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C* -algebras

C*-algebras

The space of all bounded linear operators T : H — H on a Hilbert
space H is denoted B(#H). It is complete under the norm

Tl = sup{[Im| - x € bi(H)}

(b, (X) the closed unit ball of a normed space X’) and is an algebra
under composition. Moreover, because it acts on a Hilbert space, it has
additional structure: an involution T — T* defined via

(T"'x,y) = (x,Ty) foralix,y € H.

This satisfies
T*1|| = ||T||? the C* property.
|
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C* -algebras

C*-algebras

These fundamental properties of B(H) (norm-completeness, involution,
C* property) motivate the definition of an abstract C*-algebra.
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C* -algebras

C*-algebras

Definition

(a) A Banach algebra A is a complex algebra equipped with a
complete norm which is sub-multiplicative:

llab|| < ||l [|p]| forall a,b € A.

(b) An involution is a map on A such that

(a+ Ab)* = a* 4+ \b*, (ab)* = b*a*, a** = afordlla,b € Aand
AeC.

(¢) A C*-algebra A is a Banach algebra equipped with an involution
a — a* satisfying the C*-condition

la*all = ||al? foral a € A.
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C* -algebras

C*-algebras

If A has a unit 1 then necessarily 1* = 1 and ||1]| = 1.

If Ais a C*-algebra let
A=A C

(a,z)(b,w) =: (ab + wa + zb, zw)
(a,2)" =: (a",2)
|l(a,2)|| =: sup{||ab+ zb|| : b € by A}

Thus the norm of A™ is defined by identifying each (a, z) € A™ with
the operator L,y : A — A : b — ab + zb acting on the Banach
space A.
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C* -algebras

C*-algebras

C? with norm
GG =[x+ Iyl

is not a C*-algebra.
[a*all = [I(0, (L, DI =110, )] =2

lal® =101, 1)]* = 4

M. AnoussisUniversity of the Aegean C*-algebras |



C* -algebras

C*-algebras

A morphism ¢ : A — B between C*-algebras is a linear map that
preserves products and the involution.
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C* -algebras

C*-algebras

@ C, the set of complex numbers.

@ C(K). the set of all continuous functions f : K — C, where Kisa

compact Hausdorff space. With pointwise operations, f*(t) = f(t)
and the sup norm, C(K) is an abelian, unital algebra.

° CO(X ) where X is a locally compact Hausdorff space. This consists
of all functions f : X — C which are continuous and ‘vanish at
infinity”: given € > 0 there is a compact K¢ . € X such that
|f(x)| < € forall x ¢ K. With the same operations and norm as
above, this is an abelian C*-algebra.
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C* -algebras

C*-algebras

@ Mu(C), the set of all n X n matrices with complex entries. With
matrix operations, A* = conjugate transpose, and
|All = sup{||Ax||, : x € £2(n), ||x|l, = 1}. this is @ non-abelian,
unital algebra.

e B(H) is a non-abelian, unital C*-algebra.

o K(H)={A€ B(H): A(b:i(H)) compactin H}: the compact
operators. This is a closed selfadjoint subalgebra of B(#), hence a
C*-algebra.
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C* -algebras

C*-algebras

If X is an index set and .4 is a C*-algebra, the Banach space (>°(X, A)
of all bounded functions a : X — A (with norm

lallo = sup{|la(x)|| 4 : x € X}) becomes a C*-algebra with
pointwise product and involution.

Its subspace cp(X,.A) consisting of all a : X — A such that

lim |la(x)|| 4 = Ois a C*-algebra. (for each € > 0 there is a finite
X—»00

subset Xgc C X st x & Xge = [Ja(x)]| 4 < o).
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C* -algebras

C*-algebras

If X is a locally compact Hausdorff space then Cp(X, A) is the
*-subalgebra of £°°(X, .A) consisting of continuous bounded functions.
It is closed, hence a C*-algebra.

