

W*-rigidity paradigms for embeddings of II₁ factors Functional Analysis and Operator Algebras in Athens

6 May 2022

Stefaan Vaes - KU Leuven

Isomorphism and embedding problems for II_1 factors

Groups / group actions / groupoids / ... ~ II₁ factors.

Many-to-one paradigm

 \sim Large classes of very distinct initial data may give isomorphic II₁ factors.

One-to one / W*-rigidity paradigm

- \checkmark Large classes of initial data such that $S \mapsto M(S) \in II_1$ is one-to-one.
 - \blacktriangleright Up to isomorphism of II₁ factors.
 - Up to stable isomorphism $N \cong M^t$.

Recall: $M^t = p(M_n(\mathbb{C}) \otimes M)p$ for projection p with $(\operatorname{Tr} \otimes \tau)(p) = t$.

▶ Up to virtual isomorphism, up to embeddability, ..., see later.

Many-to-one results: hyperfiniteness

Murray-von Neumann: a II₁ factor M is **hyperfinite** if there exists an increasing sequence $A_n \subset M$ of finite dimensional *-subalgebras with $\bigcup_n A_n$ weakly dense in M.

Canonical construction: $R = M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \otimes \cdots$.

Theorem (Murray-von Neumann, 1943)

All hyperfinite II₁ factors are isomorphic!

• Every II₁ factor M contains copies of $R \hookrightarrow M$.

"The possibility exists that any factor in the case II_1 is isomorphic to a sub-ring of any other such factor."

Notation: $N \hookrightarrow M$ if there exists an embedding of N into M. Also, $N \hookrightarrow_{s} M$ if there exists a t > 0 with $N \hookrightarrow M^{t}$.

Many-to-one results: amenability

- A group G is called **amenable** if there exists a translation invariant mean on G, i.e. m(gU) = m(U).
- A von Neumann algebra M ⊂ B(H) is called amenable if there exists a (not necessarily normal) conditional expectation P : B(H) → M.
- A group II₁ factor L(G) is amenable if and only if G is amenable.
- ▶ If *M* is an amenable II₁ factor and $N \hookrightarrow_s M$, then *N* is amenable.
- \checkmark If Λ is nonamenable and Γ is amenable, then $L(\Lambda) \not\hookrightarrow_s L(\Gamma)$.

Theorem (Connes, 1976)

All amenable II₁ factors are isomorphic!

Thus, for all amenable icc groups G, we have $L(G) \cong R$. Thus, if $N \hookrightarrow_{s} R$, then $N \cong R$!

First non-embeddability results

Connes-Jones, 1983

If Λ has Kazhdan's property (T) and if Γ has the Haagerup property, then $L(\Lambda) \nleftrightarrow_{s} L(\Gamma)$.

For example, $L(SL(3,\mathbb{Z})) \not\hookrightarrow_{s} L(\mathbb{F}_{\infty})$.

 \longrightarrow Intrinsic definition of property (T) for II₁ factors.

Cowling-Haagerup, 1988

If Γ_n is a lattice in $\operatorname{Sp}(1, n)$, then $L(\Gamma_n) \not\hookrightarrow_s L(\Gamma_m)$ for n > m.

✓ The Cowling-Haagerup constant is decreasing under (stable) embeddings.

✓ More rigid objects do not embed in less rigid objects.

Open problems

▶ **Conjecture.** If n > m, then $L(PSL(n, \mathbb{Z})) \not\rightarrow_s L(PSL(m, \mathbb{Z}))$.

Does L(𝔽₂) → M for any nonamenable II₁ factor M ? (von Neumann – Day problem for II₁ factors)

• Which II₁ factors M embed into $L(\mathbb{F}_2)$?

Conjecturally: precisely the interpolated free group factors $L(\mathbb{F}_t)$, t > 1, and R.

Embeddability of Bernoulli crossed products

Theorem (Popa-V, 2021)

Let $\Gamma = \mathbb{F}_n$ be a free group and (A_0, τ) amenable (e.g. abelian).

