Meaningful decay behavior of higher dimensional continuous wavelet transforms.

Mahya Ghandehari

(Joint with Hartmut Führ)

University of Delaware

Classical wavelet transform on $\mathbb R$

Fix a "good" vector $\phi \in L^2(\mathbb{R})$. Define $\phi_{b,a}(x) = \frac{1}{\sqrt{|a|}}\phi(\frac{x-b}{a})$. Then,

$$f = \int_{\mathbb{R}} \int_{\mathbb{R}^*} \langle f, \phi_{b,a} \rangle \phi_{b,a} \frac{dbda}{a^2}.$$

Representation

$$\overline{\pi: \mathbb{R} \rtimes \mathbb{R}^* \to \mathcal{U}(L^2(\mathbb{R}))}, \quad \pi(b, a) \psi(x) = \frac{1}{\sqrt{|a|}} \psi(\frac{x-b}{a}).$$

Wavelet transform

$$\overline{\mathcal{W}_{\phi}: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R} \rtimes \mathbb{R}^{*})}, \quad \mathcal{W}_{\phi}(f)(b, a) = \langle f, \pi(b, a) \phi \rangle.$$

Thm: $W_{\phi}(f)$ decays rapidly near x_0 iff f is smooth at x_0 .

 $\mathcal{W}_{\phi}(f)$ decays rapidly near x_0 if for some nbhd $x_0 \in U$, for all N > 0, $|\mathcal{W}_{\phi}(f)(b,a)| = O(a^N)$ as $a \to 0, \forall b \in U$.

Continuous wavelet transform

- Dilation group H closed subgroup of $GL_d(\mathbb{R})$.
- $G = \mathbb{R}^d \times H$, with
 - $(x,h)(y,k) = (x+hy,hk), (x,h)^{-1} = (-h^{-1}x,h^{-1}).$
 - $d(x,h) = \frac{dx dh}{|det(h)|}$.
- Quasi-regular representation of G acts on $L^2(\mathbb{R}^d)$ as

$$\pi(a,h)g(b) = \frac{1}{|\det(h)|^{1/2}}g(h^{-1}\cdot(b-a)).$$

• To construct continuous wavelet transform (CWT), fix $\psi \in L^2(\mathbb{R}^d)$, and define

$$\mathcal{W}_{\psi}: L^{2}(\mathbb{R}^{d}) \to C_{b}(G), \quad \mathcal{W}_{\psi}f(x,h) = \langle f, \pi(x,h)\psi \rangle.$$

A dilation group H is irreducibly admissible if the quasi-regular rep π of $\mathbb{R}^d \rtimes H$ is irreducible and admits an admissible vector.

Note: Irreducibly admissible dilation groups are characterized by action of H on $\widehat{\mathbb{R}^d}$.

Assumption

H is irreducibly admissible.

So,

• π has admissible vectors (or wavelets), i.e.

$$\exists \phi \in L^2(\mathbb{R}^d)$$
 such that $\operatorname{Im}(\mathcal{W}_\phi) \subseteq L^2(G)$.

• With such admissible ϕ , we have the isometry

$$\mathcal{W}_{\phi}: L^2(\mathbb{R}^d) \to L^2(G), \ f \mapsto \langle f, \pi(\cdot)\phi \rangle.$$

Action of *H* on the dual space

- $\widehat{\mathbb{R}^d} = \{\chi_b : b \in \mathbb{R}^d\}$, where $\chi_b(x) = \exp(2\pi i b^T x)$.
- Right action of H on $\widehat{\mathbb{R}^d}$ is defined as $\chi_b \cdot h = \chi_{h^T b}$.

