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Inclusions

Here are the objects of interest in today’s talk.

Definition
An inclusion is a pair of C∗-algebras (C,D) with D ⊆ C and D

abelian.

Definition
The inclusion (C,D)

is a MASA inclusion if D is a MASA in C;

has the approximate unit property (AUP) if D contains an
approximate unit for C.

is regular if the set of normalizers
N(C,D) := {v ∈ C : vDv∗ ∪ v∗Dv ⊆ D}

has dense span in C;

is singular if N(C,D) = D.
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Cartan Inclusions

Among the nicest inclusions are Cartan inclusions.

Definition (Renault)

(C,D) is a Cartan inclusion if
(C,D) is a regular MASA inclusion;
∃ a faithful conditional expectation E : C→ D; and
(C,D) has the AUP.

Renault introduced these as a C∗-analog of Cartan MASA
in W ∗-algebras (Feldman-Moore); Cartan incln’s extend
theory of C∗-diagonals (Kumjian). Cartan inclusions have a
groupoid model which makes them “fancy matrix algebras”.
Renault included the AUP condition in definition b/c the
groupoid models have it & it appears needed due to
examples similar to those I’ll discuss now.
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Some Examples With & Without AUP

Examples

Let H = L2(T) with o.n. basis {ζn}n∈Z where ζn(z) = zn, put

M := {multiplication op’s on B(H) by f ∈ C(T) : f (1) = 0}
Da := span{ζnζ

∗
n : n ∈ Z} (the subscript in Da denotes “atomic”).

Then (M + K(H),Da) and (M + K(H),M) are MASA
inclusions, but

1 (M + K(H),Da) does not have AUP and is neither regular
nor singular,

2 (M + K(H),M) has the AUP and is singular.

A modification of (2) gives a singular MASA incl’n w/o AUP:
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Example: A Singular MASA Inclusion Without the AUP

With M and H as above, let {ξk : k ∈ N} ⊆ H \ {0} be dense in
H.
Put pn = projCξn, set P =

⊕
n∈N pn and for T ∈M, let

T̃ =
⊕

n∈N T . Let

D := {T̃ : T ∈M} and C := C∗({P} ∪D).

Fact
(C,D) is a singular MASA inclusion without the AUP.

(If (ũλ) is an a.u. for D, then

‖P − ũλP‖ = sup
n
‖(I − uλ)pn‖ = ‖I − uλ‖ = 1

b/c uλ(1) = 0.)
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Characterizing the AUP for Regular Incl’ns

Proposition

Let (C,D) be an inclusion.
1 (C,D) has AUP⇒ ∀ v ∈ N(C,D), v∗v ∈ D.
2 If (C,D) is regular & v∗v ∈ D ∀ v ∈ N(C,D), then (C,D)

has AUP.
So: a reg. incl’n (C,D) has AUP⇔ v∗v ∈ D∀ v ∈ N(C,D).

The proof is easy:

(1) If (uλ) an a.u. for D & an a.u. for C, then
v∗v = limλ v∗uλv ∈ D.

(2) Let (uλ) be an a.u. for D and v ∈ N(C,D). As v∗v ∈ D, get
‖vuλ − v‖2 = ‖(uλv∗ − v∗)(vuλ − v)‖ → 0.

By regularity, (uλ) an a.u. for C.
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A Commutation Result

For a general incl’n (C,D) and v ∈ N(C,D), v∗v may not belong
to D (e.g. when D is a proper ideal of C = C0(R)). However,

Proposition (The Commutation Prop’n)

Let (C,D) be any inclusion, v ∈ N(C,D). Then for every d ∈ D,

v∗vd = dv∗v ∈ D and vv∗d = dvv∗ ∈ D.

Also, if ρ1, ρ2 are states on C such that ρ1|D = ρ2|D ∈ D̂, then

ρ1(v∗v) = ρ2(v∗v) & ρ1(vv∗) = ρ2(vv∗).

I’ll sketch the proof, then give a number of consequences.
Proof uses only standard operator theory.
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Sketch of Proof

WLOG assume C ⊆ B(H) & let h = v∗v . Since h ∈ N(C,D),
∀d ∈ D,

(d∗hd)2 = d∗hd d∗hd ∈ D ⇒ d∗hd ∈ D.

For (uλ) an approx unit for D,

Q := sot- lim uλ = projDH & Qd = dQ = d .

Gives QhQ = lim uλhuλ ∈ D′. Also QhQ⊥ = 0 b/c
Q⊥hQhQ⊥ = sot- lim Q⊥(huλh)Q⊥ = 0.

