Normalizers & Approximate Units for Inclusions of *C**-Algebras

David R. Pitts

University of Nebraska-Lincoln

Functional Analysis and Operator Algebras in Athens April 8, 2022

イロト イポト イヨト イヨト

Inclusions

Here are the objects of interest in today's talk.

Definition

An *inclusion* is a pair of C^* -algebras $(\mathbb{C}, \mathcal{D})$ with $\mathcal{D} \subseteq \mathbb{C}$ and \mathcal{D} abelian.

Definition

The inclusion $(\mathcal{C}, \mathcal{D})$

- is a *MASA inclusion* if \mathcal{D} is a MASA in \mathcal{C} ;
- has the *approximate unit property (AUP)* if \mathcal{D} contains an approximate unit for \mathcal{C} .
- is *regular* if the set of *normalizers*

$$\mathbb{N}(\mathbb{C}, \mathbb{D}) := \{ \mathbf{v} \in \mathbb{C} : \mathbf{v} \mathbb{D} \mathbf{v}^* \cup \mathbf{v}^* \mathbb{D} \mathbf{v} \subseteq \mathbb{D} \}$$

has dense span in C;

• is *singular* if $\mathcal{N}(\mathcal{C}, \mathcal{D}) = \mathcal{D}$.

Cartan Inclusions

Among the nicest inclusions are Cartan inclusions.

Definition (Renault)

 $({\mathfrak C},{\mathfrak D})$ is a Cartan inclusion if

- $(\mathfrak{C}, \mathfrak{D})$ is a regular MASA inclusion;
- \exists a faithful conditional expectation $\mathbb{E} : \mathfrak{C} \to \mathfrak{D}$; and
- $(\mathfrak{C}, \mathfrak{D})$ has the AUP.
- Renault introduced these as a C*-analog of Cartan MASA in W*-algebras (Feldman-Moore); Cartan incln's extend theory of C*-diagonals (Kumjian). Cartan inclusions have a groupoid model which makes them "fancy matrix algebras".
- Renault included the AUP condition in definition b/c the groupoid models have it & it appears needed due to examples similar to those I'll discuss now.

Pitts

・ 回 ト ・ ヨ ト ・ ヨ ト

Some Examples With & Without AUP

Examples

Let $\mathcal{H} = L^2(\mathbb{T})$ with o.n. basis $\{\zeta_n\}_{n \in \mathbb{Z}}$ where $\zeta_n(z) = z^n$, put

 $\mathcal{M} := \{ \text{multiplication op's on } \mathcal{B}(\mathcal{H}) \text{ by } f \in C(\mathbb{T}) : f(1) = 0 \}$ $\mathcal{D}_a := \overline{\text{span}} \{ \zeta_n \zeta_n^* : n \in \mathbb{Z} \} \quad \text{(the subscript in } \mathcal{D}_a \text{ denotes "atomic")}.$

Then $(\mathcal{M} + \mathcal{K}(\mathcal{H}), \mathcal{D}_a)$ and $(\mathcal{M} + \mathcal{K}(\mathcal{H}), \mathcal{M})$ are MASA inclusions, but

- (M + K(H), D_a) does not have AUP and is neither regular nor singular,
- 2 $(\mathcal{M} + \mathcal{K}(\mathcal{H}), \mathcal{M})$ has the AUP and is singular.

A modification of (2) gives a singular MASA incl'n w/o AUP:

ヘロン 人間 とくほ とくほ とう

э.

Example: A Singular MASA Inclusion Without the AUP

With \mathcal{M} and \mathcal{H} as above, let $\{\xi_k : k \in \mathbb{N}\} \subseteq \mathcal{H} \setminus \{0\}$ be dense in \mathcal{H} .

Put $p_n = \text{proj } \mathbb{C}\xi_n$, set $P = \bigoplus_{n \in \mathbb{N}} p_n$ and for $T \in \mathcal{M}$, let $\tilde{T} = \bigoplus_{n \in \mathbb{N}} T$. Let

$$\mathfrak{D} := \{ \tilde{T} : T \in \mathfrak{M} \}$$
 and $\mathfrak{C} := C^*(\{ P \} \cup \mathfrak{D}).$

Fact

 $(\mathcal{C}, \mathcal{D})$ is a singular MASA inclusion without the AUP.

