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Why Morita equivalence?
Representations

- The main idea is to examine an object via its action(s) on its modules, rather than in itself:

Group G Homomorphisms G — GL(V), for V vector space.
Ring R Left modules g M.
Algebra A Homomorphisms A — End(V), for V vector space.

C*-algebra A | *-representations A — Z(H ), for H Hilbert space.

- In this sense “Morita equivalence” means equivalent representation theories.

- To compare objects up to matricial representations, i.e., for rings we have that R is Morita
equivalent to My, (R).

- To relate R and S via matricial approximate identities:

My (S) such that W, 0 ¢, — idg.
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Morita equivalence for rings

Equivalent views of Morita equivalence for associative rings R and S
- There are functors .% : R—Mod — S—Mod and ¢ : S—Mod — R—Mod such that
Fo¥ ~idand ¢ o ¥ ~id.
- There are kMg and gNg such that
R>M®gN and S~ N RrM,

as bimodules.

- There are gMg and gNg and balanced module maps
(h):MxN—Rand[-,]: NxM—S

that are compatible (wrt associativity).

-End(R™)) ~ End(SMN)) (stable isomorphism, Camillo 1984).

- Morita equivalent rings have isomorphic centers (and thus Morita equivalence for commutative
rings is isomorphism).
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Morita equivalence for C*-algebras

Equivalent views of Morita equivalence for C*-algebras A and B

- There is an impritivity bimodule 4 Mp, i.e., M is an A-B-bimodule such that
[M*M] = B and [MM*] = A.
- There is a C*-algebra C such that

C= [

- The categories of left operator modules are equivalent.

Al;[] and A and B are full.

- There are 4 Mp and gN4 C*-correspondences such that

A~M®gN and B ~ N ®4 M, as bimodules (and we can choose N = M*).

- There are 4 Mp and pN4 C*-correspondences and balanced module maps
():MxXN—Aand[-,-]: NxM — B
that are compatible (wrt associativity).

-A® K~ B®K, when A and B are o-unital.
- Morita equivalent C*-algebras have isomorphic centers.
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Morita equivalence beyond C*-algebras

Decompositions

- Consider the decomposition A ~ M ®p N and B >~ N ®4 M, as the starting point, and replace
® with the Haagerup tensor product ®y,.

- Introduced by Blecher-Muhly-Paulsen, and studied by Blecher, Kashyap et al.

- It recovers most of the C*-Morita results, but it does not recover stable isomorphism.

- It is based on that an involution or a multiplication is not available.

“Unitary equivalence”

- Consider the concrete realization M*AM C B and MBM* C A, as the starting point, for an
imprimitivity bimodule 4 Mp, and extend up to faithful representations.

- Introduced by Eleftherakis, and studied by Eleftherakis, K., Paulsen, Todorov et al.

- It recovers most of the C*-Morita results, and the stable isomorphism.

- Aims to use involution and multiplication to the maximum.

Ternary rings of operators
- A ternary ring of operators (TRO) is a closed subspace M C Z(H,K) such that MM*M C M.
- TRO’s = imprimitivity bimodules (A = [MM*]| and B = [M*M)).
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Operator spaces

Definitions

- A (concrete) operator space X is a norm-closed subspace of #(H;,H,). It is called unital if
Hy=Hyand [ € X.

- The morphisms in this category are given by completely contractive maps. A map ¢: X —
B(K1,K>) is non-degenerate if both [¢(X)K;] = K, and [¢(X)*K;] = K. Every map has a
non-degenerate compression.

- Consider the embedding of a unital operator space X inside its injective envelope .# (X), and
endow .#(X) with the Choi-Effros structure. The C*-algebra generated by the copy of X is
called the C*-envelope, and it is the smallest C*-algebra generated by a ucis map of X. In the
non-unital case a similar construction gives the smallest TRO, i.e., the TRO-envelope.

Definition (Eleftherakis-K. 2016)

- Two operator spaces X C B(H;,H,) and Y C B(K1,K>) are called (strongly) TRO equivalent
if there are TRO’s M| C #(K;,H, ) and M, C HB(K,,H,) such that

X = [MyYM;] and Y = [M3XM;).