We build: $M(A_0, \tau) = (A_0, \tau)^{\otimes \Gamma} \rtimes (\Gamma \times \Gamma).$

Then, $M(B_0, \tau) \hookrightarrow_s M(A_0, \tau)$ if and only if the initial data embed: $(B_0, \tau) \hookrightarrow (A_0, \tau)$.

- With $A_0 = \mathbb{C}^2$ and $\tau(x, y) = ax + (1 a)y$: mutually non embeddable.
- With $A_0 = L^{\infty}([0, a] \cup \{1\})$ and $\tau =$ Lebesgue on [0, a] and atom 1 a at 1, we get $M_a \hookrightarrow_s M_b$ iff $a \leq b$.
- With $A_0 = R \oplus R$ and varying τ : all mutually embeddable, but not stably isomorphic.

 \checkmark We now exploit/generalize this much further.

Fundamental group of a II₁ factor

Murray-von Neumann: the fundamental group $\mathcal{F}(M)$ is the subgroup of \mathbb{R}^*_+ given by $\mathcal{F}(M) = \{t > 0 \mid M^t \cong M\}.$

- (Murray-von Neumann, 1943) $\mathcal{F}(R) = \mathbb{R}_+^*$.
- (Connes, 1980) If Γ is icc with property (T), then $\mathcal{F}(L(\Gamma))$ is countable.
- (Popa, 2001) With $M = L^{\infty}(\mathbb{T}^2) \rtimes SL(2,\mathbb{Z})$, we have $\mathcal{F}(M) = \{1\}$.
- ▶ (Popa, 2003) Any countable subgroup of \mathbb{R}^*_+ as fundamental group.
- ▶ (Popa-V, 2008) Many uncountable (Borel) subgroups of \mathbb{R}^*_+ as fundamental group.
- (Popa-V, 2011) For any $M = L^{\infty}(X) \rtimes \mathbb{F}_2$, we have $\mathcal{F}(M) = \{1\}$.
- **Wide open :** intrinsic description of possible fundamental groups !

One-sided fundamental group

Notation: $\mathcal{F}_s(M) = \{t > 0 \mid M \hookrightarrow M^t\}$. Always: $\mathbb{N} \subset \mathcal{F}_s(M)$. Put $\mathcal{F} = \mathcal{F}_s(M)$.

- Compose embeddings: $\mathcal{F} \cdot \mathcal{F} \subset \mathcal{F}$.
- Direct sum of embeddings: $\mathcal{F} + \mathcal{F} \subset \mathcal{F}$.
- ▶ Infinite direct sums of embeddings: if $\mathcal{F} \cap (0,1) \neq \emptyset$, then $\mathcal{F} = \mathbb{R}^*_+$.
- \checkmark Only known computations give $\mathcal{F}_s(M) = \mathbb{N}$ or $\mathcal{F}_s(M) = \mathbb{R}_+^*$.

Theorem (Popa-V, 2021)

Let $\mathbb{N} \subset \mathcal{F} \subset [1, +\infty)$ with \mathcal{F} countable, $\mathcal{F} + \mathcal{F} \subset \mathcal{F}$ and $\mathcal{F} \cdot \mathcal{F} \subset \mathcal{F}$. Let M be one of our Bernoulli crossed products. Define $P = *_{s \in \mathcal{F}} M^{1/s}$. Then, $\mathcal{F}_s(P) = \mathcal{F}$. **Example:** $\mathbb{N} + \sqrt{p} \mathbb{N}$.

Wilder embeddability results

We have seen: "base space" $(A_0, \tau) \longrightarrow$ Bernoulli crossed product $M(A_0, \tau)$. Now: augmentation functor assigning to any infinite group Γ an icc group H_{Γ} .

Theorem (Popa-V, 2021)

Let Γ be an infinite group.