(If (\tilde{u}_{λ}) is an a.u. for \mathcal{D} , then

$$\|P - \tilde{u}_{\lambda}P\| = \sup_{n} \|(I - u_{\lambda})p_{n}\| = \|I - u_{\lambda}\| = 1$$

b/c $u_{\lambda}(1) = 0.)$

Characterizing the AUP for Regular Incl'ns

Proposition

Let (\mathbb{C}, \mathbb{D}) be an inclusion.

)
$$(\mathcal{C}, \mathcal{D})$$
 has $AUP \Rightarrow \forall v \in \mathcal{N}(\mathcal{C}, \mathcal{D}), v^*v \in \mathcal{D}.$

If (C, D) is regular & v*v ∈ D∀v ∈ N(C, D), then (C, D) has AUP.

So: a reg. incl'n $(\mathcal{C}, \mathcal{D})$ has AUP $\Leftrightarrow v^*v \in \mathcal{D} \forall v \in \mathcal{N}(C, \mathcal{D})$.

The proof is easy:

(1) If (u_{λ}) an a.u. for \mathcal{D} & an a.u. for \mathcal{C} , then

 $v^*v = \lim_{\lambda} v^*u_{\lambda}v \in \mathcal{D}.$

(2) Let (u_{λ}) be an a.u. for \mathcal{D} and $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$. As $v^*v \in \mathcal{D}$, get $\|vu_{\lambda} - v\|^2 = \|(u_{\lambda}v^* - v^*)(vu_{\lambda} - v)\| \to 0$. By regularity, (u_{λ}) an a.u. for \mathcal{C} .

Pitts

For a general incl'n $(\mathcal{C}, \mathcal{D})$ and $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$, v^*v may not belong to \mathcal{D} (e.g. when \mathcal{D} is a proper ideal of $\mathcal{C} = C_0(\mathbb{R})$). However,

Proposition (The Commutation Prop'n)

Let (\mathbb{C}, \mathbb{D}) be any inclusion, $v \in \mathbb{N}(\mathbb{C}, \mathbb{D})$. Then for every $d \in \mathbb{D}$,

 $v^*vd = dv^*v \in \mathcal{D}$ and $vv^*d = dvv^* \in \mathcal{D}$.

Also, if ρ_1 , ρ_2 are states on \mathcal{C} such that $\rho_1|_{\mathcal{D}} = \rho_2|_{\mathcal{D}} \in \hat{\mathcal{D}}$, then

$$\rho_1(\mathbf{v}^*\mathbf{v}) = \rho_2(\mathbf{v}^*\mathbf{v}) \quad \& \quad \rho_1(\mathbf{v}\mathbf{v}^*) = \rho_2(\mathbf{v}\mathbf{v}^*).$$

I'll sketch the proof, then give a number of consequences. Proof uses only standard operator theory.

イロト イポト イヨト イヨト

ъ

WLOG assume $C \subseteq B(H)$ & let $h = v^* v$. Since $h \in N(C, D)$, $\forall d \in D$,

$(d^*hd)^2 = d^*hd \ d^*hd \in \mathcal{D} \Rightarrow d^*hd \in \mathcal{D}.$

For (u_{λ}) an approx unit for \mathcal{D} ,

 $Q := \text{sot-lim } u_{\lambda} = \text{proj } \overline{\mathcal{DH}} \& Qd = dQ = d.$

Gives $QhQ = \lim u_{\lambda}hu_{\lambda} \in \mathcal{D}'$. Also $QhQ^{\perp} = 0$ b/c $Q^{\perp}hQhQ^{\perp} = \text{sot-}\lim Q^{\perp}(hu_{\lambda}h)Q^{\perp} = 0$. Thus, $Qh = hQ = QhQ \in \mathcal{D}'$. Then dh = d(Qh) = (Qh)d = hd. • For $0 \le f \in \mathcal{D}$, $(fh)^2 = f^2h^2 = hf^2h \in \mathcal{D}$, so $fh \in \mathcal{D}$. • Last statement follows from an application of C.S. inequality:

WLOG assume $C \subseteq B(H)$ & let $h = v^* v$. Since $h \in N(C, D)$, $\forall d \in D$,

$$(d^*hd)^2 = d^*hd \ d^*hd \in \mathcal{D} \Rightarrow d^*hd \in \mathcal{D}.$$

For (u_{λ}) an approx unit for \mathcal{D} ,

 $Q := \text{sot-lim } u_{\lambda} = \text{proj } \overline{\mathcal{DH}} \& Qd = dQ = d.$