Note that X and Y are operator bimodules by [M,M;]-[M M| and [M;M;]-[M;M;].
- Two operator spaces X and Y are called (strongly) A-equivalent if they admit completely
isometric maps with TRO equivalent ranges.
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Operator spaces
Main tool 1
- Suppose that X and Y are TRO equivalent by M; and M, so that

X = [MyYM;] and Y = [M3XM;].

Suppose that (7,¢, ) is a non-degenerate representation of the [M>M3]-[M;Mj]-bimodule X
in %(H;,H,). Then by using the functors M{ ®e — and M; ®. — we get a non-degenerate
representation (p, y, 7) of the [M;M,]-[M}M;]-bimodule Y in %(K;,K>) for

K; :MT ®¢ Hy and K, :M; QnH>.

Applying twice gives the original one up to unitary equivalence. Moreover [¢(X)] and [y(Y)]
are TRO equivalent; and if ¢ is cis then so is Y.

- Hence we can always assume the [M>M;]-[M;M]]-bimodule X sits inside .#(X). This is
helpful for showing that A-equivalence is an equivalence relation.

Main tool 2
- Suppose that [MpM;] and [M;M;] admit cai’s given by sequences (Z{-‘Zl m;my)y and
():];':1 njn’;)x. Then we can define the maps
(])ki X ~>Mk(Y);xr—> [m;‘xnj] and Y - Mk(Y) *)X; [}’ij] —> Zi,jmiyijnj
with W o i (x) = X; jmim;xnin; — x in norm.

- This is helpful for approximation arguments. o



Operator spaces

Main results for operator spaces (Eleftherakis-K. 2016)

1. TRO-equivalent spaces have equivalent bimodule representation theory.
2. TRO equivalence is an equivalence relation.

3. Strong A-equivalence is an equivalence relation.

4. Stable isomorphism (X ® .# ~Y ® %) implies strong A-equivalence.

5. Strong A-equivalence is stable isomorphism in the presence of separability conditions (o-
unitality, or if the spaces are separable, or if the spaces are unital).

6. Strong A-equivalent operator spaces have strong A-equivalent TRO-envelopes.
7. Strong A-equivalent unital operator spaces have stable isomorphic C*-envelopes.

8. If two operator algebras with c.a.i.’s are strong A-equivalent as operator spaces then they are
Morita equivalent in the sense of Blecher-Muhly-Paulsen, and thus A-equivalent in the sense of
Eleftherakis.

9. Strong A-equivalence is Morita equivalence for C*-algebras.

10. Strong A-equivalent operator spaces admit A-equivalent second duals in the sense of
Eleftherakis-Paulsen-Todorov.
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Operator spaces

Proposition

TRO-equivalent spaces have equivalent bimodule representation theory.

Proof.
Suppose that X = [M,YM}] and Y = [M;XM;]. Then the (Main Tool 1) applies.

Theorem

TRO equivalence is an equivalence relation.

Proof.

For transitivity, suppose that
X — [MQYMTFH'H Y = [MZXM]]fH'H _ [NgZNi‘]fH'H = [NE‘YN]TH'H ;
Then X = [L,22;] " and Z = [£3x1,] 71 for the TRO's
Ly == MDN] M and Ly := [MoDoNy] I
where D; := C*({M;M; UN;N;}). The proof uses that [D2Y]_”‘H = [YDI]_”'H =Y.
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Operator spaces

Definition

We write .# (X) for the injective envelope of an operator space X, i.e.:
forY C Z, every ccmap ¢ : ¥ — .#(X) extends to a cc map ¢': Z — .7 (X);
1 X — I(X);
if 1(X) CY C . (X) and Y is injective then ¥ = .7 (X).

Theorem (Hamana)

The injective envelope of a unital operator space exists.

Theorem

If X is not unital then consider its Paulsen system
L (X) ::{[)L xl} | x1,00 € X,A,u € C}
X2 H

and the scheme
X (X)) (X)) = {ﬁ;g; 2282 '

Then ¥ (X) = F12(X).
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Operator spaces

Definition

We write <7 (X) := {s € #11(X) | sX C X and s*X C X}, for the C*-algebra of left multipliers,
and likewise for .27 (X).

