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Why Morita equivalence?
Representations

- The main idea is to examine an object via its action(s) on its modules, rather than in itself:

Group G Homomorphisms G→ GL(V), for V vector space.

Ring R Left modules RM.

Algebra A Homomorphisms A→ End(V ), for V vector space.

C*-algebra A ∗-representations A→B(H), for H Hilbert space.

- In this sense “Morita equivalence” means equivalent representation theories.
- To compare objects up to matricial representations, i.e., for rings we have that R is Morita
equivalent to Mn(R).
- To relate R and S via matricial approximate identities:

R id //

φk,n ""

R

Mk,n(S)

ψk,n

<<

such that ψk,n ◦φk,n→ idR.
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Morita equivalence for rings

Equivalent views of Morita equivalence for associative rings R and S

- There are functors F : R−Mod→ S−Mod and G : S−Mod→ R−Mod such that

F ◦G ' id and G ◦F ' id.

- There are RMS and SNR such that

R'M⊗S N and S' N⊗R M,

as bimodules.
- There are RMS and SNR and balanced module maps

(·, ·) : M×N→ R and [·, ·] : N×M→ S

that are compatible (wrt associativity).
- End(R(N))' End(S(N)) (stable isomorphism, Camillo 1984).
- Morita equivalent rings have isomorphic centers (and thus Morita equivalence for commutative
rings is isomorphism).
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Morita equivalence for C*-algebras

Equivalent views of Morita equivalence for C*-algebras A and B

- There is an impritivity bimodule AMB, i.e., M is an A-B-bimodule such that

[M∗M] = B and [MM∗] = A.

- There is a C*-algebra C such that

C =

[
A M

M∗ B

]
and A and B are full.

- The categories of left operator modules are equivalent.
- There are AMB and BNA C*-correspondences such that

A'M⊗B N and B' N⊗A M, as bimodules (and we can choose N = M∗).

- There are AMB and BNA C*-correspondences and balanced module maps

(·, ·) : M×N→ A and [·, ·] : N×M→ B

that are compatible (wrt associativity).
- A⊗K' B⊗K, when A and B are σ -unital.
- Morita equivalent C*-algebras have isomorphic centers.
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Morita equivalence beyond C*-algebras

Decompositions

- Consider the decomposition A 'M⊗B N and B ' N⊗A M, as the starting point, and replace
⊗ with the Haagerup tensor product ⊗h.
- Introduced by Blecher-Muhly-Paulsen, and studied by Blecher, Kashyap et al.
- It recovers most of the C*-Morita results, but it does not recover stable isomorphism.
- It is based on that an involution or a multiplication is not available.

“Unitary equivalence”

- Consider the concrete realization M∗AM ⊆ B and MBM∗ ⊆ A, as the starting point, for an
imprimitivity bimodule AMB, and extend up to faithful representations.
- Introduced by Eleftherakis, and studied by Eleftherakis, K., Paulsen, Todorov et al.
- It recovers most of the C*-Morita results, and the stable isomorphism.
- Aims to use involution and multiplication to the maximum.

Ternary rings of operators

- A ternary ring of operators (TRO) is a closed subspace M ⊆B(H,K) such that MM∗M ⊆M.
- TRO’s = imprimitivity bimodules (A = [MM∗] and B = [M∗M]).
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Operator spaces

Definitions
- A (concrete) operator space X is a norm-closed subspace of B(H1,H2). It is called unital if
H1 = H2 and I ∈ X .
- The morphisms in this category are given by completely contractive maps. A map φ : X →
B(K1,K2) is non-degenerate if both [φ(X)K1] = K2 and [φ(X)∗K2] = K1. Every map has a
non-degenerate compression.
- Consider the embedding of a unital operator space X inside its injective envelope I (X), and
endow I (X) with the Choi-Effros structure. The C*-algebra generated by the copy of X is
called the C*-envelope, and it is the smallest C*-algebra generated by a ucis map of X . In the
non-unital case a similar construction gives the smallest TRO, i.e., the TRO-envelope.