Gives $QhQ = \lim u_{\lambda}hu_{\lambda} \in \mathcal{D}'$. Also $QhQ^{\perp} = 0$ b/c $Q^{\perp}hQhQ^{\perp} = \text{sot-}\lim Q^{\perp}(hu_{\lambda}h)Q^{\perp} = 0$. Thus, $Qh = hQ = QhQ \in \mathcal{D}'$. Then dh = d(Qh) = (Qh)d = hd. • For $0 \le f \in \mathcal{D}$, $(fh)^2 = f^2h^2 = hf^2h \in \mathcal{D}$, so $fh \in \mathcal{D}$. • Last statement follows from an application of C.S. inequality:

 $p \in \mathbb{S}(\mathbb{C}) \& \rho|_{\mathbb{D}} \in \hat{\mathbb{D}} \Rightarrow \forall d \in \mathbb{D}, \ \rho(dx) = \rho(d)\rho(x).$

WLOG assume $C \subseteq B(H)$ & let $h = v^* v$. Since $h \in N(C, D)$, $\forall d \in D$,

$$(d^*hd)^2 = d^*hd \ d^*hd \in \mathcal{D} \Rightarrow d^*hd \in \mathcal{D}.$$

For (u_{λ}) an approx unit for \mathcal{D} ,

 $Q := \text{sot-lim } u_{\lambda} = \text{proj } \overline{\mathcal{DH}} \& Qd = dQ = d.$

Gives $QhQ = \lim u_{\lambda}hu_{\lambda} \in \mathcal{D}'$. Also $QhQ^{\perp} = 0$ b/c $Q^{\perp}hQhQ^{\perp} =$ sot- $\lim Q^{\perp}(hu_{\lambda}h)Q^{\perp} = 0$.

Thus, $Qh = hQ = QhQ \in \mathcal{D}'$. Then

dh = d(Qh) = (Qh)d = hd.

• For $0 \le f \in \mathcal{D}$, $(fh)^2 = f^2h^2 = hf^2h \in \mathcal{D}$, so $fh \in \mathcal{D}$.

Last statement follows from an application of C.S. inequality:
 ρ ∈ S(C) & ρ|_D ∈ D̂ ⇒ ∀ d ∈ D, ρ(dx) = ρ(d)ρ(x).

WLOG assume $C \subseteq B(H)$ & let $h = v^* v$. Since $h \in N(C, D)$, $\forall d \in D$,

$$(d^*hd)^2 = d^*hd \ d^*hd \in \mathcal{D} \Rightarrow d^*hd \in \mathcal{D}.$$

For (u_{λ}) an approx unit for \mathcal{D} ,

 $Q := \text{sot-lim } u_{\lambda} = \text{proj } \overline{\mathcal{DH}} \& Qd = dQ = d.$

Gives $QhQ = \lim u_{\lambda}hu_{\lambda} \in \mathcal{D}'$. Also $QhQ^{\perp} = 0$ b/c $Q^{\perp}hQhQ^{\perp} = \text{sot-}\lim Q^{\perp}(hu_{\lambda}h)Q^{\perp} = 0$. Thus, $Qh = hQ = QhQ \in \mathcal{D}'$. Then dh = d(Qh) = (Qh)d = hd.

• For $0 \le f \in \mathcal{D}$, $(fh)^2 = f^2h^2 = hf^2h \in \mathcal{D}$, so $fh \in \mathcal{D}$.

• Last statement follows from an application of C.S. inequality: $\rho \in S(\mathbb{C}) \& \rho|_{\mathcal{D}} \in \hat{\mathcal{D}} \Rightarrow \forall d \in \mathcal{D}, \ \rho(dx) = \rho(d)\rho(x).$

WLOG assume $C \subseteq B(H)$ & let $h = v^* v$. Since $h \in N(C, D)$, $\forall d \in D$,

$$(d^*hd)^2 = d^*hd \ d^*hd \in \mathcal{D} \Rightarrow d^*hd \in \mathcal{D}.$$

For (u_{λ}) an approx unit for \mathcal{D} ,

$$Q := \text{sot-lim } u_{\lambda} = \text{proj } \overline{\mathcal{DH}} \& Qd = dQ = d.$$

Gives $QhQ = \lim u_{\lambda}hu_{\lambda} \in \mathcal{D}'$. Also $QhQ^{\perp} = 0$ b/c $Q^{\perp}hQhQ^{\perp} = \text{sot-}\lim Q^{\perp}(hu_{\lambda}h)Q^{\perp} = 0$. Thus, $Qh = hQ = QhQ \in \mathcal{D}'$. Then dh = d(Qh) = (Qh)d = hd.