The C*-algebra Cy(X, A) consists of those f € Cp(X,.A) which *vanish
at infinity’, i.e. such that the function t — [|f(t)|| 4 is in Co(X).
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C* -algebras

C*-algebras

Consider subsets of the Cartesian product H A, of a family of
C*-algebras:

(@) The direct sum A; @ - - - @ A, of C*-algebras is a C*-algebra under
pointwise operations and involution and the norm

I(ans- -5 an)ll = max{flan][ ;. .., [lanl[}-

(i) Let {.A;} be a family of C*-algebras. Their direct product or

¢>°-direct sum €D o Aj is the subset of the Cartesian product [ [ A;
consisting of all (a;) € [[A; such that i — [|ai| 4, is bounded. It is a
C*-algebra under pointwise operations and involution and the norm

(@)l = sup{llaill 4 : 7€ 1}
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C* -algebras

C*-algebras

(i) The direct sum or co-direct sum P, A of a family {A;} of
C*-algebras is the closed selfadjoint subalgebra of their direct product
consisting of all (a;) € [ ] A; such that i — [|aj| 4, vanishes at infinity.
In case A; = A for all i, the direct product is just £°°(1, .A) and the
direct sum is co(X, A).
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C* -algebras

C*-algebras

If Ais a C*-algebra and n € N, the space M,(.A) of all matrices [aj]
with entries a; € A becomes a *-algebra with product [a;][b;] = [¢]
where ¢; = ), axby and involution [g;]* = [d;] where dj = af.

Define a norm on M, (.A) satisfying the C*-condition.
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C* -algebras

C*-algebras

Suppose A is Co(X). Identify Mn(Co(X)) with Co(X, Mp). i.e. Mp-valued
continuous functions on X vanishing at infinity: each matrix

[fi] € Mn(Co(X)) defines a function F : X — M, : x — [f;(x)] which is
continuous with respect to the norm on M,,. Conversely, if F : X — M, is
continuous, then its entries f; given by f;(x) = (F(x)e;, &) forman n x n
matrix of continuous functions.

Define

111 = IFllee = sup{lIFC) Iy, = x € X}

This satisfies the C*-condition, because the norm on M, satisfies the
C*-condition.
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C* -algebras

C*-algebras

Suppose A is B(H) for some Hilbert space H. Identify M,(B(H)) with
B(H"): Given a maitrix [a;] of bounded operators a; on H, we define
an operator A on H" by

& > ai
Al :
fn Zj anjff
Conversely any A € B(H") defines an n X n matrix of operators aj on

H by (a€,m)4, = (A&, Mi)4n. Where & € H" is the vector having & at
the j-th entry and zeroes elsewhere (and 7); is defined analogously).
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C* -algebras

C*-algebras

Hence one defines the norm ||[ay]|| of [a] € MA(B(H)) to be the
norm ||Al| of the corresponding operator on H".

orn =2 A B AE + B
[c D} m - {cgj:Dﬂ

This applies also if A is a C*-subalgebra of B(H).
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C* -algebras

Group algebras

Definition
A topological group is a group G which is a topological space such
that the maps

(x,y) = xy

x> x!

are continuous. )
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C* -algebras

Group algebras

@ G any group with the discrete topology

o (R, +). (R*,-). (R%,")

o (T,).T={zeC: |z =1}

o GL(n,R) = {A=(qy) : n x nmatrix, g; € R, detA # 0}

@ F, the free group with n-generators
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C* -algebras

Group algebras

Proposition

G locally compact topological group. Then G has a left invariant
measure. This measure is unique up to a scalar, is called the Haar
measure and is denofed by du.

It satisfies

[ #@aut) = [ et

G
forf € L'(G).ae G
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C* -algebras

Group algebras

H Hilbert space and G topological group. A unitary representation 7 of
Gisamap G — B(#) such that:

Q 7(x)*n(x) =7(x)r(x)* =1, Vx € G.
Q@ x — 7(x) is @ homomorphism of groups from G into the group of
unitary operators on .

@ For each v € H the map x — 7(x)v is continuous.
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C* -algebras

Group algebras

@ The ftrivial representation

e [?(G) the Hilbert space with inner product

(r.6) = [ roaBIanut)
G
The representation A\ defined by:

Ay)f(x) = f(y~'x)

is called the left regular representation of G.
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C* -algebras

Group algebras

For f,g € L'(G), define

f*g(x)= /GG oo™ )aly)du(y)

() = 1)
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C* -algebras

group algebras

(7, H) representation of G. For f € L'(G), £, n € H define an operator
onH

(n(PEm) = / 1(x) ()€, 1) ().

