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C∗-algebras

The space of all bounded linear operators T : H → H on a Hilbert

space H is denoted B(H). It is complete under the norm

∥T∥ = sup{∥Tx∥ : x ∈ b1(H)}

( b1(X ) the closed unit ball of a normed space X ) and is an algebra

under composition. Moreover, because it acts on a Hilbert space, it has

additional structure: an involution T → T∗ defined via

⟨T∗x, y⟩ = ⟨x, Ty⟩ for all x, y ∈ H.

This satisfies

∥T
∗
T∥ = ∥T∥2

the C
∗

property.
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C∗-algebras

These fundamental properties of B(H) (norm-completeness, involution,

C∗ property) motivate the definition of an abstract C*-algebra.
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C∗-algebras

Definition

(a) A Banach algebra A is a complex algebra equipped with a

complete norm which is sub-multiplicative:

∥ab∥ ≤ ∥a∥ ∥b∥ for all a, b ∈ A.

(b) An involution is a map on A such that

(a + λb)∗ = a∗ + λ̄b∗, (ab)∗ = b∗a∗, a∗∗ = a for all a, b ∈ A and

λ ∈ C.

(c) A C∗-algebra A is a Banach algebra equipped with an involution

a → a∗ satisfying the C∗-condition

∥a
∗
a∥ = ∥a∥2

for all a ∈ A.
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C∗-algebras

If A has a unit 1 then necessarily 1∗ = 1 and ∥1∥ = 1.

Definition

If A is a C*-algebra let

A∼ =: A⊕ C

(a, z)(b,w) =: (ab + wa + zb, zw)

(a, z)∗ =: (a∗, z̄)

∥(a, z)∥ =: sup{∥ab + zb∥ : b ∈ b1 A}

Thus the norm of A∼ is defined by identifying each (a, z) ∈ A∼ with

the operator L(a,z) : A → A : b → ab + zb acting on the Banach

space A.

M. AnoussisUniversity of the Aegean C
∗-algebras I



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

C∗-algebras

C2 with norm

∥(x, y)∥ = |x|+ |y|

is not a C∗-algebra.

∥a
∗
a∥ = ∥(1, 1)(1, 1)∥ = ∥(1, 1)∥ = 2

∥a∥2 = ∥(1, 1)∥2 = 4
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C∗-algebras

A morphism ϕ : A → B between C*-algebras is a linear map that

preserves products and the involution.
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C∗-algebras

C, the set of complex numbers.

C(K ), the set of all continuous functions f : K → C, where K is a

compact Hausdorff space. With pointwise operations, f∗(t) = f(t)
and the sup norm, C(K ) is an abelian, unital algebra.

C0(X), where X is a locally compact Hausdorff space. This consists

of all functions f : X → C which are continuous and ‘vanish at

infinity’: given ε > 0 there is a compact Kf ,ε ⊆ X such that

|f(x)| < ε for all x /∈ Kf ,ε. With the same operations and norm as

above, this is an abelian C*-algebra.
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C∗-algebras

Mn(C), the set of all n × n matrices with complex entries. With

matrix operations, A∗ = conjugate transpose, and

∥A∥ = sup{∥Ax∥
2
: x ∈ ℓ2(n), ∥x∥

2
= 1}, this is a non-abelian,

unital algebra.

B(H) is a non-abelian, unital C*-algebra.

K(H) = {A ∈ B(H) : A(b1(H)) compact in H}: the compact

operators. This is a closed selfadjoint subalgebra of B(H), hence a

C*-algebra.
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C∗-algebras

If X is an index set and A is a C*-algebra, the Banach space ℓ∞(X ,A)
of all bounded functions a : X → A (with norm

∥a∥∞ = sup{∥a(x)∥A : x ∈ X}) becomes a C*-algebra with

pointwise product and involution.