- For $0 \le f \in \mathcal{D}$, $(fh)^2 = f^2h^2 = hf^2h \in \mathcal{D}$, so $fh \in \mathcal{D}$.
- Last statement follows from an application of C.S. inequality: $\rho \in S(\mathbb{C}) \& \rho|_{\mathcal{D}} \in \hat{\mathcal{D}} \Rightarrow \forall d \in \mathcal{D}, \ \rho(dx) = \rho(d)\rho(x).$

WLOG assume $C \subseteq B(H)$ & let $h = v^* v$. Since $h \in N(C, D)$, $\forall d \in D$,

$$(d^*hd)^2 = d^*hd \ d^*hd \in \mathcal{D} \Rightarrow d^*hd \in \mathcal{D}.$$

For (u_{λ}) an approx unit for \mathcal{D} ,

$$Q := \text{sot-lim } u_{\lambda} = \text{proj } \overline{\mathcal{DH}} \& Qd = dQ = d.$$

Gives $QhQ = \lim u_{\lambda}hu_{\lambda} \in \mathcal{D}'$. Also $QhQ^{\perp} = 0$ b/c $Q^{\perp}hQhQ^{\perp} = \text{sot-}\lim Q^{\perp}(hu_{\lambda}h)Q^{\perp} = 0$. Thus, $Qh = hQ = QhQ \in \mathcal{D}'$. Then dh = d(Qh) = (Qh)d = hd.

• For $0 \leq f \in \mathcal{D}$, $(fh)^2 = f^2h^2 = hf^2h \in \mathcal{D}$, so $fh \in \mathcal{D}$.

• Last statement follows from an application of C.S. inequality: $\rho \in \mathcal{S}(\mathcal{C}) \& \rho|_{\mathcal{D}} \in \hat{\mathcal{D}} \Rightarrow \forall d \in \mathcal{D}, \ \rho(dx) = \rho(d)\rho(x).$

Consequence: "Non-commutative Compatifications"

For $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$, in general $(v, 0) \notin \mathcal{N}(\tilde{\mathcal{C}}, \tilde{\mathcal{D}})$. But

Corollary

Let $(\mathcal{C}, \mathcal{D})$ be a MASA incl'n.

- For $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$, $(v, 0) \in \mathcal{N}(\tilde{\mathcal{C}}, \tilde{\mathcal{D}})$ (b/c $v^*v \in \mathcal{D}$)
- Suppose further (C, D) has AUP, B unital and C ≤ B is essential. Let D_B := M(D) ∩ B. Then (B, D_B) is a MASA incl'n and N(C, D) ⊂ N(B, D_B).

A method for constructing singular MASA inclusions:

Fact (Unital case is in Exel-P-Zarikian, non-unital case uses part (1) of Corollary.)

Suppose (\mathbb{C}, \mathbb{D}) a MASA inclusion & $J \leq \mathbb{C}$ with $J \cap \mathbb{D} = (0)$. Then $(\mathbb{D} + J, \mathbb{D})$ is a singular MASA inclusion.

・ロト ・厚ト ・ヨト ・ヨト

Consequence: Dynamical Objects—partial automorphism

Let $(\mathcal{C}, \mathcal{D})$ be any inclusion and fix $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$.

The Partial Automorphism Associated to v

Let *B* be an *AW*^{*}-algebra with $C \subseteq B$ and let $v = u|v| = |v^*|u$ be the polar decomposition of *v* in *B*. Then

- $\overline{vv^*\mathcal{D}}$ and $\overline{v^*v\mathcal{D}}$ are ideals in \mathcal{D} and
- the map $vv^*d \mapsto v^*dv$ uniquely extends to a *-isomorphism $\theta_v : \overline{vv^*\mathcal{D}} \to \overline{v^*v\mathcal{D}}$ such that for each $h \in \overline{vv^*\mathcal{D}}$,

$$v\theta_v(h) = hv$$
 and $u^*hu = \theta_v(h)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Consequence: Dynamical Objects—partial homeomorphism

