necessarily $0 \in \sigma(a)$.

C* -algebras

the spectrum Gelfand theory for commutative C*-algebras

The spectrum

Examples

- $\mathcal{A}=\mathit{M}_{n}(\mathbb{C})$ and $a\in\mathcal{A}$, then $\sigma(A)$ is the set of eigenvalues of A.
- $\mathcal{A} = C([0, 1])$ and $f \in \mathcal{A}$, then:

$$f - \lambda \mathbf{1}$$
 invertible $\Leftrightarrow f(x) - \lambda \mathbf{1}(x) \neq 0, \forall x$

$$\Leftrightarrow f(x) - \lambda 1 \neq 0, \forall x \Leftrightarrow \lambda \neq f(x), \forall x.$$

$$\Rightarrow \sigma(f) = \{f(x) : x \in [0, 1]\}$$

イロン 不良 とくほど 不良 とう

C*-algebras

the spectrum Gelfand theory for commutative C*-algebras

The spectrum

Proposition

The spectrum $\sigma(a)$ is a compact nonempty subset of \mathbb{C} .

ヘロア 人間 アメヨア 人間 アー

æ

The spectrum

The spectral radius of $a \in \mathcal{A}$ is defined to be

$$\rho(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\}.$$

It satisfies $ho(a) \leq \|a\|$, but equality may fail. In fact, it can be shown that

$$\rho(a) = \lim_n \|a^n\|^{1/n}$$

イロト イポト イヨト イヨト

This is the Gelfand-Beurling formula.

 C^* -algebras

the spectrum Gelfand theory for commutative C*-algebras

The spectrum

Lemma

If
$$\mathsf{a} = \mathsf{a}^*$$
 then $ho(\mathsf{a}) = \sup\{|\lambda|: \lambda \in \sigma(\mathsf{a})\} = \|\mathsf{a}\|.$

proof

 $\|a\|^2 = \|a^2\|$ and inductively $\|a\|^{2^n} = \|a^{2^n}\|$ for all *n*. Thus, by the Gelfand - Beurling formula, $\rho(a) = \lim \|a^{2^n}\|^{2^{-n}} = \|a\|$.

イロト 人間 とくほ とくほ とう

Proposition

There is at most one norm on a *-algebra making it a C*-algebra.

proof

$$\|a\|^2 = \|a^*a\| = \rho(a^*a)$$

ヘロア 人間 アメヨア 人間 アー

æ

The spectrum

Theorem

A morphism $\pi : \mathcal{A} \to \mathcal{B}$ is contractive (i.e. $\|\pi(a)\| \le \|a\|$ for all $a \in \mathcal{A}$).

proof if
$$x, y \in \mathcal{A}$$
 and $xy = 1 \Rightarrow \pi(x)\pi(y) = 1$.

 $a - \lambda \mathbf{1}$ invertible implies $\pi(a) - \lambda \mathbf{1}$ invertible and hence, $\sigma(\pi(a) \subseteq \sigma(a)$ and hence $\rho(\pi(a)) \le \rho(a)$.

$$\|\pi(a)\|^2 = \|\pi(a)^*\pi(a)\|$$

 $= \|\pi(a^*a)\| =
ho(\pi(a^*a)) \le
ho(a^*a) = \|a^*a\| = \|a\|^2$

イロト イポト イヨト イヨト

The spectrum

An element $a \in A$ is said to be normal if $a^*a = aa^*$, selfadjoint if $a = a^*$ and unitary if (A is unital and) $u^*u = 1 = uu^*$.

Proposition

(i)
$$a = a^* \Longrightarrow \sigma(a) \subseteq \mathbb{R}$$

(ii) $a = b^*b \Longrightarrow \sigma(a) \subseteq \mathbb{R}^+$
(iii) $u^*u = \mathbf{1} = uu^* \Longrightarrow \sigma(u) \subseteq \mathbb{T}$.

