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Classical wavelet transform on R

Fix a “good” vector ¢ € L2(R). Define ¢p o(X) = ﬁd%’). Then,

dbda
f=/R[R*(f,¢b,a)¢b,a?-

@ Representation
m:RxR* - U(LQ(R))7 m(b,a)y (x) = ﬁw(x;ab)

@ Wavelet transform
W¢:L2(R) %LZ(RNR*), W¢(f)(b7a):(f?ﬂ—(baa)¢)'

Thm: W, (f) decays rapidly near X iff f is smooth at xp. J

Wy(f) decays rapidly near X if for some nbhd x, € U, for all N > 0,
IWy(f)(b,a)| = O(a¥) as a—0,vbe U.
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Continuous wavelet transform

@ Dilation group H closed subgroup of GL4(R).

@ G=R%x H, with
o (x, h)(y,k) (x+hy,hk) (x,h)' =(-h"x,n").

e d(x,h)= |det(h)\

@ Quasi-regular representation of G acts on L?(RY) as

1 _
m(a, h)g(b) = WQ(” - (b-a)).

@ To construct continuous wavelet transform (CWT), fix ¢ € LZ(Rd),
and define

Wy : L2(RY) = Cp(G),  Wyf(x,h) = (f.(x, h)y).
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A dilation group H is irreducibly admissible if the quasi-regular rep 7 of
RY x H is irreducible and admits an admissible vector. J

Note: Irreducibly admissible dilation groups are characterized by action of H on Rd.

H is irreducibly admissible.

So,
@ 7 has admissible vectors (or wavelets), i.e.

3 ¢ € L2(RY) such that Im(W;) < L2(G).

@ With such admissible ¢, we have the isometry

Wy [BR) > [2(G), o (F,7()6).
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Action of H on the dual space

@ R = {y,: beRY}, where xp(x) = exp(27i b x).
@ Right action of H on RY is defined as Xb-h=xXpp-

Theorem [Bernier-Taylor '96, Fuhr '96, '10]

(i) 3! open orbit © = HT¢,

H irreducibly admissible c»{ (i) He, = {he H:hTe =€o} i5 Compact,
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Theorem [Bernier-Taylor '96, Fuhr '96, '10]

(i) 3! open orbit © = HT¢,

H irreducibly admissible c»{ (i) He, = {he H:hTé, =€o} i5 Compact,

Consequences: For Oc R? as above,
@0¢0. Oconull. VEeO, R*¢cO.
@ O is a homogeneous H-space, so H/H,, ~ O homeomorphic.
@ The action of H on O is proper.
Vept KO, Hy:={(h,¢) e Hx O, (hT¢,€) e K x K} is cpt.
@ ¢ : Schwartz function and ¢ cptly supported ~ admissible vector.
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Recall: Let G = RY x H, where
@ Hirreducibly admissible,
@ ¢ ¢ L?(RY) admissible vector.
The CWT W, : L2(RY) — L2(G), f+~ (f,7(-)¢) is an isometry.

Wet(y, h) = {f,7(y, h)).

Wavelet reconstruction formula

For every f € [2(RY),

dh
1= Joo S, VeD) 0h)- (r (v, ) 6) 15 s .

interpreted in the weak sense.

Cor. {7(y,h)o}ycrn e is a continuous frame.
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Singularities/smoothness of tempered distributions

@ Schwartz norms: ||, = MaX N, <N sup,a(1 +12))N 0% (2)|.
@ Schwartz space: S(RY) = {f e C¥(RY): |ih|y <00 YN € No}.

@ Fourier transform F : ¢ e S(RY) — ¢ e S(RY) is cts.

@ Tempered distrib: S’(RY).

o F:S8'(RY) > S'(RY), T(y) = T().

Note: If u € S" is compactly supported, then U is a smooth function.

Schwartz’s Paley-Weiner Theorem
Take a compactly supported u € S’. TFAE:
@ uis a smooth function.
@ Uis fast decreasing on R, i.e.

VN 3Cy V€ e R, [T(€)] < Cn(1 +[¢)7N.
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Examples of smoothness/singularity

Point singularity . d¢0,0y : f = £(0,0)
S={(0,0)}
Linear singularity —— L:fw~ [pf(x,0)dx

S={(x,0): xR}

Curve singularity ‘ B:fw [g f(x,y)dxdy
S ={(cosb,sinf):0¢[0,27]}

Classical wavelet transform identifies of singularities.

For a “good” wavelet ¢, Wy(F) decays rapidly near x as a —» 0 iff F is
smooth at x.
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Wavefront sets

Recall: Compactly supported u is smooth iff U is fast decreasing, i.e. J

YN 3Cy VE e RY, [Ti(€)] < Cn(1 + €)M

Fix u e S'(RY) and N ¢ N.

Smoothness of order N at X in direction &

(X0,&0) € R? x 891 is an N-regular directed point of u if
@ 3 e CX(RY) with ¢ = 1 around xy,
@ Jopen&ye Wc 8o,
@ Jconstant Cy >0,

such that [pu(€)| < Cn(1 + €)™V, V € in the cone of W.

N-wavefront set of u

WFN(u) = {(x, &) which are not N-regular directed points of u}.
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WF(u) = {(x,g) : not N-regular directed point for some N}.

o WF(5) = (0,0) x [0,27) = {((0,0),1) : t € [0,27)}.

@ WF(L)={((0,y),0): yeR}.