Dually, have

The Partial Homeomorphism Associated to v

The sets dom $v := \{\sigma \in \hat{\mathbb{D}} : \sigma(v^* v \mathcal{D}) \neq 0\}$ and range $v := \{\sigma \in \hat{\mathbb{D}} : \sigma(vv^* \mathcal{D}) \neq 0\}$ are open subsets of $\hat{\mathbb{D}}$ and \exists a homeomorphism $\beta_v : \text{dom } v \to \text{range } v$ such that for every $h \in \overline{vv^* \mathcal{D}}$ and $\sigma \in \text{dom } v$,

$$\beta_{\mathbf{v}}(\sigma)(\mathbf{h}) = \sigma(\theta_{\mathbf{v}}(\mathbf{h})).$$

For $\sigma \in \text{dom } v$, define $\sigma(v^*v) := \rho(v^*v)$, where ρ is any extension of σ to a state on \mathcal{C} . Then $\sigma(v^*v) \neq 0$ and for $d \in \mathcal{D}$,

$$\beta_{\mathbf{v}}(\sigma)(\mathbf{d}) = \frac{\sigma(\mathbf{v}^*\mathbf{d}\mathbf{v})}{\sigma(\mathbf{v}^*\mathbf{v})}.$$

Pitts

ヘロト ヘワト ヘビト ヘビト

ъ

Consequence: Reg. MASA Incl'ns have AUP

Corollary

If (\mathbb{C}, \mathbb{D}) is a regular MASA inclusion, then (\mathbb{C}, \mathbb{D}) has the AUP.

Proof.

For $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$, commutation prop'n gives $v^*v \in \mathcal{D}' \cap \mathcal{C}$, so $v^*v \in \mathcal{D}$ (b/c \mathcal{D} a MASA). By AUP characterization, $(\mathcal{C}, \mathcal{D})$ has AUP.

Remark: If $(\mathcal{C}, \mathcal{D})$ is a regular MASA inclusion with \mathcal{C} unital $\exists !$ u.c.p. $\Delta : \mathcal{C} \to I(\mathcal{D})$ with $\Delta|_{\mathcal{D}} = id|_{\mathcal{D}}$ (Δ is pseudo-expectation). When $\Delta(\mathcal{C}) \subseteq \mathcal{D}$, Δ is a cond. expectation. For each

 $(\clubsuit, \heartsuit) \in \begin{cases} \text{cond. expectation} \\ \text{not cond. expectation} \end{cases} \times \begin{cases} \text{faithful} \\ \text{not faithful} \end{cases}$ $\exists \text{ a regular MASA inclusion } (\mathcal{C}, \mathcal{D}) \text{ such that } \Delta \text{ has property } \clubsuit \\ \text{and } \heartsuit. \end{cases}$

Since regular MASA inclusions have the AUP, we get:

Simplified Definition of Cartan Inclusion

 $(\mathfrak{C}, \mathfrak{D})$ is a Cartan inclusion if

- (𝔅, 𝔅) is a regular MASA inclusion; and
- \exists a faithful cond. expect. $\mathbb{E} : \mathbb{C} \to \mathcal{D}$.

< 同 > < 三 > .

Definition (Kumjian)

A normalizer $v \in N(\mathbb{C}, \mathcal{D})$ is free if $v^2 = 0$. $N_f(\mathbb{C}, \mathcal{D}) := \{ \text{free normalizers} \}$

Definition

An inclusion $(\mathcal{C}, \mathcal{D})$ satisfies Kumjian's Conditions if:

- (I) \exists a faithful conditional expectation $\mathbb{E} : \mathbb{C} \to \mathcal{D}$; and
- (II) ker $\mathbb{E} = \overline{\operatorname{span}} N_f(\mathcal{C}, \mathcal{D})$.

Definition (Kumjian)

The incl'n $(\mathcal{C}, \mathcal{D})$ is a *C*^{*}-diagonal if when

 \mathfrak{C} unital, $(\mathfrak{C}, \mathfrak{D})$ satisfies Kumjian's conditions;

 ${\mathfrak C}$ non-unital, the unitization $(\tilde{{\mathfrak C}},\tilde{{\mathfrak D}})$ satisfies Kumjian's conditions.

Pitts

In unital setting, C^* -diagonals are Cartan inclusions with extension property:

Fact A (\Rightarrow due to Kumjian, converse due to ?)