Proposition

If AXp is an operator space non-degenerate bimodule then there is a bimodule representation
(m,0,0): (A, X,B) — (#(X),1(X), (X)) such that ¢ is a complete isometry.

Remark

If X = [MbYM{] and Y = [M;XM;] then the bimodules are non-degenerate. By the (Main
Tool 1), choosing (7, ¢,0): ([MaM;],X, [MiM]]) — (#(X),1(X), </ (X)) induces (p, v, )
for ([M3M>],Y,[M;M;]) such that 1(X) and y(Y) are TRO equivalent.

Theorem

Strong A-equivalence is an equivalence relation.

Proof.

For transitivity, suppose that X and Y are strong A-equivalent and that Y and Z are strong A-
equivalent. Then we can choose cis maps ¢ for X and 6 for Z such that ¢(X) and 1(Y) are
TRO-equivalent, and 1(Y) and 6(Z) are TRO equivalent. Then transitivity of TRO equivalence
imply that ¢ (X) and 6(Z) are TRO equivalent, and so X and Z are strong A-equivalent.
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Operator spaces

Definition
For a complete isometric map i: X — Y into a TRO Y, let .7 (i(X)) be the TRO spanned by

i1 )i(x2)"i(x3)i(xa)" - i(x20) "i(x2n11) forn > 0 and xq,..., X201 € X,

and their limits. We say that (.7 (i(X)),i) is a TRO extension of X. The TRO extension of X
generated in . (7 (X)) will be denoted by Jeny (X).

Definition

A triple morphism of a TRO satisfies 0(xjx3x3) = 6(x1)0(x2)*0(x3) (and it is automati-
cally cc). Moreover it induces *-homomorphisms 7(x1x}) = 6(x1)0(x2)* and p(xjx3) =
6(x2)"6(x3).

Theorem (Hamana)

Given any TRO extension (Z,j) of X there exists a necessarily unique and surjective triple
morphism 6: Z — Jeny(X) such that 0(j(x)) = x. The TRO space Feny(X) is called the TRO
envelope of X.

If X is unital then the TRO envelope is a C*-algebra, called the C*-envelope of X.
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Operator spaces

Theorem

Strong A-equivalent (unital) operator spaces have strong A-equivalent TRO envelopes (C*-
envelopes).

Proof
Wilog assume that X C .7 (.#(X)) and Y C B(H;,H,) such that

X=mym) M and v = poxmg) I
Then 7 (X) = Jeny(X) and we have to show that & (Y) ~ Zeny(Y). Suffices to find a TRO
morphism Zeny(Y) — 7 (Y) fixing Y.
Note here that t: ¥ — Feny(Y) C Z(#(Y)) induces cis maps ¢, 6}, 6, such that
9(X) = [6: (M1)1(1)0y(02) ] 1 and 1(¥) = [63(M2) 0 (X) 61 (411)"] 1.

Let V: 7(¢(X)) = Zenv(X) be the induced TRO morphism.
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Operator spaces

Proof cont’d.

By the (Main Tool 2) we have the scheme

which lifts to

Mo (T BXN) —T o M Toms (X))

and the horizontal arrow is a TRO morphism in the limit.
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Operator systems

Definition
- A (concrete) operator system . is a (closed) selfadjoint subspace of some % (H) that contains
the unit 7y.

- The morphisms in this category are the unital completely positive maps (they are automat-
ically completely contractive). The isomorphisms are the complete order embeddings (unital
completely positive maps with an inverse that is unital completely positive).

Choi-Effros Theorem (1977)

Let . be a x-vector space such that:
for each n we are given a cone 6}, in M,(-)p,
6, N (—%,) = (0) for every n,
My -6 My C Goms

there exists an e € .%}, such that: for every x € .%}, there exists an r > 0 so that re +x € €}
(order unit); re +x € ¢ for all r > 0 implies that x € €] (Archimedean order unit); and
e® 1, is an Archimedean order unit at every level (Archimedean matrix order unit).