Theorem [Bernier-Taylor '96, Führ '96, '10]

$$H$$
 irreducibly admissible \Leftrightarrow $\left\{ \begin{array}{l} \text{(i) } \exists ! \text{ open orbit } \mathcal{O} = H^T \xi_0, \\ \text{(ii) } H_{\xi_0} = \left\{ h \in H : h^T \xi_0 = \xi_0 \right\} \text{ is compact.} \end{array} \right.$

Action of *H* on the dual space

- $\widehat{\mathbb{R}^d} = \{\chi_b : b \in \mathbb{R}^d\}$, where $\chi_b(x) = \exp(2\pi i b^T x)$.
- Right action of H on $\widehat{\mathbb{R}^d}$ is defined as $\chi_b \cdot h = \chi_{h^T b}$.

Theorem [Bernier-Taylor '96, Führ '96, '10]

$$H \text{ irreducibly admissible } \Leftrightarrow \left\{ \begin{array}{l} \text{(i) } \exists ! \text{ open orbit } \mathcal{O} = H^T \xi_0, \\ \text{(ii) } H_{\xi_0} = \left\{ h \in H : h^T \xi_0 = \xi_0 \right\} \text{ is compact.} \end{array} \right.$$

Consequences: For $\mathcal{O} \subseteq \mathbb{R}^d$ as above,

- $\mathbf{0} \notin \mathcal{O}$. \mathcal{O} conull. $\forall \xi \in \mathcal{O}$, $\mathbb{R}^* \xi \subset \mathcal{O}$.
- \mathcal{O} is a homogeneous H-space, so $H/H_{\xi_0} \simeq \mathcal{O}$ homeomorphic.
- The action of H on \mathcal{O} is proper. \forall cpt $K \subset \mathcal{O}$, $H_K := \{(h, \xi) \in H \times \mathcal{O}, (h^T \xi, \xi) \in K \times K\}$ is cpt.
- ϕ : Schwartz function and $\widehat{\phi}$ cptly supported \leadsto admissible vector.

Recall: Let $G = \mathbb{R}^d \times H$, where

- H irreducibly admissible,
- $\phi \in L^2(\mathbb{R}^d)$ admissible vector.

The CWT $\mathcal{W}_{\phi}: L^2(\mathbb{R}^d) \to L^2(G), \ f \mapsto \langle f, \pi(\cdot)\phi \rangle$ is an isometry.

$$\mathcal{W}_{\phi}f(y,h) = \langle f, \pi(y,h)\phi \rangle.$$

Wavelet reconstruction formula

For every $f \in L^2(\mathbb{R}^d)$,

$$f = \int_{\mathbb{R}^d} \int_{H} (\mathcal{W}_{\phi} f) (y, h) \cdot (\pi (y, h) \phi) \frac{dh}{|\det (h)|} dy,$$

interpreted in the weak sense.

Cor. $\{\pi(y,h)\phi\}_{v\in\mathbb{R}^n,h\in H}$ is a continuous frame.

Singularities/smoothness of tempered distributions

- Schwartz norms: $|\psi|_{\mathcal{N}} \coloneqq \max_{\alpha \in \mathbb{N}_0^d, |\alpha| \le \mathcal{N}} \sup_{z \in \mathbb{R}^d} (1 + |z|)^{\mathcal{N}} |\partial^{\alpha} \psi(z)|$.
- Schwartz space: $S(\mathbb{R}^d) = \{ f \in C^{\infty}(\mathbb{R}^d) : |\psi|_{N} < \infty \ \forall N \in \mathbb{N}_0 \}.$
- Fourier transform $\mathcal{F}: \psi \in \mathcal{S}(\mathbb{R}^d) \to \widehat{\psi} \in \mathcal{S}(\mathbb{R}^d)$ is cts.
- Tempered distrib: $\mathcal{S}'(\mathbb{R}^d)$.
- $\mathcal{F}: \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d), \ \widehat{T}(\psi) = T(\widehat{\psi}).$

Note: If $u \in S'$ is compactly supported, then \widehat{u} is a smooth function.