Its subspace c0(X ,A) consisting of all a : X → A such that

lim
x→∞

∥a(x)∥A = 0 is a C*-algebra. (for each ε > 0 there is a finite

subset Xa,ε ⊆ X s.t. x /∈ Xa,ε ⇒ ∥a(x)∥A < ε).
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C∗-algebras

If X is a locally compact Hausdorff space then Cb(X ,A) is the

*-subalgebra of ℓ∞(X ,A) consisting of continuous bounded functions.

It is closed, hence a C*-algebra.

The C*-algebra C0(X ,A) consists of those f ∈ Cb(X ,A) which ‘vanish

at infinity’, i.e. such that the function t → ∥f(t)∥A is in C0(X).
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C∗-algebras

Consider subsets of the Cartesian product
∏

Ai of a family of

C*-algebras:

(i) The direct sum A1 ⊕ · · · ⊕ An of C*-algebras is a C*-algebra under

pointwise operations and involution and the norm

∥(a1, . . . , an)∥ = max{∥a1∥ , . . . , ∥an∥}.

(ii) Let {Ai} be a family of C*-algebras. Their direct product or

ℓ∞-direct sum
⊕

ℓ∞ Ai is the subset of the Cartesian product
∏

Ai

consisting of all (ai) ∈
∏

Ai such that i → ∥ai∥Ai
is bounded. It is a

C*-algebra under pointwise operations and involution and the norm

∥(ai)∥ = sup{∥ai∥Ai
: i ∈ I}

.
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C∗-algebras

(iii) The direct sum or c0-direct sum
⊕

c0
Ai of a family {Ai} of

C*-algebras is the closed selfadjoint subalgebra of their direct product

consisting of all (ai) ∈
∏

Ai such that i → ∥ai∥Ai
vanishes at infinity.

In case Ai = A for all i, the direct product is just ℓ∞(I,A) and the

direct sum is c0(X ,A).
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C∗-algebras

If A is a C*-algebra and n ∈ N, the space Mn(A) of all matrices [aij ]
with entries aij ∈ A becomes a *-algebra with product [aij ][bij ] = [cij ]
where cij =

∑
k

aikbkj and involution [aij ]
∗ = [dij ] where dij = a∗

ji .

Define a norm on Mn(A) satisfying the C*-condition.
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C∗-algebras

Suppose A is C0(X). Identify Mn(C0(X)) with C0(X ,Mn), i.e. Mn-valued

continuous functions on X vanishing at infinity: each matrix

[fij ] ∈ Mn(C0(X)) defines a function F : X → Mn : x → [fij(x)] which is

continuous with respect to the norm on Mn. Conversely, if F : X → Mn is

continuous, then its entries fij given by fij(x) = ⟨F(x)ej , ei⟩ form an n × n

matrix of continuous functions.

Define

∥[fij ]∥ = ∥F∥∞ = sup{∥F(x)∥
Mn

: x ∈ X}.

This satisfies the C*-condition, because the norm on Mn satisfies the

C*-condition.
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C∗-algebras

Suppose A is B(H) for some Hilbert space H. Identify Mn(B(H)) with

B(Hn): Given a matrix [aij ] of bounded operators aij on H, we define

an operator A on Hn by

A

ξ1

...

ξn

 =


∑

j
a1jξj

...∑
j
anjξj


Conversely any A ∈ B(Hn) defines an n × n matrix of operators aij on

H by ⟨aijξ, η⟩H = ⟨Aξj , ηi⟩Hn , where ξj ∈ Hn is the vector having ξ at

the j-th entry and zeroes elsewhere (and ηi is defined analogously).
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C∗-algebras

Hence one defines the norm ∥[aij ]∥ of [aij ] ∈ Mn(B(H)) to be the

norm ∥A∥ of the corresponding operator on Hn.