Definition (Eleftherakis-K. 2016)

- Two operator spaces X ⊆B(H1,H2) and Y ⊆B(K1,K2) are called (strongly) TRO equivalent
if there are TRO’s M1 ⊆B(K1,H1) and M2 ⊆B(K2,H2) such that

X = [M2Y M∗1 ] and Y = [M∗2 XM1].

Note that X and Y are operator bimodules by [M2M∗2 ]-[M1M∗1 ] and [M∗2 M2]-[M∗1 M1].
- Two operator spaces X and Y are called (strongly) ∆-equivalent if they admit completely
isometric maps with TRO equivalent ranges.
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Operator spaces
Main tool 1
- Suppose that X and Y are TRO equivalent by M1 and M2 so that

X = [M2Y M∗1 ] and Y = [M∗2 XM1].

Suppose that (π,φ ,σ) is a non-degenerate representation of the [M2M∗2 ]-[M1M∗1 ]-bimodule X
in B(H1,H2). Then by using the functors M∗1 ⊗• − and M∗2 ⊗• − we get a non-degenerate
representation (ρ,ψ,τ) of the [M∗2 M2]-[M∗1 M1]-bimodule Y in B(K1,K2) for

K1 = M∗1 ⊗σ H1 and K2 = M∗2 ⊗π H2.

Applying twice gives the original one up to unitary equivalence. Moreover [φ(X)] and [ψ(Y )]
are TRO equivalent; and if φ is cis then so is ψ .
- Hence we can always assume the [M2M∗2 ]-[M1M∗1 ]-bimodule X sits inside I (X). This is
helpful for showing that ∆-equivalence is an equivalence relation.

Main tool 2
- Suppose that [M2M∗2 ] and [M1M∗1 ] admit cai’s given by sequences (∑k

i=1 mim∗i )k and
(∑k

j=1 n jn∗j)k. Then we can define the maps

φk : X →Mk(Y );x 7→ [m∗i xn j] and ψk : Mk(Y )→ X ; [yi j] 7→ ∑i, j miyi jn∗j

with ψk ◦φk(x) = ∑i, j mim∗i xn∗j n j→ x in norm.
- This is helpful for approximation arguments.
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Operator spaces

Main results for operator spaces (Eleftherakis-K. 2016)

1. TRO-equivalent spaces have equivalent bimodule representation theory.

2. TRO equivalence is an equivalence relation.

3. Strong ∆-equivalence is an equivalence relation.

4. Stable isomorphism (X⊗K ' Y ⊗K ) implies strong ∆-equivalence.

5. Strong ∆-equivalence is stable isomorphism in the presence of separability conditions (σ -
unitality, or if the spaces are separable, or if the spaces are unital).

6. Strong ∆-equivalent operator spaces have strong ∆-equivalent TRO-envelopes.

7. Strong ∆-equivalent unital operator spaces have stable isomorphic C*-envelopes.

8. If two operator algebras with c.a.i.’s are strong ∆-equivalent as operator spaces then they are
Morita equivalent in the sense of Blecher-Muhly-Paulsen, and thus ∆-equivalent in the sense of
Eleftherakis.

9. Strong ∆-equivalence is Morita equivalence for C*-algebras.

10. Strong ∆-equivalent operator spaces admit ∆-equivalent second duals in the sense of
Eleftherakis-Paulsen-Todorov.
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Operator spaces

Proposition

TRO-equivalent spaces have equivalent bimodule representation theory.

Proof.
Suppose that X = [M2Y M∗1 ] and Y = [M∗2 XM1]. Then the (Main Tool 1) applies. �

Theorem
TRO equivalence is an equivalence relation.

Proof.
For transitivity, suppose that

X = [M2Y M∗1 ]
−‖·‖ , Y = [M∗2 XM1]

−‖·‖ = [N2ZN∗1 ]
−‖·‖ , Z = [N∗2Y N1]

−‖·‖ .