When \mathcal{C} UNITAL, $(\mathcal{C}, \mathcal{D})$ a C^* -diagonal \Leftrightarrow $(\mathcal{C}, \mathcal{D})$ is Cartan & has extension property, i.e. $\forall \sigma \in \hat{\mathcal{D}}, \exists! \sigma' \in \mathcal{S}(\mathcal{C})$ with $\sigma'|_{\mathcal{D}} = \sigma$.

Having Fact A in the non-unital context would lead to streamlined def'n of C^* -diagonals.

(4回) (1日) (日)

Consequence: Free Normalizers

Corollary

Suppose $v \in N_f(\mathbb{C}, \mathbb{D})$ and ρ a state on \mathbb{C} s.t. $\rho|_{\mathbb{D}} \in \hat{\mathbb{D}}$. Then

 $\rho(v) = 0.$

Proof.

Let $d \in \mathcal{D}$ such that $\rho(d) = 1$. Since v^*vd , $dvv^* \in \mathcal{D}$

$$\rho(\mathbf{v}^*\mathbf{v})\rho(\mathbf{v}\mathbf{v}^*)=\rho(d\mathbf{v}^*\mathbf{v})\rho(\mathbf{v}\mathbf{v}^*d)=\rho(d\mathbf{v}^*\mathbf{v}\mathbf{v}\mathbf{v}^*d)=\mathbf{0}.$$

By Cauchy-Schwartz,

$$|\rho(\mathbf{v})|^2 \leq \min\{\rho(\mathbf{v}^*\mathbf{v}), \rho(\mathbf{v}\mathbf{v}^*)\} = \mathbf{0}.$$

イロト イポト イヨト イヨト

1

Consequence: Characterizations of Kumjian's Conditions

Corollary on $N_f(\mathbb{C}, \mathcal{D})$ leads to:

Proposition

Suppose C not unital. TFAE

- **(** $\mathfrak{C}, \mathfrak{D}$) satisfies Kumjian's conditions.
- (C, D) is a Cartan inclusion such that every pure state of D has a unique extension to a state on C.
- (C, D) is a Cartan inclusion such that every pure state of D has a unique extension to a state on C and no pure state of C annihilates D (e.g. has Archbold-Bunce-Gregson's E.P.).
- (C, D) is a Cartan inclusion such that every pure state of D extends uniquely to a state on C.
- **(** $\tilde{\mathbb{C}}, \tilde{\mathbb{D}}$ **)** satisfies Kumjian's conditions.

Fact A for non-unital case is (1) \Leftrightarrow (2) in previous prop'n, so restating, we have:

Streamlined Definition of C*-Diagonal

Whether unital or not, $(\mathfrak{C}, \mathfrak{D})$ a C*-diagonal if

- (C, D) satisfies Kumjian's conditions; or equivalently,
- (C,D) is a Cartan inclusion such that every pure state on D extends uniquely to a state on C.

▲ @ ▶ ▲ 三 ▶ ▲

Consequence: Unitizations of C*-Diagonals

 $(1) \Leftrightarrow (5)$ of previous Proposition gives,

Fact

Let $(\mathfrak{C}, \mathfrak{D})$ be an inclusion with \mathfrak{C} non-unital. Then $(\mathfrak{C}, \mathfrak{D})$ a C^* -diagonal $\Leftrightarrow (\tilde{\mathfrak{C}}, \tilde{\mathfrak{D}})$ is a C^* -diagonal.

What about Cartan inclusions? NOT TRUE!

Example (($\tilde{\mathbb{C}}, \tilde{\mathbb{D}}$) Cartan \neq (\mathbb{C}, \mathbb{D}) Cartan)

Let $\mathcal{C} = C^*(S)$ (Toeplitz Alg), $\mathcal{D} = C^*(\{S^n S^{*n} \cup \{I\}) \& q : \mathcal{C} \twoheadrightarrow \mathcal{C}/\mathcal{K} = C(\mathbb{T})$. For $\lambda \in \mathbb{T}$, let $\tau_{\lambda}(x) = q(x)(\lambda)$, note τ_{λ} multiplicative. Put

 $\mathcal{C}_{\lambda} = \ker \tau_{\lambda}, \quad \mathcal{D}_{\lambda} = \ker \tau_{\lambda} \cap \mathcal{D} = \mathcal{C}_{\lambda} \cap \mathcal{D}.$

Then $(\mathcal{C}_{\lambda}, \mathcal{D}_{\lambda})$ a MASA incl'n, but doesn't have AUP (b/c $S - \lambda I \notin \mathcal{K}$), so $(\mathcal{C}_{\lambda}, \mathcal{D}_{\lambda})$ not regular. Thus $(\mathcal{C}_{\lambda}, \mathcal{D}_{\lambda})$ not Cartan, but $(\tilde{\mathcal{C}}_{\lambda}, \tilde{\mathcal{D}}_{\lambda}) \simeq (\mathcal{C}, \mathcal{D})$ is Cartan.