G
Then, || (f)[| < 7]

(m, M) representation of G. Then f +— (f) = [ f(x)m(x)du(x)
satisfies

Q@ 7 :L'(G) — B(H) is linear.
Q n(fxg) =n(f)m(g)

Q n(r*) = w(f)*

Q n(LN(G)H="H

V.
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C* -algebras

Definition

Define a norm on L'(G)

17l = supreellm(FIl-
The C* algebra of G, C*(G) is the completion of L'(G) wrt this norm.

G: the set of equivalence classes of irreducible representations.
7 irreducible: there are no invariant subspaces for {r(g) : g € G}.
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C* -algebras

M. AnoussisUniversity of the Aegean C*-algebras |



C* -algebras

G. ) left regular representation.

Definition
von Neumann algebra of G is the wot closure of the span of
{A\x):x € G}

v

e WN(R) = L*(R).
o vN(T) = ¢>°(Z).
e VN(Z) = L*°(T).
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C* -algebras
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C* -algebras

e C*(Fy,) not isomorphic to C*(F,), for n # m
@ Is vN(F,) isomorphic to vN(F3)?
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C* -algebras

Nonexamples:

o T, ={(ay) € My(C) : gy =0fori > j} (upper triangular
matrices).

@ Moo(C): infinite matrices with finite support. To define norm (and
operations), consider its elements as operators acting on 62(N )
with its usual basis. This is a selfadjoint algebra, but not complete.
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the spectrum

The spectrum

Definition

A unital C*-algebra and GL(.A) the group of invertible elements of A.
The spectrum of an element a € A is

ola)=ca(a)={AeC: N1 —-a¢ GL(A)}.
If A is non-unital, the spectrum of a € A is defined by

o(a) = o4~(a).

In this case, necessarily 0 € o(a).
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the spectrum

The spectrum

o A= M,(C)and a € A, then o(A) is the set of eigenvalues of A.
e A=C([0,1]) and f € A, then:

f — A1 invertible < f(x) — A1(x) # 0, Vx

< f(x) — A1 #0,Vx & X\ # f(x), Vx.

= o(f) = {f(x) : x € [0,1]}
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the spectrum

The spectrum

Proposition

The spectrum a(a) is a compact nonempty subset of C.
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the spectrum

The spectrum

The spectral radius of a € A is defined to be

p(a) = sup{[A[ : A € o(a)}.

It satisfies p(a) < ||a||. but equality may fail. In fact, it can be shown

that

pl(a) = lim |a"[|"/"

This is the Gelfand-Beurling formula.
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the spectrum

The spectrum

Ifa = a* then p(a) = sup{|A| : A € o(a)} = ||al.

proof
llall? = ||e?|| and inductively ||a||?” = ||a®’|| for all n. Thus, by the
Gelfand - Beurling formula, p(a) = lim ||a®’ 2" = lal. O
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the spectrum

Proposition

There is at most one norm on a *-algebra making it a C*-algebra.

proof

lall* = lla*all = p(a"a)
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the spectrum

The spectrum

A morphism 7 : A — B is contractive (i.e. |m(a)|| < ||al| for all

ac A).

proof If x,y € Aand xy = 1= m(x)n(y) = 1.

a — Al invertible implies 7(a) — A1 invertible and hence,
o(m(a) C o(a) and hence p(m(a)) < p(a).

I(a)||* = [lm(a) 7 (a)]

= |[n(a"a)|l = p(r(a"a)) < p(a"a) = |la"al| = ||a|®
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the spectrum

The spectrum

An element a € A is said to be normal if a*a = aa®, selfadjoint if
a = a* and unitary if (A is unital and) u*u = 1 = wu*.