Thus, Qh = hQ = QhQ ∈ D′. Then
dh = d(Qh) = (Qh)d = hd .

• For 0 ≤ f ∈ D, (fh)2 = f 2h2 = hf 2h ∈ D, so fh ∈ D.

• Last statement follows from an application of C.S. inequality:
ρ ∈ S(C) & ρ|D ∈ D̂⇒ ∀ d ∈ D, ρ(dx) = ρ(d)ρ(x).
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Consequence: “Non-commutative Compatifications”

For v ∈ N(C,D), in general (v ,0) /∈ N(C̃, D̃). But

Corollary

Let (C,D) be a MASA incl’n.
1 For v ∈ N(C,D), (v ,0) ∈ N(C̃, D̃) (b/c v∗v ∈ D)
2 Suppose further (C,D) has AUP, B unital and CEB is

essential. Let DB := M(D) ∩B.
Then (B,DB) is a MASA incl’n and N(C,D) ⊆ N(B,DB).

A method for constructing singular MASA inclusions:

Fact (Unital case is in Exel-P-Zarikian, non-unital case uses part (1) of Corollary.)

Suppose (C,D) a MASA inclusion & J E C with J ∩D = (0).
Then (D + J,D) is a singular MASA inclusion.
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Consequence: Dynamical Objects—partial
automorphism

Let (C,D) be any inclusion and fix v ∈ N(C,D).

The Partial Automorphism Associated to v

Let B be an AW ∗-algebra with C ⊆ B and let v = u|v | = |v∗|u be
the polar decomposition of v in B. Then

vv∗D and v∗vD are ideals in D and

the map vv∗d 7→ v∗dv uniquely extends to a ∗-isomorphism
θv : vv∗D→ v∗vD such that for each h ∈ vv∗D,

vθv (h) = hv and u∗hu = θv (h).
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Consequence: Dynamical Objects—partial
homeomorphism

Dually, have

The Partial Homeomorphism Associated to v

The sets dom v := {σ ∈ D̂ : σ(v∗vD) 6= 0} and
range v := {σ ∈ D̂ : σ(vv∗D) 6= 0} are open subsets of D̂ and ∃
a homeomorphism βv : dom v → range v such that for every
h ∈ vv∗D and σ ∈ dom v,

βv (σ)(h) = σ(θv (h)).

For σ ∈ dom v, define σ(v∗v) := ρ(v∗v), where ρ is any
extension of σ to a state on C. Then σ(v∗v) 6= 0 and for d ∈ D,

βv (σ)(d) =
σ(v∗dv)

σ(v∗v)
.
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Consequence: Reg. MASA Incl’ns have AUP

Corollary

If (C,D) is a regular MASA inclusion, then (C,D) has the AUP.

Proof.
For v ∈ N(C,D), commutation prop’n gives v∗v ∈ D′ ∩ C, so
v∗v ∈ D (b/c D a MASA).
By AUP characterization, (C,D) has AUP.

Remark: If (C,D) is a regular MASA inclusion with C unital ∃!
u.c.p. ∆ : C→ I(D) with ∆|D = id|D (∆ is pseudo-expectation).
When ∆(C) ⊆ D, ∆ is a cond. expectation.
For each

(♣,♥) ∈
{

cond. expectation
not cond. expectation

}
×
{

faithful
not faithful

}
∃ a regular MASA inclusion (C,D) such that ∆ has property ♣
and ♥.
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Simplified Definition of Cartan Inclusions

Since regular MASA inclusions have the AUP, we get:

Simplified Definition of Cartan Inclusion

(C,D) is a Cartan inclusion if
(C,D) is a regular MASA inclusion; and
∃ a faithful cond. expect. E : C→ D.
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What about C∗-Diagonals?

Definition (Kumjian)

A normalizer v ∈ N(C,D) is free if v2 = 0.
Nf (C,D) := {free normalizers}

Definition
An inclusion (C,D) satisfies Kumjian’s Conditions if:

(I) ∃ a faithful conditional expectation E : C→ D; and
(II) kerE = spanNf (C,D).

Definition (Kumjian)

The incl’n (C,D) is a C∗-diagonal if when
C unital, (C,D) satisfies Kumjian’s conditions;

C non-unital, the unitization (C̃, D̃) satisfies Kumjian’s
conditions.
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Unital C∗-Diagonals & Extension Property

In unital setting, C∗-diagonals are Cartan inclusions with
extension property:

Fact A (⇒ due to Kumjian, converse due to ?)