Then X =
[
L2ZL∗1

]−‖·‖ and Z =
[
L∗2XL1

]−‖·‖ for the TRO’s

L1 := [M1D1N1]
−‖·‖ and L2 := [M2D2N2]

−‖·‖

where Di := C∗({M∗i Mi∪NiN∗i }). The proof uses that [D2Y ]−‖·‖ = [Y D1]
−‖·‖ = Y . �
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Operator spaces

Definition
We write I (X) for the injective envelope of an operator space X , i.e.:

1. for Y ⊆ Z, every cc map φ : Y →I (X) extends to a cc map φ ′ : Z→I (X);

2. ι : X ↪→I (X);

3. if ι(X)⊆ Y ⊆I (X) and Y is injective then Y = I (X).

Theorem (Hamana)

The injective envelope of a unital operator space exists.

Theorem
If X is not unital then consider its Paulsen system

S (X) := {
[

λ x1
x2 µ

]
| x1,x2 ∈ X ,λ ,µ ∈ C}

and the scheme

X ↪→S (X) ↪→I (S (X)) =

[
I11(X) I12(X)
I21(X) I22(X)

]
.

Then I (X) = I12(X).
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Operator spaces
Definition
We write Al(X) := {s ∈I11(X) | sX ⊆ X and s∗X ⊆ X}, for the C*-algebra of left multipliers,
and likewise for Ar(X).

Proposition

If AXB is an operator space non-degenerate bimodule then there is a bimodule representation
(π,φ ,σ) : (A,X ,B)→ (Al(X), ι(X),Ar(X)) such that φ is a complete isometry.

Remark
If X = [M2Y M∗1 ] and Y = [M∗2 XM1] then the bimodules are non-degenerate. By the (Main
Tool 1), choosing (π,φ ,σ) : ([M2M∗2 ],X , [M1M∗1 ])→ (Al(X), ι(X),Ar(X)) induces (ρ,ψ,τ)
for ([M∗2 M2],Y, [M∗1 M1]) such that ι(X) and ψ(Y ) are TRO equivalent.

Theorem
Strong ∆-equivalence is an equivalence relation.

Proof.
For transitivity, suppose that X and Y are strong ∆-equivalent and that Y and Z are strong ∆-
equivalent. Then we can choose cis maps φ for X and θ for Z such that φ(X) and ι(Y ) are
TRO-equivalent, and ι(Y ) and θ(Z) are TRO equivalent. Then transitivity of TRO equivalence
imply that φ(X) and θ(Z) are TRO equivalent, and so X and Z are strong ∆-equivalent. �
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Operator spaces

Definition
For a complete isometric map i : X → Y into a TRO Y , let T (i(X)) be the TRO spanned by

i(x1)i(x2)
∗i(x3)i(x4)

∗ · · · i(x2n)
∗i(x2n+1) for n≥ 0 and x1, . . . ,x2n+1 ∈ X ,

and their limits. We say that (T (i(X)), i) is a TRO extension of X . The TRO extension of X
generated in I (S (X)) will be denoted by Tenv(X).

Definition
A triple morphism of a TRO satisfies θ(x1x∗2x3) = θ(x1)θ(x2)

∗θ(x3) (and it is automati-
cally cc). Moreover it induces ∗-homomorphisms π(x1x∗2) = θ(x1)θ(x2)

∗ and ρ(x∗2x3) =
θ(x2)

∗θ(x3).

Theorem (Hamana)

Given any TRO extension (Z, j) of X there exists a necessarily unique and surjective triple
morphism θ : Z→ Tenv(X) such that θ( j(x)) = x. The TRO space Tenv(X) is called the TRO
envelope of X.
If X is unital then the TRO envelope is a C*-algebra, called the C*-envelope of X.
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Operator spaces

Theorem
Strong ∆-equivalent (unital) operator spaces have strong ∆-equivalent TRO envelopes (C*-
envelopes).