(日)

Gelfand theory for commutative C*-algebras

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra \mathcal{A} is isometrically *-isomorphic to $C_0(\hat{\mathcal{A}})$ where $\hat{\mathcal{A}}$ is the set of nonzero morphisms $\phi : \mathcal{A} \to \mathbb{C}$ which, equipped with the topology of pointwise convergence, is a locally compact Hausdorff space. For each $a \in \mathcal{A}$ the function $\hat{a} : \hat{\mathcal{A}} \to \mathbb{C} : \phi \to \phi(a)$ is in $C_0(\hat{\mathcal{A}})$. The Gelfand transform:

$$\mathcal{A}
ightarrow C_0(\hat{\mathcal{A}}): a
ightarrow \hat{a}$$

is an isometric *-isomorphism. The space $\hat{\mathcal{A}}$ is compact if and only if \mathcal{A} is unital.

Commutative C*-algebras

${\cal A}$ unital.

• $\hat{\mathcal{A}}$ is the set of all nonzero multiplicative linear forms (characters) $\phi : \mathcal{A} \to \mathbb{C}$

$$\phi(\mathbf{1})^2 = \phi(\mathbf{1}) \Rightarrow \phi(\mathbf{1}) = 1$$
 (for if $\phi(\mathbf{1}) = 0$ then

$$\phi(a) = \phi(a\mathbf{1}) = 0$$
 for all a , a contradiction).

Each $\phi \in \hat{\mathcal{A}}$ satisfies $\|\phi\| \leq 1$ and $\|\phi\| = \phi(1) = 1$. The topology on $\hat{\mathcal{A}}$ is pointwise convergence: $\phi_i \to \phi$ iff $\phi_i(a) \to \phi(a)$ for all $a \in \mathcal{A}$.

イロト イポト イヨト イヨト 二日

Commutative C*-algebras

• The inequality $|\phi(a)| \leq ||a||$ shows that $\hat{\mathcal{A}}$ is contained in the space $\prod_{a \in \mathcal{A}} \mathbb{D}_a$, the Cartesian product of the compact spaces $\mathbb{D}_a = \{z \in \mathbb{C} : |z| \leq ||a||\}$; and the product topology is the topology of pointwise convergence.

 $\hat{\mathcal{A}}$ is closed in this product: if $\phi_i \to \psi$ pointwise, then ψ is linear and multiplicative, because each ϕ_i is linear and multiplicative, and $\psi \neq 0$ because $\psi(\mathbf{1}) = \lim_i \phi_i(\mathbf{1}) = 1$; thus $\psi \in \widehat{\mathcal{A}}$.

C^{*}-algebras the spectrum Gelfand theory for commutative C*-algebras

Commutative C*-algebras

• The Gelfand map $\mathcal{G}: a o \hat{a}.$ For each $a \in \mathcal{A}$ the function

$$\hat{a}:\hat{\mathcal{A}} o\mathbb{C}$$
 where $\hat{a}(\phi)=\phi(a),\;(\phi\in\hat{\mathcal{A}})$

is continuous by the definition of the topology on $\hat{\mathcal{A}}.$ This gives a well defined map

$$\mathcal{G}:\mathcal{A}
ightarrow C(\hat{\mathcal{A}}):a
ightarrow \hat{a}$$
 .

• • • • • • • • • • •

< ≣ >

• If $a, b \in A$, since each $\phi \in \hat{A}$ is linear, multiplicative and *-preserving, we have

$$\widehat{(a+b)}(\phi) = \phi(a+b) = \phi(a) + \phi(b) = \hat{a}(\phi) + \hat{b}(\phi)$$
$$\widehat{(ab)}(\phi) = \phi(ab) = \phi(a)\phi(b) = \hat{a}(\phi)\hat{b}(\phi)$$
$$\widehat{(a^*)}(\phi) = \phi(a^*) = \overline{\phi(a)} = \overline{\hat{a}(\phi)}$$

therefore

$$\mathcal{G}(a{+}b)=\mathcal{G}(a){+}\mathcal{G}(b), \hspace{1em} \mathcal{G}(ab)=\mathcal{G}(a)\mathcal{G}(b) \hspace{1em} ext{and} \hspace{1em} \mathcal{G}(a^*)=\mathcal{G}(a)^*$$