When C UNITAL, (C,D) a C∗-diagonal⇔ (C,D) is Cartan & has
extension property, i.e. ∀σ ∈ D̂, ∃!σ′ ∈ S(C) with σ′|D = σ.

Having Fact A in the non-unital context would lead to
streamlined def’n of C∗-diagonals.
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Consequence: Free Normalizers

Corollary

Suppose v ∈ Nf (C,D) and ρ a state on C s.t. ρ|D ∈ D̂. Then

ρ(v) = 0.

Proof.
Let d ∈ D such that ρ(d) = 1. Since v∗vd ,dvv∗ ∈ D

ρ(v∗v)ρ(vv∗) = ρ(dv∗v)ρ(vv∗d) = ρ(dv∗vvv∗d) = 0.

By Cauchy-Schwartz,
|ρ(v)|2 ≤ min{ρ(v∗v), ρ(vv∗)} = 0.
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Consequence: Characterizations of Kumjian’s
Conditions

Corollary on Nf (C,D) leads to:

Proposition
Suppose C not unital. TFAE

1 (C,D) satisfies Kumjian’s conditions.
2 (C,D) is a Cartan inclusion such that every pure state of D

has a unique extension to a state on C.
3 (C,D) is a Cartan inclusion such that every pure state of D

has a unique extension to a state on C and no pure state of
C annihilates D (e.g. has Archbold-Bunce-Gregson’s E.P.).

4 (C̃, D̃) is a Cartan inclusion such that every pure state of D
extends uniquely to a state on C.

5 (C̃, D̃) satisfies Kumjian’s conditions.
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On the Definition of C∗-Diagonal

Fact A for non-unital case is (1)⇔ (2) in previous prop’n, so
restating, we have:

Streamlined Definition of C∗-Diagonal

Whether unital or not, (C,D) a C∗-diagonal if
1 (C,D) satisfies Kumjian’s conditions; or equivalently,
2 (C,D) is a Cartan inclusion such that every pure state on

D extends uniquely to a state on C.
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Consequence: Unitizations of C∗-Diagonals

(1)⇔(5) of previous Proposition gives,

Fact
Let (C,D) be an inclusion with C non-unital. Then (C,D) a
C∗-diagonal⇔ (C̃, D̃) is a C∗-diagonal.

What about Cartan inclusions? NOT TRUE!

Example ((C̃, D̃) Cartan 6⇒ (C,D) Cartan)

Let C = C∗(S) (Toeplitz Alg), D = C∗({SnS∗n ∪ {I}) &
q : C� C/K = C(T). For λ ∈ T, let τλ(x) = q(x)(λ), note τλ
multiplicative. Put

Cλ = ker τλ, Dλ = ker τλ ∩D = Cλ ∩D.

Then (Cλ,Dλ) a MASA incl’n, but doesn’t have AUP (b/c
S − λI /∈ K), so (Cλ,Dλ) not regular. Thus (Cλ,Dλ) not Cartan,
but (C̃λ, D̃λ) ' (C,D) is Cartan.
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Consequence: Unitization of Cartan Inclusions

Adding the hypothesis of regularity we get:

Fact
Let (C,D) be a regular inclusion with C non-unital. Then (C,D)
a Cartan inclusion⇔ (C̃, D̃) a Cartan inclusion.

Sketch of proof.

(⇐) : Let (C̃, D̃) be Cartan with cond. expect E : C̃→ D̃.
Then (C,D) a regular MASA incl’n, so has AUP
As E is a D-module map, AUP gives E(C) = D.
Define E = E|C to get faithful cond. expect. of C onto D.

(⇒) : This is routine.
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Consequence: Intermediate Subalgebras

Intermediate algebras (maybe nonselfadjoint) have AUP:

Corollary

Suppose (C,D) a reg. MASA incl’n, and A a norm-closed alg
with D ⊆ A ⊆ C. Then (A,D) has AUP.
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A Problem: Intermediate Subalgebras

Question
When is an incl’n (C,D) intermediate to a regular MASA
inclusion (i.e. D ⊆ C ⊆ B, where a (B,D) reg. MASA incl’n)?

A unital, regular MASA inclusion (B,D) has the unique
pseudo-expectation property (i.e. ∃! u.c.p. map E : B→ I(D)
with E |D = id). This passes to intermediate inclusions, so we
get

Necessary Conditions

(C,D) has the AUP
(C̃, D̃) has the unique pseudo-expectation property
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An Interesting Example

Example (Based on an example in Exel-P-Zarikian)
Fix n ≥ 3, Γ = SLn(Z) acting on Tn = Rn/Zn by matrix multiplication,
µ normalized Haar meas on Tn. On H = L2(Tn, µ), let
(Usf )(t) = f (s−1 · t) & let

D := {multiplication op’s by f ∈ C(Tn)} & C := C∗(D, {Us}s∈Γ).