Schwartz's Paley-Weiner Theorem

Take a compactly supported $u \in S'$. TFAE:

- *u* is a smooth function.
- \widehat{u} is fast decreasing on \mathbb{R}^d , i.e.

$$\forall N \exists C_N \ \forall \xi \in \mathbb{R}^d, \ |\widehat{u}(\xi)| \leq C_N (1 + |\xi|)^{-N}.$$

Examples of smoothness/singularity

Point singularity

$$\delta_{(0,0)}: f \mapsto f(0,0)$$

 $S = \{(0,0)\}$

Linear singularity

$$L: f \mapsto \int_{\mathbb{R}} f(x,0) dx$$
$$S = \{(x,0) : x \in \mathbb{R}\}$$

Curve singularity

$$B: f \mapsto \int_{B_1} f(x, y) dx dy$$

$$S = \{(\cos \theta, \sin \theta) : \theta \in [0, 2\pi]\}$$

Classical wavelet transform identifies location of singularities.

For a "good" wavelet ϕ , $W_{\phi}(F)$ decays rapidly near x as $a \to 0$ iff F is smooth at x.

Wavefront sets

Recall: Compactly supported u is smooth iff \widehat{u} is fast decreasing, i.e.

$$\forall N \exists C_N \ \forall \xi \in \mathbb{R}^d, \ |\widehat{u}(\xi)| \leq C_N (1 + |\xi|)^{-N}.$$

Fix $u \in \mathcal{S}'(\mathbb{R}^d)$ and $N \in \mathbb{N}$.

Smoothness of order N at x_0 in direction ξ_0

 $(x_0, \xi_0) \in \mathbb{R}^d \times S^{d-1}$ is an *N*-regular directed point of u if

- $\exists \varphi \in C_c^{\infty}(\mathbb{R}^d)$ with $\phi \equiv 1$ around x_0 ,
- \exists open $\xi_0 \in W \subset S^{d-1}$,
- \exists constant $C_N > 0$,

such that $|\widehat{\varphi u}(\xi)| \le C_N (1 + |\xi|)^{-N}$, $\forall \xi$ in the cone of W.

N-wavefront set of u

 $WF^{N}(u) = \{(x, \xi) \text{ which are not } N\text{-regular directed points of } u\}.$

Definition

 $WF(u) = \{(x, \xi) : \text{ not } N\text{-regular directed point for some } N\}.$

Example

- $WF(\delta) = (0,0) \times [0,2\pi) = \{((0,0),t) : t \in [0,2\pi)\}.$
- $WF(L) = \{((0, y), 0) : y \in \mathbb{R}\}.$
- $WF(B) = \{((\cos \theta, \sin \theta), \theta) : \theta \in [0, 2\pi)\}.$

Question: Can we recognize wavefront sets using decay behavior of \mathcal{W}_{ϕ} ?

Example (Candès-Donoho, '03)

- Curvelet transform $\Gamma(f)(a, b, \theta)$ is a directional transform.
- Does not have affine structure.

Curvelet identifies (location, direction) of singularities.

 $\Gamma(f)$ decays rapidly near (x_0, θ_0) iff $(x_0, \theta_0) \in WF(f)^c$.

Example (Bernier-Taylor '96, Kutyniok-Labate '09)

$$\bullet \ H = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{\frac{1}{2}} \end{array} \right) : a > 0, b \in \mathbb{R} \right\}.$$

- π quasi-regular rep of $\mathbb{R}^2 \rtimes H$, $\phi \in L^2(\mathbb{R}^2)$ admissible.
- $\bullet \ \mathcal{S}_{\phi}(f)(x,a,b) = \langle f, \pi(x,a,b)\phi \rangle, \ x \in \mathbb{R}^2, \ a > 0, \ b \in \mathbb{R}.$

[Kutyniok-Labate '09]: Shearlets can resolve wavefront sets.