Proof
Wlog assume that X ⊆I (S (X)) and Y ⊆B(H1,H2) such that

X = [M1Y M∗2 ]
−‖·‖ and Y = [M2XM∗1 ]

−‖·‖ .

Then T (X) = Tenv(X) and we have to show that T (Y ) ' Tenv(Y ). Suffices to find a TRO
morphism Tenv(Y )→T (Y ) fixing Y .
Note here that ι : Y →Tenv(Y )⊆I (S (Y )) induces cis maps φ ,θ1,θ2 such that

φ(X) = [θ1(M1)ι(Y )θ2(M2)
∗]−‖·‖ and ι(Y ) = [θ2(M2)φ(X)θ1(M1)

∗]−‖·‖ .

Let ψ̃ : T (φ(X))→Tenv(X) be the induced TRO morphism.
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Operator spaces

Proof cont’d.
By the (Main Tool 2) we have the scheme

ι(Y )

''

// Y

Mm,n(φ(X)) // Mm,n(X)

88

which lifts to

Tenv(Y )

((

// T (Y )

Mm,n(T (φ(X)))
ψ̃(m,n)

// Mm,n(Tenv(X))

66

and the horizontal arrow is a TRO morphism in the limit. �
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Operator systems

Definition
- A (concrete) operator system S is a (closed) selfadjoint subspace of some B(H) that contains
the unit IH .
- The morphisms in this category are the unital completely positive maps (they are automat-
ically completely contractive). The isomorphisms are the complete order embeddings (unital
completely positive maps with an inverse that is unital completely positive).

Choi-Effros Theorem (1977)

Let S be a ∗-vector space such that:

1. for each n we are given a cone Cn in Mn(S )h,

2. Cn∩ (−Cn) = (0) for every n,

3. Mm,n ·Cn ·Mn,m ⊆ Cm,

4. there exists an e ∈Sh such that: for every x ∈Sh there exists an r ≥ 0 so that re+x ∈ C1
(order unit); re+ x ∈ C1 for all r > 0 implies that x ∈ C1 (Archimedean order unit); and
e⊗1n is an Archimedean order unit at every level (Archimedean matrix order unit).

Then there exists a complete order embedding φ : S → S ′ for a concrete operator system
S ′ ⊆B(H) such that φ(e) = IH and φ(S ) is dense in S ′.
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Operator systems
Why operator systems? Perhaps, for encoding missing information.

- (Stinespring Theorem) A map φ : A →B(H) of a C*-algebra A is ucp iff φ = PHπ(·)|H for
a ∗-homomorphism π : A →B(K).
- Completely positive maps are the analogue of positive measures of commutative C*-algebras.
- Operator systems arise through the range of unital completely positive maps of C*-algebras.
- Essential for injective envelopes, e.g., X ⊆B(H,K) then the Paulsen system is

S (X) :=
[
C X
X∗ C

]
.

- They find applications in Quantum Information Theory through the positive operator valued
measures.
- They appear in positive definite completion problems, i.e., for determining whether the un-
specified positions of a partial (or incomplete) matrix can be completed in a desired subclass of
positive definite matrices.
- Given an undirected graph G we define SG := {Ei j | i' j}which is an operator system inside
Mn (for the n vertices of G ).
- Operator systems related to tolerance relations, which are reflexive and symmetric but not
transitive (Connes-van Suijlekom 2020).
- Fejer-Riesz operator systems Fn := { f ∈ C(T) : supp f̂ ⊆ [−n,n]} (Connes-van Suijlekom
2021).
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Morita equivalence for operator systems
Definition
Two concrete operator systems S ⊆B(H) and T ⊆B(K) are called TRO-equivalent (denoted
S ∼TRO T ), if there exists a non-degenerate TRO M ⊆B(H,K) such that

S = [M∗T M] and T = [MS M∗].