- ▶ Put $G_{\Gamma} = \mathbb{F}_{1+|\Gamma|}$ freely generated by a_0 and $(a_g)_{g\in\Gamma}$.
- ▶ Define $\pi : G_{\Gamma} \to \mathbb{Z} * \Gamma$ by $\pi(a_0) = 1 \in \mathbb{Z}$ and $\pi(a_g) = g \in \Gamma$.
- ▶ Put $N_{\Gamma} = \pi^{-1}(\Gamma)$.
- ▶ Define $H_{\Gamma} = (\mathbb{Z}/2\mathbb{Z})^{(J)} \rtimes (G_{\Gamma} \times G_{\Gamma})$ with $J = (G_{\Gamma} \times G_{\Gamma})/\Delta(N_{\Gamma})$.

We have $L(H_{\Lambda}) \hookrightarrow_{s} L(H_{\Gamma})$ if and only if $\Lambda \hookrightarrow \Gamma$

Partially ordered sets of II₁ factors

We already constructed $(M_t)_{t\in\mathbb{R}}$ with $M_t \hookrightarrow_s M_r$ iff $t \leq r$. Now: $(M_i)_{i\in I}$ for (I, \leq) .

A subset l₀ ⊂ l of a partially ordered set is called sup-dense if every element of l is the supremum of a subset of l₀.

Example: $\mathbb{Q} \subset \mathbb{R}$ is sup-dense.

• We say that (I, \leq) is **separable** if (I, \leq) admits a countable sup-dense subset.

Theorem (Popa-V, 2021)

For any separable partial order (I, \leq) , we construct a concrete family of separable II₁ factors $(M_i)_{i \in I}$ such that $M_i \hookrightarrow_s M_j$ if and only if $i \leq j$ if and only if $M_i \hookrightarrow M_j$.

With ω_1 the first uncountable ordinal, also (ω_1, \leq) can be realized as a chain of separable II_1 factors w.r.t. \hookrightarrow_s and \hookrightarrow .

II₁ factors without nontrivial self-embeddings

- Stable self-embeddings: $M \hookrightarrow M^d$ with d > 0.
- We say that $\theta : M \hookrightarrow M^d$ is **trivial** if $d \in \mathbb{N}$ and θ is unitarily conjugate to $M \to M_d(\mathbb{C}) \otimes M : a \mapsto 1 \otimes a$.
- We consider now: II_1 factors M for which all stable self-embeddings are trivial.

They have trivial fundamental group, trivial outer automorphism group, no nontrivial finite index subfactors, etc.

Theorem (Popa-V, 2021)

Let $G = A_{\infty}$, the group of finite, even permutations of N. Put $\Gamma = G * G$.

For an appropriate (generalized) Bernoulli action $\Gamma \times \Gamma \curvearrowright (X, \mu)$, the II₁ factor $M = L^{\infty}(X) \rtimes (\Gamma \times \Gamma)$ has no nontrivial stable self-embeddings.

The semiring of stable self-embeddings

Given a II₁ factor M, consider all embeddings $\theta : M \hookrightarrow M^d$, d > 0.

- ▶ The same as Hilbert *M*-bimodules ${}_{M}\mathcal{H}_{M}$ with dim ${}_{-M}(\mathcal{H}) = d < +\infty$.
- Identify embeddings that are unitarily conjugate (or bimodules that are isomorphic).
- Composition of embeddings, direct sum of embeddings.
- We get the semiring $\operatorname{Emb}_{s}(M)$.
- ▶ No nontrivial self-embeddings means: $\operatorname{Emb}_{s}(M) = \mathbb{N}$.

Theorem (Popa-V, 2021)

For many semigroups \mathcal{S} , we explicitly construct II_1 factors M with $\mathsf{Emb}_s(M) \cong \mathbb{N}[\mathcal{S}]$.

Outer automorphism groups

The embeddings semiring $\operatorname{Emb}_{s}(M)$ encodes in particular $\operatorname{Out}(M) = \operatorname{Aut}(M) / \operatorname{Inn}(M)$, the group of outer automorphisms of M.