Then there exists a complete order embedding ¢: . — .’ for a concrete operator system
! C B(H) such that ¢ (e) = Iy and ¢ (.) is dense in ..
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Operator systems
Why operator systems? Perhaps, for encoding missing information.
- (Stinespring Theorem) A map ¢: &/ — ZB(H) of a C*-algebra & is ucp iff ¢ = Pyn(-)|y for
a x-homomorphism 7: &/ — Z(K).
- Completely positive maps are the analogue of positive measures of commutative C*-algebras.
- Operator systems arise through the range of unital completely positive maps of C*-algebras.
- Essential for injective envelopes, e.g., X C Z(H,K) then the Paulsen system is
C X
LX) = { i C} .

- They find applications in Quantum Information Theory through the positive operator valued
measures.

- They appear in positive definite completion problems, i.e., for determining whether the un-
specified positions of a partial (or incomplete) matrix can be completed in a desired subclass of
positive definite matrices.

- Given an undirected graph ¢ we define . := {E;; | i ~ j} which is an operator system inside
M,, (for the n vertices of ¥).

- Operator systems related to tolerance relations, which are reflexive and symmetric but not
transitive (Connes-van Suijlekom 2020).

- Fejer-Riesz operator systems %, := {f € C(T) : suppf C [—n,n]} (Connes-van Suijlekom
2021).
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Morita equivalence for operator systems
Definition
Two concrete operator systems . C Z(H) and 7 C B(K) are called TRO-equivalent (denoted
7 ~1Ro 7), if there exists a non-degenerate TRO M C Z(H, K) such that

S =[M*TM]and T = [MSM"].

Remark
Note that in this setup we have 1 o € [M*M] and 1 7 = [MM*] and so

MM*7 U ITMM* C T and M"M.S U SM*M C ..

Definition

Two concrete operator systems . C B(H) and J C %B(K) are called concretely bihomo-
morphically equivalent if there exists an operator space X C #(H,K) such that X and X* are
non-degenerate (i.e. Iy € [X*X] and Ix € [XX*]), and

S = [X*TX] and T = [X.7X"].

Proposition
If % and T are bihomomorphically equivalent by X, then they are TRO-equivalent by M :=
[XCH(X*X)].
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Morita equivalence for operator systems

Definition

- Two operator systems . and .7 are called A-equivalent (denoted .¥ ~, 7)) if there exist
Hilbert spaces H and K and unital complete order embeddings ¢: .¥¥ — Z(H) and y: T —
A(K) such that ¢ () ~tro Y(T).

- Two abstract operator systems . and 7 will be called bihomomorphically equivalent if
there exist Hilbert spaces H and K, and unital complete order embeddings ¢ : . — Z(H) and
v: T — PB(K) such that the concrete operator systems ¢ (%) and y(7) are concretely biho-
momorphically equivalent. We write . & .7 to denote that . and .7 are bihomomorphically
equivalent.

Theorem
Let . and T be operator systems. The following are equivalent:
T ~p S as operator systems;
T ~p S as operator spaces;
QK ~ 7 @K via a completely isometric isomorphism;
K ~ 7 @K via a completely positive completely isometric isomorphism;

< ®K ~ 7 ® K via a hermitian completely isometric isomorphism.
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Morita equivalence for operator systems

Definition
Let .# (%) be the injective envelope of . and write
Ay ={ac I ()| a? C.S anda* ¥ C S}

Letting tepy : - — Ci () C F (&) be the canonical embedding, we note that the unitality
condition yields that &7 C teny(-#); we can thus consider /¢ as being contained in ..

Proposition

Let & and 7 be operator systems. If . ~x T then there exist complete order embeddings
¢: S = BH) and v: T — B(K), and a non-degenerate TRO M C B(H,K), such that
0(F) ~1ro V(7)) via M, and in addition

9(dy) = [M"M] and y(d7)=[MM"].