@ WF(B) ={((cosf,sinf),0): 6¢[0,27)}.

Question: Can we recognize wavefront sets using decay behavior of
Wy?
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Example (Candées-Donoho, '03)

@ Curvelet transform I'(f)(a, b, 6) is a directional transform.
@ Does not have affine structure.

Curvelet identifies of singularities.
[(f) decays rapidly near (X, 6p) iff (xg,60) € WF(f)°.

Example (Bernier-Taylor 96, Kutyniok-Labate ’09)

° H:{( a bl ):a>0,beR}.
0 a2

@ 7 quasi-regular rep of R? x H, ¢ € L2(R?) admissible.
@ S,(f)(x,a,b) = (f,m(x,a,b)p), xcR2 a>0,beR.

[Kutyniok-Labate ’09]: Shearlets can resolve wavefront sets.
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Generalization

Setup:
@ G=R9x H, where H is irreducibly admissible.
@ Wyf(x,h) = (f,m(x, h)y), for f e [2(RY).
@ Assume ¢ € S(RY). For ue S’ (R?), we define

Wyu(x, h) = (u|n(x, h)y).

Goal
Give criteria for WFN(u) in terms of CWT decay, e.g.

(x,&)¢ WFN(u) < 3InbhdUsx st.VyelU VheK
Wyu(y,h)| < Clh|",

for suitable K ¢ H depending on v and &.

Recall: (xp,&p) is an N-regular directed point of u if V¥ £ near &,
Za(€)] < Cn(1 + g7
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Goal: criteria for WFN(u) in terms of CWT

(x,&) ¢ WFN(u) < 3InbhdUsx st.VyelU VheK
Wyu(y, h)| < Clh|Y,

for suitable subset K c H is depending on ¢ and &g.

o [n(x,Mf](y) =|det(h)[V/2-f(h(y - x)).
o [F (m(x,h) N](§) = |det (n)[/2. &2 F (nT¢).

T(E) = fao Sy (Wyt)) (v, h) - (F [ (v, h) 9]) (€) ity |

So,
® K~{heH:supp(¢(h"-) c nbhd of &}.
@ K depends on supp(v) and nbhd of &,.
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Resolution of Wavefront set

@ Let V c O be open and precompact.
© Assume that dual action is V-microlocally admissible.
© Take any ¢ admissible with supp(?) c V.

[Fell-FUhr-Voigtlaender, '16]

Let ue S'(RY) and (x,£) e RY x (On ST ).
(i) Suppose (x,&) € WF(u)®. Then,
JU>x 3IR>0 3IW > ¢ s.t. for all ¢ as above,

VNeN VyeU YheK [Wyu(y,h)|=<|h|".

(i) Suppose U>x IR >0 IW > ¢ s.t. forall ¢ as above,
YVNeN VyelU YheK, Wyu(y,h)| < |h|".

Then (x,€) € WF(u)®.
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Near-characterization of WFN; Case 1

@ Let V c O be open and precompact.
@ Dual action is V-microlocally admissible with a1, as > 0.
e Take any admiSSible ’(/) W|th supp({b\) cV. (localized in frequency domain)

Theorem 1 [FUhr-G.]
Let ue S'(RY) and (x,£) e RY x (O n 891).

(i) Suppose (x,¢) e WFN(u)C. Then,
JU>x 3R>0 3W > ¢ s.t. for all ¢ as above,

AC>0VyeU YheK; [Wyu(y,h)| < C||h|N-9/2,

(i) Suppose 3U>x IR>0 3W >¢ s.t. forall ¢ as above,
3C>0,¥yeU VheKy Wyu(y, h)| < C|h|2iN2erdeoz,

Then (x,¢) e WFN(u)e.
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Closer look at conditions on v

Kutyniok-Labate, '09
If supp(4)) <compact canonical wedge then S, resolves WF.
If 1) has co-ly many vanishing moments then S, resolves WF.

Corollary: If ¢ € Cc(R?) then S, resolves WF.

Vanishing moments in higher dimensions
¥ e L1(R?) has vanishing moments in O° of order r if

@ 04 are continuous for all [a] < r,
@ 0“4 are vanishing on O° for all [a] < r.
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Near-characterization of WFN; Case 2

@ Let V c O open and precompact.
@ Dual action is V-microlocally admissible with a4, as > 0.

e Take any admissible w € CC(Rd) (localized in space domain) with VaniShing
moments of order r on O°.

Theorem 2 [Fihr-G.]

Let r be “big enough”. For every u e §’(RY),
(i) If (x0,&) € WFN(u)Cthen3 Us xy, R>0, W>¢&, sit.

Vi 3C>0 Yy el Yhek; Wyu(y,h)| < Clh|"-2.

(i) f3 Usxo, R>0, W3 &, s.t. forall ¢ as above,
3C>0,VyeU Vhek, [Wyu(y,h)| < ClherNszedoz,

then (xp, &) € WFN(u)°.

M. Ghandehari (U. Delaware) Sobolev wavefront sets 17/19



Sketch of proof

@ From CWT reconstruction formula,
Wy U= Wy, U Wy, o,
@ If ¢»1 and » have r-vanishing moments, for large r, then
Wa, o (x, M < C(1+ X)) (1+ AR + A7) 7%,

where C depends on 1,2, and does not depend on x, h.

@ Take v» with compact frequency support. Use Theorem 1.
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Thank you very much!
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