Remark
Note that in this setup we have 1S ∈ [M∗M] and 1T = [MM∗] and so

MM∗T ∪T MM∗ ⊆T and M∗MS ∪S M∗M ⊆S .

Definition
Two concrete operator systems S ⊆ B(H) and T ⊆ B(K) are called concretely bihomo-
morphically equivalent if there exists an operator space X ⊆B(H,K) such that X and X∗ are
non-degenerate (i.e. IH ∈ [X∗X ] and IK ∈ [XX∗]), and

S = [X∗T X ] and T = [XS X∗].

Proposition

If S and T are bihomomorphically equivalent by X, then they are TRO-equivalent by M :=
[XC∗(X∗X)].
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Morita equivalence for operator systems

Definition
- Two operator systems S and T are called ∆-equivalent (denoted S ∼∆ T ) if there exist
Hilbert spaces H and K and unital complete order embeddings φ : S →B(H) and ψ : T →
B(K) such that φ(S )∼TRO ψ(T ).
- Two abstract operator systems S and T will be called bihomomorphically equivalent if
there exist Hilbert spaces H and K, and unital complete order embeddings φ : S →B(H) and
ψ : T →B(K) such that the concrete operator systems φ(S ) and ψ(T ) are concretely biho-
momorphically equivalent. We write S �T to denote that S and T are bihomomorphically
equivalent.

Theorem
Let S and T be operator systems. The following are equivalent:

1. T ∼∆ S as operator systems;

2. T ∼∆ S as operator spaces;

3. S ⊗K'T ⊗K via a completely isometric isomorphism;

4. S ⊗K'T ⊗K via a completely positive completely isometric isomorphism;

5. S ⊗K'T ⊗K via a hermitian completely isometric isomorphism.
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Morita equivalence for operator systems

Definition
Let I (S ) be the injective envelope of S and write

AS := {a ∈I (S ) | aS ⊆S and a∗S ⊆S }.

Letting ιenv : S → C∗env(S ) ⊆I (S ) be the canonical embedding, we note that the unitality
condition yields that AS ⊆ ιenv(S ); we can thus consider AS as being contained in S .

Proposition

Let S and T be operator systems. If S ∼∆ T then there exist complete order embeddings
φ : S → B(H) and ψ : T → B(K), and a non-degenerate TRO M ⊆ B(H,K), such that
φ(S )∼TRO ψ(T ) via M, and in addition

φ(AS ) = [M∗M] and ψ(AT ) = [MM∗].

Furthermore,
C∗env(S )' C∗(φ(S )) and C∗env(T )' C∗(ψ(T )),

and consequently C∗env(S )∼∆ C∗env(T ).
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Morita contexts for operator systems
Definition
Let S and T be abstract operator systems and M be a TRO. We say that the quintuple(
S ,T ,M, [·, ·, ·],(·, ·, ·)

)
is a ∆-pre-context if:

(i) the C*-algebras [M∗M] and [MM∗] are unital;

(ii) S is a C*-bimodule over [M∗M] and T is a C*-bimodule over [MM∗];

(iii) [·, ·, ·] : M∗×T ×M −→S and (·, ·, ·) : M×S ×M∗ −→T are completely bounded
completely positive maps, modular over [M∗M] and [MM∗] on the outer variables (with
unital module actions), and

(iv) the associativity relations

(m1, [m∗2, t,m3],m∗4) = (m1m∗2) · t · (m3m∗4)

and
[m∗1,(m2,s,m∗3),m4] = (m∗1m2) · s · (m∗3m4)

hold for all s ∈S , t ∈T and all m1,m2,m3,m4 ∈M.

