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Amenability of groups



In what follows G will always be a countable discrete group.
We say that G acts on a space X if

(i) sx ∈ X , for all s ∈ G

(ii) ex = x , if e ∈ G is the unit.

(iii) s1(s2x) = (s1s2)x , for all s1, s2 ∈ G and x ∈ X .

Whenever G acts on X , it also acts on the (complex valued)
functions on X by sf (x) := f (s−1x), x ∈ X .



A group G is said to be amenable iff there exists a state ω on
ℓ∞(G ), i.e., ∥ω∥ = ω(1

¯
) = 1 which is translation invariant, i.e.,

ω(sf ) = ω(f ),

for all f ∈ ℓ∞(G ).

By restricting ω on the projections of ℓ∞(G ) we obtain a
translation invariant finitely additive measure on the powerset of
G , denoted again as ω.

Examples of amenable groups: finite groups and direct sums of
them, abelian groups.



PROPOSITION. The free group G on two generators a, b is not
amenable.
Proof. If x ∈ {a, b, a−1, b−1}, then let Gx ⊆ G denote the
collection of all words starting with x . Clearly

G = Ga ∪ Gb ∪ Ga−1 ∪ Gb−1 ∪ {e}.

Now bGa ∪ b2Ga ⊆ Gb and so if G was amenable

2ω(Ga) = ω(bGa) + ω(b2Ga) ≤ ω(Gb) ≤ ω(aGb) ≤ ω(Ga)

Hence ω(Ga) = ω(Gb) = 0 and by symmetry
ω(Ga−1) = ω(Gb−1) = 0. Also ω({e}) = 0, a contradiction.



Tensor products on C∗-algebras



All C∗-algebras will be unital.

Let A ⊆ B(H), B ⊆ B(K) be C*-algebras. We define their
algebraic tensor product as

A⊗ B := span{a⊗ b | a ∈ A, b ∈ B} ⊆ B(H⊗K)

and their spatial tensor product as

A⊗s B := span{a⊗ b | a ∈ A, b ∈ B} = A⊗ B.

The spatial tensor product contains a copy of A in the form A⊗ I
and similarly for B.



If π and ρ are representations of A and B respectively on H, we
say that they form a commuting pair iff

π(a)ρ(b) = ρ(b)π(a), for all a ∈ A, b ∈ B

The collection of all commuting pairs of representations of A and B
on a space H of sufficiently large cardinality is denoted as C(A,B).



If (π, ρ) ∈ C(A,B) define

π × ρ : A⊗ B → B(H); a⊗ b 7−→ π(a)ρ(b), a ∈ A, b ∈ B

The maximal tensor product of A and B is defined as

A⊗m B := span{⊕(π,ρ)∈C(π × ρ)(a⊗ b) | a ∈ A, b ∈ B}
= span{⊕(π,ρ)∈Cπ(a)ρ(b) | a ∈ A, b ∈ B}

Therefore if (π, ρ) ∈ C, then π × ρ extends to a representation of
A⊗m B by restricting on the appropriate direct summand.



Nuclearity and the extension property



A C∗-algebra A is said to be nuclear iff A⊗m B ≃ A⊗s B for any
other C∗-algebra B.

A C∗-algebra A is said to have the extension property if the
maximal tensor product preserves the inclusions of A, i.e., given
any C∗-algebra B with A ⊆ B, then the natural map

A⊗m C ∋ a⊗ c 7−→ a⊗ c ∈ B ⊗m C

is injective, for any other C∗-algebra C .



PROPOSITION. If A is nuclear, then A has the extension property.

Proof. Consider the commuting diagram

B ⊗m C

q

��
A⊗m,s C

φ
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ι // B ⊗s C

where φ is the integrated map of the commuting pair (inclusion,
identity) and exists by properties of the maximal tensor product
and ι is simply inclusion.

Our goal is to show that the reduced group C∗-algebra of any
non-amenable group fails the extension property and therefore is
not nuclear.



Weak expectation property (WEP)



We say that a C∗-algebra A enjoys WEP if for any faithful
representation φ : A → B(H), there exists a unital completely

positive map E from B(H) on φ(A)′′ = φ(A)
sot

so that

E (φ(a)xφ(b)) = φ(a)E (x)φ(b), for all a, b ∈ A.

THEOREM (Lance 1972) A C∗-algebra has the extension property
iff it satisfies WEP.

Proof. We will only show that the extension property implies WEP.
Assume that A has been represented by φ on H and by the
extension property we have the inclusion

A⊗m A′ ⊆ B(H)⊗m A′.