Theorem (Popa-V, 2021)

The following Polish groups arise as Out(M) for a full II₁ factor M.

- All closed subgroups of the Polish group $Sym(\mathbb{N})$ of all permutations of \mathbb{N} .
- Unitary groups $\mathcal{U}(N)$ of von Neumann algebras.
- Locally compact, totally disconnected groups.
- Compact groups.

 \longrightarrow Wide open: intrinsic characterization of Polish groups that arise as Out(M).

Complete intervals in $(II_1, \hookrightarrow_s)$

- ▶ A family of II₁ factors $(M_i)_{i \in I}$ indexed by a partially ordered set (I, \leq) ;
- ► $M_i \hookrightarrow_s M_j$ if and only if $i \le j$;
- ▶ if N as any II₁ factor and $M_i \hookrightarrow_s N \hookrightarrow_s M_j$, there is a unique $k \in I$ and t > 0 with $N \cong M_k^t$ and $i \le k \le j$.

Lattice: partially ordered set (I, \leq) with supremum $a \lor b$ and infimum $a \land b$.

Theorem (Popa-V, 2021)

We concretely realize any finite lattice as a complete interval in $(II_1, \hookrightarrow_s)$.

More generally: any separable, algebraic lattice.

Example: $(M_k)_{k \in \mathbb{Z} \cup \{\pm \infty\}}$ such that if N is **arbitrary** and $M_{-\infty} \hookrightarrow_s N \hookrightarrow_s M_{+\infty}$, then $N \cong M_k^t$.

About the proofs: generalized Bernoulli crossed products

Data: a trace preserving group action $\Gamma \curvearrowright^{\alpha} (A_0, \tau)$.

Tensor product: $(A, \tau) = (A_0, \tau)^{\Gamma}$ with "coordinates" $\pi_k : A_0 \to A$.

Bernoulli action: $\Gamma \times \Gamma \curvearrowright^{\sigma} (A, \tau)$ by $\sigma_{(g,h)}(\pi_k(a)) = \pi_{gkh^{-1}}(\alpha_g(a))$.

Crossed product: $M(\Gamma, \alpha) = A \rtimes (\Gamma \times \Gamma)$.

Assumptions: Γ is a free product of amenable groups (or Γ belongs to the wider class of ...)

- Assume that $\theta: M(\Lambda, \beta) \to M(\Gamma, \alpha)^d$ is an embedding.
- After unitary conjugacy, θ(L(Λ × Λ)) ⊂ L(Γ × Γ)^d : Popa's malleable deformation and spectral gap rigidity.
- ► The **height** of this embedding is positive. Deduce that θ is "group-like" on $\Lambda \times \Lambda$.
- End-game.

About the proofs: embeddings of group von Neumann algebras

- **Height:** for $v \in U(L(\Gamma))$, the height is $h_{\Gamma}(v) = \sup_{g \in \Gamma} |\tau(vu_g^*)|$.
- For a subgroup $\mathcal{G} \subset \mathcal{U}(L(\Gamma))$, we have $h_{\Gamma}(\mathcal{G}) = \inf_{v \in \mathcal{G}} h_{\Gamma}(v)$.

Theorem (Ioana-Popa-V, 2010)

Let Λ and Γ be icc groups and $\theta : L(\Lambda) \to L(\Gamma)$ a *-isomorphism.

Then the following are equivalent.

- $\blacktriangleright h_{\Gamma}(\theta(\Lambda)) > 0.$
- ► There exists $V \in \mathcal{U}(L(\Gamma))$ such that $V \theta(u_g) V^* = \omega(g) u_{\delta(g)}$ for all $g \in \Lambda$, with $\delta : \Lambda \to \Gamma$ a group isomorphism and $\omega : \Lambda \to \mathbb{T}$ a character.

→ Key result in [Popa-V, 2021]: a generalization to embeddings, also involving amplifications, $L(Λ) \hookrightarrow L(Γ)^d$.