For n = 2: ï
A B

C D

ò ï
ξ
η

ò
=

ï
Aξ + Bη
Cξ + Dη

ò
This applies also if A is a C∗-subalgebra of B(H).
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Group algebras

Definition

A topological group is a group G which is a topological space such

that the maps

(x, y) 7→ xy

x 7→ x
−1

are continuous.
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Group algebras

Examples

G any group with the discrete topology

(R,+), (R∗, ·), (R∗
+, ·)

(T, ·), T = {z ∈ C : |z| = 1}
GL(n,R) = {A = (aij) : n × n matrix, aij ∈ R, detA ̸= 0}
Fn the free group with n-generators
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Group algebras

Proposition

G locally compact topological group. Then G has a left invariant

measure. This measure is unique up to a scalar, is called the Haar

measure and is denoted by dµ.

It satisfies ∫
G

f(ax)dµ(x) =

∫
G

f(x)dµ(x)

for f ∈ L1(G), a ∈ G.
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Group algebras

Definition

H Hilbert space and G topological group. A unitary representation π of

G is a map G → B(H) such that:

1 π(x)∗π(x) = π(x)π(x)∗ = I, ∀x ∈ G.

2 x → π(x) is a homomorphism of groups from G into the group of

unitary operators on H.

3 For each v ∈ H the map x 7→ π(x)v is continuous.
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Group algebras

Examples

The trivial representation

L2(G) the Hilbert space with inner product

⟨f , g⟩ =
∫

G

f(x)g(x)dµ(x).

The representation λ defined by:

λ(y)f(x) = f(y−1
x)

is called the left regular representation of G.
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Group algebras

For f , g ∈ L1(G), define

f ∗ g(x) =

∫
y∈G

f(xy
−1)g(y)dµ(y)

f
∗(x) = f(x−1)

M. AnoussisUniversity of the Aegean C
∗-algebras I



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

group algebras

(π,H) representation of G. For f ∈ L1(G), ξ, η ∈ H define an operator

on H
⟨π(f)ξ, η⟩ =

∫
G

f(x) ⟨π(x)ξ, η⟩ dµ(x).

Then, ∥π(f)∥ ≤ ∥f∥.

Proposition

(π,H) representation of G. Then f 7→ π(f) =
∫

G
f(x)π(x)dµ(x)

satisfies

1 π : L1(G) → B(H) is linear.

2 π(f ∗ g) = π(f)π(g)

3 π(f∗) = π(f)∗

4 π(L1(G))H = H
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C∗(G)

Definition

Define a norm on L1(G)

∥f∥ = supπ∈Ĝ
∥π(f)∥.

The C∗ algebra of G, C∗(G) is the completion of L1(G) wrt this norm.

Ĝ: the set of equivalence classes of irreducible representations.

π irreducible: there are no invariant subspaces for {π(g) : g ∈ G}.

M. AnoussisUniversity of the Aegean C
∗-algebras I



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

C∗(G)

Examples

C∗(R) ≃ C0(R).
C∗(T) ≃ C0(Z).
C∗(Z) ≃ C(T).
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vN(G)

G, λ left regular representation.

Definition

von Neumann algebra of G is the wot closure of the span of

{λ(x) : x ∈ G}.

Examples

vN(R) = L∞(R).
vN(T) = ℓ∞(Z).
vN(Z) = L∞(T).
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Example

G = Z

λ(1) =



... ... ... ... ... ... ...

... 0 0 0 0 0 ...

... 1 0 0 0 0 ...

... 0 1 0 0 0 ...

... 0 0 1 0 0 ...

... 0 0 0 1 0 ...

... ... ... ... ... ... ...


.
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C∗(Fm) not isomorphic to C∗(Fn), for n ̸= m

Is vN(F2) isomorphic to vN(F3)?
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Nonexamples:

Tn = {(aij) ∈ Mn(C) : aij = 0 for i > j} (upper triangular

matrices).