Pitts

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Consequence: Unitization of Cartan Inclusions

Adding the hypothesis of regularity we get:

Fact

Let $(\mathfrak{C}, \mathfrak{D})$ be a regular inclusion with \mathfrak{C} non-unital. Then $(\mathfrak{C}, \mathfrak{D})$ a Cartan inclusion $\Leftrightarrow (\tilde{\mathfrak{C}}, \tilde{\mathfrak{D}})$ a Cartan inclusion.

Sketch of proof.

 $(\Leftarrow): \text{Let } (\tilde{\mathbb{C}}, \tilde{\mathcal{D}}) \text{ be Cartan with cond. expect } \mathbb{E}: \tilde{\mathbb{C}} \to \tilde{D}.$

- Then $(\mathcal{C}, \mathcal{D})$ a regular MASA incl'n, so has AUP
- As \mathbb{E} is a \mathcal{D} -module map, AUP gives $\mathbb{E}(\mathcal{C}) = \mathcal{D}$.
- Define *E* = 𝔼|_𝔅 to get faithful cond. expect. of 𝔅 onto 𝔅.
- (\Rightarrow) : This is routine.

・ 同 ト ・ ヨ ト ・

Intermediate algebras (maybe nonselfadjoint) have AUP:

Corollary

Suppose $(\mathcal{C}, \mathcal{D})$ a reg. MASA incl'n, and \mathcal{A} a norm-closed alg with $\mathcal{D} \subseteq \mathcal{A} \subseteq \mathcal{C}$. Then $(\mathcal{A}, \mathcal{D})$ has AUP.

米間 とくほとくほど

Question

When is an incl'n $(\mathcal{C}, \mathcal{D})$ intermediate to a regular MASA inclusion (i.e. $\mathcal{D} \subseteq \mathcal{C} \subseteq \mathcal{B}$, where a $(\mathcal{B}, \mathcal{D})$ reg. MASA incl'n)?

A unital, regular MASA inclusion $(\mathcal{B}, \mathcal{D})$ has the unique pseudo-expectation property (i.e. $\exists !$ u.c.p. map $E : \mathcal{B} \to I(\mathcal{D})$ with $E|_{\mathcal{D}} = id$). This passes to intermediate inclusions, so we get

Necessary Conditions

- (C, D) has the AUP
- $(\tilde{\mathbb{C}}, \tilde{\mathbb{D}})$ has the unique pseudo-expectation property

・ロト ・ 同ト ・ ヨト ・ ヨト

Example (Based on an example in Exel-P-Zarikian)

Fix $n \ge 3$, $\Gamma = SL_n(\mathbb{Z})$ acting on $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ by matrix multiplication, μ normalized Haar meas on \mathbb{T}^n . On $\mathcal{H} = L^2(\mathbb{T}^n, \mu)$, let $(U_s f)(t) = f(s^{-1} \cdot t)$ & let

 $\mathcal{D} := \{ \text{multiplication op's by } f \in C(\mathbb{T}^n) \} \& \mathbb{C} := C^*(\mathcal{D}, \{U_s\}_{s \in \Gamma}).$ Then

- (C, D) a reg. MASA incl'n (mostly b/c action of Γ on Tⁿ is top. free);
- Γ has prop. (T) $\Rightarrow \mathcal{K}(\mathcal{H}) \subseteq \mathcal{C}$ (Chau-Lau-Rosenblatt).

So $\mathcal{D} \subseteq \mathcal{D} + \mathcal{K}(\mathcal{H}) \subseteq \mathcal{C}$, i.e. $(\mathcal{D} + \mathcal{K}(\mathcal{H}), \mathcal{D})$ a singular MASA incl'n intermediate to a reg. MASA incl'n.