Then

(C,D) a reg. MASA incl’n (mostly b/c action of Γ on Tn is top.
free);

Γ has prop. (T)⇒ K(H) ⊆ C (Chau-Lau-Rosenblatt).

So D ⊆ D + K(H) ⊆ C, i.e.
(D + K(H),D) a singular MASA incl’n intermediate to a reg. MASA
incl’n.

Also, ∃ free action of Γ on Cantor set admitting inv. measure (Elek,
’21)⇒ ∃ incl’n (Cκ,Dκ) having ext. property & K ⊆ kerE.
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A Related Example

Minor modifications to previous example give:

Example (E-P-Z)

Let D ⊆ B(H) be a non-atomic MASA. Set
C0 = spanN(B(H),D) and C = spanN(B(H),D). Then

1 (C,D) has the pure state extension property;
2 C0 ∩K(H) = (0); but
3 K(H) ⊆ C.

Thus: (D + K(H),D) is a singular MASA inclusion intermediate
to a regular MASA inclusion (C,D) having extension prop.

Remark: Item (3) affirmatively answers a question raised by
Paulsen & Katavolos in On ranges of bimodule projections
Canad. Math. Bull. 2005.
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A Test Question

Do these kinds of examples work more generally?

Test Question
If D ⊆ B(H) & D′′ a non-atomic MASA, when is (D + K(H),D)
an intermediate inclusion? (D not assumed unital.)

A Concrete Case: If C(T) acts on L2(T) as multiplication op’s,
and DE C(T) is an essential ideal, is (D + K(L2(T)),D) an
intermediate incl’n?

Note: The necessary conditions hold in test question setting.
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No MASA in B(H) is Intermediate

Theorem
Suppose dimH = ℵ0 & D is a MASA in B(H). Then (B(H),D)
is not intermediate to a regular MASA inclusion.

When D HAS A CONTINUOUS PART, there are multiple cond.
expectations (= psuedo-expectations b/c D is injective) of B(H) onto
D, so (B(H),D) not intermediate.
When D an ATOMIC MASA, one shows:
♠ (B(H),D) is not regular;
1 If (B(H),D) is intermediate to a reg. MASA incl’n, then it is

intermediate to a C∗-diagonal;
2 If (B(H),D) intermediate to a C∗-diag (C,D), then K(H) an

essential ideal of C, which forces
B(H) ⊆ C ⊆ M(K(H)) = B(H).

So (B(H),D) intermediate to a reg. MASA incl’n⇒ (B(H),D)
regular, contradicting ♠.
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Comments on ♠

Turns out that ♠ follows from work of Katavolos-Paulsen.

Here’s my very different alternate proof: let
q : B(H)→ B(H)/K(H) be quotient map. Assuming (B(H),D)
is regular, then

(B(H)/K(H),q(D)) is a regular MASA inclusion;
the cond. expect. Ẽ : B(H)/K(H)→ q(D) is not faithful (if
P =

⊕
n ξnξ

∗
n where ξn =

(∑n
j=1 en

)
/n, then E(P) = 0).

So L := {Ṫ ∈ B(H)/K(H) : Ẽ(Ṫ ∗Ṫ ) = 0} is a non-zero ideal,
contradicting simplicity of Calkin alg.

Problem
Find T ∈ B(H) \ spanN(B(H),D).
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Some Behavior of Non-Commutative Compatifications

Desirable properties (e.g. extension property, regularity) may or
may not be preserved under non-comm. compactification.

Example

Let (en) be usual o.n. basis for H := `2(N). Put

D = span{ene∗n : n ∈ N} & C := K(H),

so (C,D) is a C∗-diagonal. The following “compacifications” of
(C,D) exhibit differing behaviors:

1 (C̃, D̃) is a C∗-diagonal.
2 Let S be unilat. shift. Then CE C∗(S) is essential, and

(C∗(S), D̃) is Cartan, but not a C∗-diagonal (EP fails)
3 (M(C),M(D)) = (B(H), `∞) has EP (by recent spectacular

solution of Kadison-Singer), but is not regular.
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More Questions

The previous example suggests the following

Question
Suppose (C,D) is a C∗-diagonal, with C not unital.

1 When is (M(C),M(D)) regular?
2 Must (M(C),M(D)) have the extension property?
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THANK YOU!
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