A ∆-pre-context is called a ∆-context if the trilinear maps [·, ·, ·] and (·, ·, ·) are completely con-
tractive and the relations

(m1,1S ,m∗2) = (m1m∗2) ·1T and [m∗1,1S ,m2] = (m∗1m2) ·1S (1)

hold for all m1,m2 ∈M. 20 / 24



Morita contexts for operator systems

Remark
Let
(
S ,T ,M, [·, ·, ·],(·, ·, ·)

)
be a ∆-context. Then the following hold for all s ∈S , t ∈T and

all mi,ni ∈M, i = 1,2,3:

1. [m∗1,(m2, [m∗3, t,n3],n∗2),n1] = [m∗1m2m∗3, t,n3n∗2n1];

2. (m1, [m∗2,(m3,s,n∗3),n2],n∗1) = (m1m∗2m3,s,n∗3n2n∗1);

3. (m1,1S ,m∗2) = 1T ·m1m∗2;

4. [m∗1,1T ,m2] = 1S ·m∗1m2;

5. [m∗1,(m2,1S ,n∗2),n1] = [m∗1,1T ,m2n∗2n1] = [m∗1m2n∗2,1T ,n1];

6. (m1, [m∗2,1T ,n2],n∗1) = (m1,1S ,m∗2n2n∗1) = (m1m∗2n2,1S ,n∗1).
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Morita contexts for operator systems
Definition
Let S and T be abstract operator systems and X be an abstract operator space. We say that
the quintuple

(
S ,T ,X , [·, ·, ·],(·, ·, ·)

)
is a bihomomorphism pre-context if:

(i) X is non-degenerate;

(ii) [·, ·, ·] : X∗×T ×X −→S and (·, ·, ·) : X×S ×X∗ −→T are completely bounded
completely positive maps such that

[X∗,1T ,X ]⊆AS and (X ,1S ,X∗)⊆AT ;

(iii) the associativity relations

[x∗1,(x2,s,x∗3),x4] = [x∗1,1T ,x2] · s · [x∗3,1T ,x4]

and
(x1, [x∗2, t,x3],x∗4) = (x1,1S ,x∗2) · t · (x3,1S ,x∗4)

hold for all s ∈S , t ∈T and all x1,x2,x3,x4 ∈ X .

A bihomomorphism pre-context is called a bihomomorphism context if the trilinear maps [·, ·, ·]
and (·, ·, ·) are completely contractive and there exist semi-units ((xi)i,(yi)i) and ((zi)i,(wi)i)
over X and X∗, respectively, such that

lim
i
[x∗i ,1T ⊗ I,yi] = 1S and lim

i
(zi,1S ⊗ I,w∗i ) = 1T . (2)
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Morita contexts for operator systems

Theorem
Let S and T be (abstract) operator systems. The following are equivalent:

1. S ∼∆ T ;

2. S �T ;

3. there exists a ∆-context for S and T ;

4. there exists a bihomomorphism context for S and T .

Proof
We have seen that (2) implies (1).
A realization is a context, and so (1) implies (3) and (2) implies (4).
A familiar “trick” by using M⊗− gives that (3) implies (1).
An extension of this trick is required for showing that (4) implies (2).
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Morita contexts for operator systems

Proof continued
- Suppose we have a bihomomorphism context and start with φ : S →I (S )⊆B(H).
- Let K be the Hausdorff completion of X�H wrt

〈x1⊗h1,x2⊗h2〉 := 〈φ([x∗2,1T ,x1])h1,h2〉H .

- Let θ : X →B(H,K) be given by θ(x)h = x⊗h, and note that

θ(x)∗(x′⊗h′) = φ([x∗,1T ,x′])h′

- Let ψ : T →B(K) such that

〈ψ(t)(x1⊗h1),x2⊗h2〉K = 〈φ([x∗2, t,x1])h1,h2〉H .

The existence of semi-units and the fact that φ is completely isometric give that ψ is completely
isometric.
- Then it follows that φ(S ) and ψ(T ) are bihomomorphically equivalent by θ(X), basically
by using that

θ(x2)
∗ψ(t)θ(x1) = φ([x∗2, t,x1])

and the dual (by repeating for ψ and showing unitary equivalence with φ ).
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