Moo(C): infinite matrices with finite support. To define norm (and

operations), consider its elements as operators acting on ℓ2(N)
with its usual basis. This is a selfadjoint algebra, but not complete.
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The spectrum

Definition

A unital C*-algebra and GL(A) the group of invertible elements of A.

The spectrum of an element a ∈ A is

σ(a) = σA(a) = {λ ∈ C : λ1− a /∈ GL(A)}.

If A is non-unital, the spectrum of a ∈ A is defined by

σ(a) = σA∼(a).

In this case, necessarily 0 ∈ σ(a).
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The spectrum

Examples

A = Mn(C) and a ∈ A, then σ(A) is the set of eigenvalues of A.

A = C([0, 1]) and f ∈ A, then:

f − λ1 invertible ⇔ f(x)− λ1(x) ̸= 0,∀x

⇔ f(x)− λ1 ̸= 0, ∀x ⇔ λ ̸= f(x),∀x.

⇒ σ(f) = {f(x) : x ∈ [0, 1]}
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The spectrum

Proposition

The spectrum σ(a) is a compact nonempty subset of C.
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The spectrum

The spectral radius of a ∈ A is defined to be

ρ(a) = sup{|λ| : λ ∈ σ(a)}.

It satisfies ρ(a) ≤ ∥a∥, but equality may fail. In fact, it can be shown

that

ρ(a) = lim
n
∥a

n∥1/n

This is the Gelfand-Beurling formula.
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The spectrum

Lemma

If a = a∗ then ρ(a) = sup{|λ| : λ ∈ σ(a)} = ∥a∥.

proof
∥a∥2 = ∥a2∥ and inductively ∥a∥2n

= ∥a2n∥ for all n. Thus, by the

Gelfand - Beurling formula, ρ(a) = lim
∥∥a2n

∥∥2−n

= ∥a∥.
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Proposition

There is at most one norm on a *-algebra making it a C*-algebra.

proof

∥a∥2 = ∥a
∗
a∥ = ρ(a∗

a)
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The spectrum

Theorem

A morphism π : A → B is contractive (i.e. ∥π(a)∥ ≤ ∥a∥ for all

a ∈ A).

proof If x, y ∈ A and xy = 1 ⇒ π(x)π(y) = 1.

a − λ1 invertible implies π(a)− λ1 invertible and hence,

σ(π(a) ⊆ σ(a) and hence ρ(π(a)) ≤ ρ(a).

∥π(a)∥2 = ∥π(a)∗π(a)∥

= ∥π(a∗
a)∥ = ρ(π(a∗

a)) ≤ ρ(a∗
a) = ∥a

∗
a∥ = ∥a∥2
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The spectrum

An element a ∈ A is said to be normal if a∗a = aa∗, selfadjoint if

a = a∗ and unitary if (A is unital and) u∗u = 1 = uu∗.

Proposition

(i) a = a∗ =⇒ σ(a) ⊆ R
(ii) a = b∗b =⇒ σ(a) ⊆ R+

(iii) u∗u = 1 = uu∗ =⇒ σ(u) ⊆ T.

M. AnoussisUniversity of the Aegean C
∗-algebras I



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

Gelfand theory for commutative C*-algebras

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra A is isometrically *-isomorphic to C0(Â)
where Â is the set of nonzero morphisms ϕ : A → C which, equipped

with the topology of pointwise convergence, is a locally compact

Hausdorff space. For each a ∈ A the function â : Â → C : ϕ→ ϕ(a)
is in C0(Â). The Gelfand transform:

A → C0(Â) : a → â

is an isometric *-isomorphism. The space Â is compact if and only if A is

unital.
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Commutative C*-algebras

A unital.

Â is the set of all nonzero multiplicative linear forms ( characters)

ϕ : A → C.

ϕ(1)2 = ϕ(1) ⇒ ϕ(1) = 1 (for if ϕ(1) = 0 then

ϕ(a) = ϕ(a1) = 0 for all a, a contradiction).