Furthermore,

Con() =CH(9(F)) and  Cepy(T) = C (y(7)),

and consequently C% () ~a Cé (7).
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Morita contexts for operator systems
Definition
Let . and 7 be abstract operator systems and M be a TRO. We say that the quintuple
(&, T,M,[,-,-],(:,-,")) is a A-pre-context if:
the C*-algebras [M*M|] and [MM*] are unital;
. is a C*-bimodule over [M*M] and .7 is a C*-bimodule over [MM*];

[ ]: M*X T xM — & and (-,+,"): M x & X M* — T are completely bounded
completely positive maps, modular over [M*M] and [MM*] on the outer variables (with
unital module actions), and

the associativity relations
(my, [m,t,m3],my) = (mym3) -1 - (m3my)

and
my, (my,s,m3),mg| = (mimy)-s - (m3my

hold for all s € ., t € 7 and all m,my,m3,my € M.

A A-pre-context is called a A-context if the trilinear maps [-,-,-] and (-, -, -) are completely con-
tractive and the relations

(my,1,m3) = (mym3) -1 and [m},1o,my] = (mimy)-1» )

hold for all m,m, € M. 20/24



Morita contexts for operator systems

Remark

Let (y, T M., (o, )) be a A-context. Then the following hold for all s € /', t €  and
all mi,n; e M, i=1,2,3:

[m], (ma, [m3,t,n3],n5),n1] = [mimam3,t,n3n3n1];

(my,[m3, (m3,s,n%),n2],n7) = (mymyms,s,ninyny);
(ml,ly.,mé) = 1y7-m1m§;

[, L7, ma] = 1o -

[m], (ma,1o,n3),n1] = [m}, 1 7,mon5n1] = [miman3, 1.7,n1];

(my,[m3,1 7, m0],n7) = (my,1.9,mynony) = (myminy, 1 »,n7).
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Morita contexts for operator systems
Definition
Let . and .7 be abstract operator systems and X be an abstract operator space. We say that
the quintuple (., 7, X, [-,-,-],(,-,")) is a bihomomorphism pre-context if:
X is non-degenerate;
[, ] X*x T xX — S and (-,-,"): X X & xX* — 7 are completely bounded
completely positive maps such that
[X*,ly,X]ng{y and (X71<5/’7X*)g%y’

the associativity relations

[x>]k: (XZ,S,)C;),)Q;] = [xTv 177)52} 8 [x§7 1?7)54}
and

(Xl, [x§7[7x3}7xz) = ()C], 1:77)(;) -1 ()C?,., ]V,xz)
hold for all s € ., € Z and all x1,x5,x3,x4 € X.

A bihomomorphism pre-context is called a bihomomorphism context if the trilinear maps [-,-, -]

1' )

and (-,,) are completely contractive and there exist semi-units ((x;);, (y,):) and ((z;)i, (w;)i
over X and X*, respectively, such that

limlxf,17®Ly]=1y and lim(z,ly@Iw;)=1g7. )
1 — 1
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Morita contexts for operator systems

Theorem

Let . and T be (abstract) operator systems. The following are equivalent:
S ~p T
IS T
there exists a A-context for . and T ;

there exists a bihomomorphism context for . and 7.

Proof

We have seen that (2) implies (1).

A realization is a context, and so (1) implies (3) and (2) implies (4).
A familiar “trick” by using M ® — gives that (3) implies (1).

An extension of this trick is required for showing that (4) implies (2).
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Morita contexts for operator systems

Proof continued
- Suppose we have a bihomomorphism context and start with ¢ : . — () C B(H).
- Let K be the Hausdorff completion of X ® H wrt

(X1 ®@h1,x0 @h) := (O ([x3, 1 7,x1])h1, ho)m -
-Let 6: X — AB(H,K) be given by 6(x)h = x® h, and note that
0(x)* (' @h') =¢(lx*, 17, Xi
-Let y: 7 — A(K) such that
(W(t)(x1 @h1),x2 @)k = (9 ([x3,2,x1])h1,h2) -

The existence of semi-units and the fact that ¢ is completely isometric give that y is completely
isometric.

- Then it follows that ¢(.#) and y(.7") are bihomomorphically equivalent by 6(X), basically
by using that

6 (x2)*w(1)6(x1) = ¢([x3,2,x1])

and the dual (by repeating for ¥ and showing unitary equivalence with ¢).
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