Generalization

Setup:

- $G = \mathbb{R}^d \times H$, where H is irreducibly admissible.
- $\mathcal{W}_{\psi}f(x,h) = \langle f, \pi(x,h)\psi \rangle$, for $f \in L^2(\mathbb{R}^d)$.
- Assume $\psi \in \mathcal{S}(\mathbb{R}^d)$. For $u \in \mathcal{S}'(\mathbb{R}^d)$, we define

$$\mathcal{W}_{\psi}u(x,h) = \langle u \mid \pi(x,h)\psi \rangle.$$

Goal

Give criteria for $WF^N(u)$ in terms of CWT decay, e.g.

$$(x,\xi) \notin WF^N(u) \Leftrightarrow \exists \text{ nbhd } U \ni x \text{ s.t. } \forall y \in U \ \forall h \in K$$

 $|\mathcal{W}_{\psi}u(y,h)| \leq C \|h\|^N,$

for suitable $K \subset H$ depending on ψ and ξ .

Recall: (x_0, ξ_0) is an *N*-regular directed point of u if $\forall \xi$ near ξ_0 ,

$$|\widehat{\varphi u}(\xi)| \leq C_N (1+|\xi|)^{-N}$$
.

Goal: criteria for $WF^N(u)$ in terms of CWT

$$(x, \xi_0) \notin WF^N(u) \iff \exists \text{ nbhd } U \ni x \text{ s.t. } \forall y \in U \ \forall h \in K$$
$$|\mathcal{W}_{\psi} u(y, h)| \le C \|h\|^N,$$

for suitable subset $K \subset H$ is depending on ψ and ξ_0 .

•
$$[\pi(x,h)f](y) = |\det(h)|^{-1/2} \cdot f(h^{-1}(y-x)).$$

•
$$[\mathcal{F}(\pi(x,h)f)](\xi) = |\det(h)|^{1/2} \cdot e^{-2\pi i \langle x,\xi \rangle} \cdot \widehat{f}(h^T \xi).$$

$$\widehat{u}\left(\xi\right) = \int_{\mathbb{R}^d} \int_{H} \left(W_{\psi}u\right) \left(y,h\right) \cdot \left(\mathcal{F}\left[\pi\left(y,h\right)\psi\right]\right) \left(\xi\right) \, \frac{\mathrm{d}h}{\left|\det(h)\right|} \, \mathrm{d}y.$$

So,

- $K \sim \{h \in H : \operatorname{supp}(\widehat{\psi}(h^T \cdot) \subseteq \text{ nbhd of } \xi_0\}.$
- K depends on $supp(\psi)$ and nbhd of ξ_0 .

Resolution of Wavefront set

- **1** Let $V \subseteq \mathcal{O}$ be open and precompact.
- Assume that dual action is V-microlocally admissible.
- **3** Take any ψ admissible with $\operatorname{supp}(\widehat{\psi}) \subset V$. (similar to shearlets)

[Fell-Führ-Voigtlaender, '16]

Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x, \xi) \in \mathbb{R}^d \times (\mathcal{O} \cap S^{d-1})$.

(i) Suppose $(x, \xi) \in WF(u)^c$. Then, $\exists U \ni x \ \exists R > 0 \ \exists W \ni \xi \text{ s.t. for all } \psi \text{ as above,}$

$$\forall N \in \mathbb{N} \ \forall y \in U \ \forall h \in \frac{K_i}{|W_{\psi}u(y,h)|} \leq ||h||^N.$$

(ii) Suppose $U \ni x \exists R > 0 \exists W \ni \xi \text{ s.t. for all } \psi \text{ as above,}$ $\forall N \in \mathbb{N} \ \forall y \in U \ \forall h \in \mathcal{K}_o \ |\mathcal{W}_{\psi}u(y,h)| \leq \|h\|^N.$

Then $(x, \xi) \in WF(u)^c$.

Near-characterization of WFN; Case 1

- **1** Let $V \subseteq \mathcal{O}$ be open and precompact.
- ② Dual action is V-microlocally admissible with $\alpha_1, \alpha_2 > 0$.
- **1** Take any admissible ψ with $\operatorname{supp}(\widehat{\psi}) \subset V$. (localized in frequency domain)

Theorem 1 [Führ-G.]

Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $(x, \xi) \in \mathbb{R}^d \times (\mathcal{O} \cap \mathcal{S}^{d-1})$.

(i) Suppose $(x, \xi) \in WF^N(u)^c$. Then, $\exists U \ni x \ \exists R > 0 \ \exists W \ni \xi \text{ s.t.}$ for all ψ as above,

$$\exists C > 0 \ \forall y \in U \ \forall h \in \mathbf{K}_i \ |\mathcal{W}_{\psi}u(y,h)| \leq C \|h\|^{N-\alpha_1 d/2}.$$

(ii) Suppose $\exists U \ni x \ \exists R > 0 \ \exists W \ni \xi \text{ s.t.}$ for all ψ as above,

$$\exists C > 0, \forall y \in U \ \forall h \in \frac{K_o}{|W_{\psi}u(y,h)|} \leq C \|h\|^{\alpha_1 N + \frac{3}{2}\alpha_1 d + \alpha_2}.$$

Then $(x, \xi) \in WF^N(u)^c$.

Closer look at conditions on ψ

Kutyniok-Labate, '09

If $supp(\widehat{\psi}) \subseteq compact$ canonical wedge then S_{ψ} resolves WF.

Grohs, '11

If ψ has ∞ -ly many vanishing moments then \mathcal{S}_{ψ} resolves WF.

Corollary: If $\psi \in C_c(\mathbb{R}^d)$ then S_{ψ} resolves WF.

Vanishing moments in higher dimensions

 $\psi \in L^1(\mathbb{R}^d)$ has vanishing moments in \mathcal{O}^c of order r if

- **1** $\partial^{\alpha}\widehat{\psi}$ are continuous for all $|\alpha| \leq r$,
- ② $\partial^{\alpha} \widehat{\psi}$ are vanishing on \mathcal{O}^{c} for all $|\alpha| < r$.

Near-characterization of WFN; Case 2

- **1** Let $V \subseteq \mathcal{O}$ open and precompact.
- ② Dual action is V-microlocally admissible with $\alpha_1, \alpha_2 > 0$.
- Take any admissible $\psi \in C_c(\mathbb{R}^d)$ (localized in space domain) with vanishing moments of order r on \mathcal{O}^c .

Theorem 2 [Führ-G.]

Let *r* be "big enough". For every $u \in \mathcal{S}'(\mathbb{R}^d)$,

- (i) If $(x_0, \xi_0) \in WF^N(u)^c$ then $\exists U \ni x_0, R > 0, W \ni \xi_0, s.t.$
 - $\forall \psi \exists C > 0 \ \forall y \in U \ \forall h \in K_i \ |\mathcal{W}_{\psi}u(y,h)| \leq C \|h\|^{N-\alpha_1 d/2}.$
- (ii) If $\exists U \ni x_0, R > 0, W \ni \xi_0$, s.t. for all ψ as above,

$$\exists C > 0, \forall y \in U \quad \forall h \in \frac{K_o}{|W_{\psi}u(y,h)|} \leq C \|h\|^{\alpha_1 N + \frac{3}{2}\alpha_1 d + \alpha_2},$$

then $(x_0, \xi_0) \in WF^N(u)^c$.

Sketch of proof

From CWT reconstruction formula,

$$\mathcal{W}_{\psi_1} u = \mathcal{W}_{\psi_2} u * \mathcal{W}_{\psi_1} \psi_2.$$

• If ψ_1 and ψ_2 have r-vanishing moments, for large r, then

$$\left|\mathcal{W}_{\psi_1}\psi_2(x,h)\right| \leq C(1+|x|)^{-\beta_1}(1+\|h\|)^{-\beta_2}(1+\|h^{-1}\|)^{-\beta_3},$$

where C depends on ψ_1, ψ_2 , and does not depend on x, h.

• Take ψ_2 with compact frequency support. Use Theorem 1.

Thank you very much!