Each ϕ ∈ Â satisfies ∥ϕ∥ ≤ 1 and ∥ϕ∥ = ϕ(1) = 1. The topology

on Â is pointwise convergence: ϕi → ϕ iff ϕi(a) → ϕ(a) for all

a ∈ A.
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Commutative C*-algebras

The inequality |ϕ(a)| ≤ ∥a∥ shows that Â is contained in the

space Πa∈ADa , the Cartesian product of the compact spaces

Da = {z ∈ C : |z| ≤ ∥a∥}; and the product topology is the

topology of pointwise convergence.

Â is closed in this product: if ϕi → ψ pointwise, then ψ is linear

and multiplicative, because each ϕi is linear and multiplicative,

and ψ ̸= 0 because ψ(1) = limi ϕi(1) = 1; thus ψ ∈ “A.
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Commutative C*-algebras

The Gelfand map G : a → â. For each a ∈ A the function

â : Â → C where â(ϕ) = ϕ(a), (ϕ ∈ Â)

is continuous by the definition of the topology on Â. This gives a

well defined map

G : A → C(Â) : a → â .
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If a, b ∈ A, since each ϕ ∈ Â is linear, multiplicative and

*-preserving, we have◊�(a + b)(ϕ) = ϕ(a + b) = ϕ(a) + ϕ(b) = â(ϕ) + b̂(ϕ)‘(ab)(ϕ) = ϕ(ab) = ϕ(a)ϕ(b) = â(ϕ)b̂(ϕ)‘(a∗)(ϕ) = ϕ(a∗) = ϕ(a) = â(ϕ)

therefore

G(a+b) = G(a)+G(b), G(ab) = G(a)G(b) and G(a∗) = G(a)∗
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The map G is isometric.

∥G(a)∥2 = ∥G(a)∗G(a)∥ = ∥G(a∗
a)∥ = ρ(a∗

a) = ∥a
∗
a∥ = ∥a∥2
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Commutative C*-algebras

The Gelfand map is onto C(Â). Consider the range G(A): it is a

*-subalgebra of C(Â), because G is a *-homomorphism. It

contains the constants, because G(1) = 1. It separates the points

of Â, because if ϕ, ψ ∈ Â are different, they must differ at some

a ∈ A, so

G(a)(ϕ) = ϕ(a) ̸= ψ(a) = G(a)(ψ).

By the Stone -- Weierstrass Theorem, G(A) must be dense in C(Â).
But it is closed, since A is complete and G is isometric. Hence

G(A) = C(Â).
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Commutative C*-algebras

When A is abelian but non-unital every ϕ ∈ Â extends uniquely to a

character ϕ∼ ∈ Â∼ by ϕ∼(1) = 1, and there is exactly one ϕ∞ ∈ Â∼

that vanishes on A. Thus A is *-isomorphic the algebra of those

continuous functions on the ‘one-point compactification’ Â ∪ {ϕ∞} of

Â which vanish at ϕ∞; this algebra is in fact isomorphic to C0(Â).
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Commutative C*-algebras

Example

c0 the space of sequences converging to 0.

ϕn : c0 → C, ϕn((ak)) = an. Then ĉ0 ≃ N.

(ϕn) converges pointwise to the zero character, since

lim
n
ϕn((ak)) = lim

n
an = 0.

Thus, ĉ0 is not compact.
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Commutative C*-algebras

Example

Consider the unitization c of c0 which is the space of convergent

sequences.

Extend ϕn to c by the same formula ϕ∼n ((ak)) = an.

A new nonzero character appears: ϕ∞((ak)) = lim(ak).
This is the pointwise limit of the ϕ∼n , since

lim
n
ϕ∼n ((ak)) = lim

n
(an) = ϕ∞((an)).

ĉ is the one point compactification of N.
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Commutative C*-algebras

Remark

When A is non-abelian there may be no characters. M2(C) has no

ideals, hence the only character is the trivial one.
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