We have a diagram

A⊗m A′

ι
��

π // AA′

B(H)⊗m A′ π̂ //

π̃
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B(K)

P|H ·P|H

OO

were:
The map ι is inclusion.
The map π is defined by π(a⊗ a′) = aa′, a ∈ A, a′ ∈ A′.
By Arveson’s extension theorem, there exists a unital completely
positive map π̃ extending π
By Stinespring dilation theorem, there exists a Hilbert space
K ⊇ H, and a ∗-homomorphism

π̂ : B(H)⊗m A′ → B(K)

so that the above diagram commutes.
Here P := P|H is the projection on H and commutes with
π̂(A⊗m A′).



Define
E : B(H) → B(H); s 7−→ π̃(s ⊗ I )

Notice that if a′ ∈ A′ then

E (s)a′ = π̃(s ⊗ I )a′

= Pπ̂(s ⊗ I )Pπ̂(I ⊗ a′)P

= Pπ̂(s ⊗ I )π̂(I ⊗ a′)P

= Pπ̂(s ⊗ a′)P = Pπ̂(I ⊗ a′)π̂(s ⊗ I )P

= a′π̃(s ⊗ I ) = a′E (s),

Hence E (s) ∈ A′′.
A similar calculation establishes that
E (φ(a)xφ(b)) = φ(a)E (x)φ(b) for all a, b ∈ A.



Group C∗-algebras



Let G be a group and ℓ2(G ) a Hilbert space with an orthonormal
basis {δs}s∈G parametrized by G .

If s, t ∈ G then let Ls ,Rt ∈ B(ℓ2(G )) be the shifts defined by

Lsδr = δsr

Rtδr = δrt , for all r ∈ G .

Notice that Rs , Lt are unitary operators and RsLt = LtRs , for all
s, t ∈ G .

The map G ∋ s 7→ Ls is a unitary representation of G which is
called the left regular representation.



The reduced group C∗-algebra C∗
r (G ) is the closed subalgebra of

B(ℓ2(G )) generated by all Ls , s ∈ G .

The full group C∗-algebra C∗(G ) is the universal C∗-algebra for all
unitary representations of G .



Non-nuclearity of group C∗-algebras



THEOREM (Lance 1972) If C∗
r (G ) has satisfies WEP then G is

amenable.

Proof. Assume that C∗
r (G ) ⊆ B(ℓ2(G )) has WEP and let

E : B(ℓ2(G )) −→ C∗
r (G )′′ ⊆ B(ℓ2(G ))

be the map coming from WEP.

If f ∈ ℓ∞(G ) then let Mf ∈ B(ℓ2(G )) be the “diagonal” operator
”multiplication by f ”, i.e., Mf δs = f (s)δs , s ∈ G .
Define

ω(f ) := ⟨E (Mf )δe | δe⟩



Then

ω(f ) := ⟨E (Mf )δe | δe⟩
= ⟨RsE (Mf )δe | Rsδe⟩
= ⟨E (Mf )δs | δs⟩
= ⟨E (Mf )Lsδe | Lsδe⟩
= ⟨L∗sE (Mf )Lsδe | δe⟩
= ⟨E (L∗sMf Ls)δe | δe⟩
= ⟨E (Ms−1f )δe | δe⟩
= ω(s−1f )

and so G is amenable.



COROLLARY. If G is the free group with two generators then
C∗
r (G ) is not nuclear.

REMARK:

C∗
r (G )⊗s C

∗
r (G )′

ι
��

π // C∗
r (G )C∗

r (G )′

B(ℓ2(G ))⊗s C
∗
r (G )′

π̂ //

π̃
44

B(K)

P|H ·P|H

OO



From 1972 to today



A C∗-algebra A is said to be exact if for any ∗-homomorphism
φ : B → C we have that the ∗-homomorphism

φ⊗ id : B ⊗s A −→ C ⊗ A; b ⊗ a 7−→ φ(b)⊗ a

satisfies ker(φ⊗ id) = kerφ⊗ A.

THEOREM (Kirchberg) A C∗-algebra is nuclear if and only if it
has the extension property (satisfies WEP) and is exact.

A group G is called exact iff C∗
r (G ) is exact.



Let F∞ be the free group on countably many generators.

THEOREM (Kirchberg) A C∗-algebra has the extension property
(satisfies WEP) iff

A⊗s C
∗(F∞) ≃ A⊗m C∗(F∞).

CONJECTURE (Kirchberg) C∗(F∞) has the extension property.

The conjecture was shown by Kirchberg to be equivalent to Connes
embedding problem which was solved recently in the negative.
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