Proposition

MWa=a" = o(a) CR
(i) a = b*b = o(a) CRT
(i) u*u=1=uw* = o(u) CT.
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Gelfand theory for commutative C*-algebras

Gelfand theory for commmutative C*-algebras

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra A is isometrically *-isomorphic to Co(/i)
where A is the set of nonzero morphisms ¢ : A — C which, equipped
with the fopology of pointwise convergence, is a locally compact
Hausdorff space. For each a € A the function & : A — C : ¢ — ¢(a)
is in Co(A). The Gelfand transform:

A= Cy(A): a— &

is an isometric *-isomorphism. The space .ﬁ is compact if and only if A is
unital.
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

A unital.

o fi is the set of all nonzero multiplicative linear forms ( characters)
¢: A—C.
#(1)? = ¢(1) = ¢(1) = 1 (forif #(1) = 0 then
¢(a) = ¢(al) = O for all a, a contradiction).
Each ¢ € A satisfies ||¢)|| < 1and ||¢|| = ¢(1) = 1. The topology
on A is pointwise convergence: ¢; — ¢ iff ¢;(a) — ¢(a) for all
aec A
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

e The inequality |¢(a)| < ||a|| shows that A is contained in the
space [Ny 4D, the Cartesian product of the compact spaces
Dy ={z € C: |z| < ||a| }: and the product topology is the
topology of pointwise convergence.

Ais closed in this product: if ¢; — 1 pointwise, then 1 is linear
and multiplicative, because each ¢, is linear and multiplicative,
and 1) # 0 because (1) = lim; ¢;(1) = 1; thus ¢ € A.
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

@ The Gelfand map G : a — &. For each a € A the function
a: A= C where &(¢) = ¢(a), (¢ € A)

is continuous by the definition of the topology on /Al This gives a
well defined map

G:A—-Cc(Ad):a—a.
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Gelfand theory for commutative C*-algebras

e Ifa,b € A, since each ¢ € A'is linear, multiplicative and
*-preserving, we have

(a+b)(6) = d(a+b) = ¢(a) + 6(b) = &(¢) + B(0)
(ab)(¢) = ¢(ab) = ¢(a)e(b) = &(¢)b(0)

—

(@)(¢) = ¢(a") = é(a) = &(¢)

@ therefore

G(a+b) = G(a)+G(b), G(ab) =G(a)G(b) and G(a*) = G(a)*
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Gelfand theory for commutative C*-algebras

@ The map G is isometric.

IG(a)I[* = G(a)*G(a)ll = [G(a"a)|l = p(a"a) = [la"a] = ||a|*
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

N

@ The Gelfand map is onto C(.A). Consider the range G(.A): it is a
*-subalgebra of C(fl) because § is a *-homomorphism. It
contains the constants, because G(1) = 1. It separates the points
of A, because if D, € A are different, they must differ at some
ae A so

G(a)(9) = ¢(a) # P(a) = G(a)(¥).

By the Stone - Weierstrass Theorem, G(.A) must be dense in C(A).
But it is closed, since A is complete and G is isometric. Hence

G(A) = c(A). O
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

When A is obehon but non-unital every ¢ € .A extends uniquely to a
character ¢™ € A~ by ¢~ (1) = 1, and there is exactly one ¢, € A~
that vanishes on A. Thus A is *-isomorphic the algebra of those
continuous functions on the ‘one-point compactification’ fl U {gboo} of
A which vanish at ¢; this algebra is in fact isomorphic to Co(fl).
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

co the space of sequences converging o 0.
¢n: co — C. pn((ak)) = an. Then & ~ N.

(¢n) converges pointwise to the zero character, since

Iirr1n on((ak)) = Iirr1n a, =0.

Thus, & is not compact.
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

Consider the unitization ¢ of cg which is the space of convergent
sequences.

Extend ¢, to ¢ by the same formula ¢ ((ak)) = an.

A new nonzero character appears: ¢oo((ax)) = lim(ay).
This is the pointwise limit of the ¢, since

im 67/((01) = lim(an) = dxc((an))

¢ is the one point compactification of N.
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Gelfand theory for commutative C*-algebras

Commutative C*-algebras

When A is non-abelian there may be no characters. My(C) has no
ideals, hence the only character is the trivial one.
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