イロト 人間 とくほ とくほとう

æ

• The map ${\mathcal G}$ is isometric.

$$\|\mathcal{G}(a)\|^2 = \|\mathcal{G}(a)^*\mathcal{G}(a)\| = \|\mathcal{G}(a^*a)\| = \rho(a^*a) = \|a^*a\| = \|a\|^2$$

ヘロア 人間 アメヨア 人間 アー

æ

Commutative C*-algebras

• The Gelfand map is onto $C(\hat{\mathcal{A}})$. Consider the range $\mathcal{G}(\mathcal{A})$: it is a *-subalgebra of $C(\hat{\mathcal{A}})$, because \mathcal{G} is a *-homomorphism. It contains the constants, because $\mathcal{G}(1) = 1$. It separates the points of $\hat{\mathcal{A}}$, because if $\phi, \psi \in \hat{\mathcal{A}}$ are different, they must differ at some $a \in \mathcal{A}$, so

$$\mathcal{G}(a)(\phi) = \phi(a) \neq \psi(a) = \mathcal{G}(a)(\psi).$$

By the Stone -- Weierstrass Theorem, $\mathcal{G}(\mathcal{A})$ must be dense in $C(\hat{\mathcal{A}})$. But it is closed, since \mathcal{A} is complete and \mathcal{G} is isometric. Hence $\mathcal{G}(\mathcal{A}) = C(\hat{\mathcal{A}})$.

Commutative C*-algebras

When \mathcal{A} is abelian but non-unital every $\phi \in \hat{\mathcal{A}}$ extends uniquely to a character $\phi^{\sim} \in \widehat{\mathcal{A}^{\sim}}$ by $\phi^{\sim}(1) = 1$, and there is exactly one $\phi_{\infty} \in \widehat{\mathcal{A}^{\sim}}$ that vanishes on \mathcal{A} . Thus \mathcal{A} is *-isomorphic the algebra of those continuous functions on the `one-point compactification' $\hat{\mathcal{A}} \cup \{\phi_{\infty}\}$ of $\hat{\mathcal{A}}$ which vanish at ϕ_{∞} ; this algebra is in fact isomorphic to $C_0(\hat{\mathcal{A}})$.

C^{*}-algebras the spectrum Gelfand theory for commutative C*-algebras

Commutative C*-algebras

Example

 c_0 the space of sequences converging to 0.

$$\phi_n : c_0 \to \mathbb{C}, \phi_n((a_k)) = a_n$$
. Then $\hat{c_0} \simeq \mathbb{N}$.

 (ϕ_n) converges pointwise to the zero character, since

$$\lim_{n} \phi_n((a_k)) = \lim_{n} a_n = 0.$$

イロト イヨト イヨト イヨト

3

Thus, \hat{c}_0 is not compact.

Commutative C*-algebras

Example

Consider the unitization c of c_0 which is the space of convergent sequences.

Extend ϕ_n to c by the same formula $\phi_n^{\sim}((a_k)) = a_n$.

A new nonzero character appears: $\phi_{\infty}((a_k)) = \lim(a_k)$. This is the pointwise limit of the ϕ_n^{\sim} , since

$$\lim_{n} \phi_{n}^{\sim}((a_{k})) = \lim_{n} (a_{n}) = \phi_{\infty}((a_{n})).$$

イロト 人間 とくほ とくほ とう

 \hat{c} is the one point compactification of \mathbb{N} .

C^{*} -algebras the spectrum Gelfand theory for commutative C^{*}-algebras

Commutative C*-algebras

Remark

When A is non-abelian there may be no characters. $M_2(\mathbb{C})$ has no ideals, hence the only character is the trivial one.

イロト イポト イヨト イヨト