Also, \exists free action of Γ on Cantor set admitting inv. measure (Elek, '21) $\Rightarrow \exists$ incl'n ($\mathfrak{C}_{\kappa}, \mathfrak{D}_{\kappa}$) having ext. property & $\mathfrak{K} \subseteq \ker \mathbb{E}$.

ヘロン ヘアン ヘビン ヘビン

3

Minor modifications to previous example give:

Example (E-P-Z)

Let $\mathfrak{D} \subseteq \mathfrak{B}(\mathfrak{H})$ be a non-atomic MASA. Set

- $\mathfrak{C}_0=\text{span}\,\mathbb{N}(\mathbb{B}(\mathbb{H}),\mathfrak{D})\text{ and }\mathfrak{C}=\overline{\text{span}}\,\mathbb{N}(\mathbb{B}(\mathbb{H}),\mathfrak{D}).$ Then
 - $(\mathfrak{C},\mathfrak{D})$ has the pure state extension property;

2
$$\mathfrak{C}_0 \cap \mathfrak{K}(\mathfrak{H}) = (0);$$
 but

Thus: $(\mathfrak{D} + \mathfrak{K}(\mathfrak{H}), \mathfrak{D})$ is a singular MASA inclusion intermediate to a regular MASA inclusion $(\mathfrak{C}, \mathfrak{D})$ having extension prop.

Remark: Item (3) affirmatively answers a question raised by Paulsen & Katavolos in *On ranges of bimodule projections* Canad. Math. Bull. 2005.

イロト イポト イヨト イヨト

Do these kinds of examples work more generally?

Test Question

If $D \subseteq B(H)$ & D'' a non-atomic MASA, when is (D + K(H), D) an intermediate inclusion? (D not assumed unital.)

A Concrete Case: If $C(\mathbb{T})$ acts on $L^2(\mathbb{T})$ as multiplication op's, and $\mathbb{D} \trianglelefteq C(\mathbb{T})$ is an essential ideal, is $(\mathbb{D} + \mathcal{K}(L^2(\mathbb{T})), \mathbb{D})$ an intermediate incl'n?

Note: The necessary conditions hold in test question setting.

イロト イポト イヨト イヨト

No MASA in $\mathcal{B}(\mathcal{H})$ is Intermediate

Theorem

Suppose dim $\mathcal{H} = \aleph_0 \& \mathcal{D}$ is a MASA in $\mathcal{B}(\mathcal{H})$. Then $(\mathcal{B}(\mathcal{H}), \mathcal{D})$ is not intermediate to a regular MASA inclusion.

When \mathcal{D} HAS A CONTINUOUS PART, there are multiple cond. expectations (= psuedo-expectations b/c \mathcal{D} is injective) of $\mathcal{B}(\mathcal{H})$ onto \mathcal{D} , so $(\mathcal{B}(\mathcal{H}), \mathcal{D})$ not intermediate. When \mathcal{D} an ATOMIC MASA, one shows:

- ($\mathfrak{B}(\mathfrak{H}), \mathfrak{D}$) is not regular;
- If (B(H), D) is intermediate to a reg. MASA incl'n, then it is intermediate to a C*-diagonal;
- If (B(H), D) intermediate to a C*-diag (C, D), then K(H) an essential ideal of C, which forces
 B(H) ⊆ C ⊆ M(K(H)) = B(H).

So $(\mathcal{B}(\mathcal{H}), \mathcal{D})$ intermediate to a reg. MASA incl'n $\Rightarrow (\mathcal{B}(\mathcal{H}), \mathcal{D})$ regular, contradicting \blacklozenge .

ъ

Turns out that A follows from work of Katavolos-Paulsen.

Here's my very different alternate proof: let $q: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ be quotient map. Assuming $(\mathcal{B}(\mathcal{H}), \mathcal{D})$ is regular, then

- $(\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H}), q(\mathcal{D}))$ is a regular MASA inclusion;
- the cond. expect. $ilde{\mathbb{E}}: \mathbb{B}(\mathcal{H})/\mathcal{K}(\mathcal{H}) o q(\mathcal{D})$ is not faithful (if

$$P = \bigoplus_n \xi_n \xi_n^*$$
 where $\xi_n = \left(\sum_{j=1}^n e_n\right)/n$, then $\mathbb{E}(P) = 0$).

So $\mathcal{L} := \{ \dot{\mathcal{T}} \in \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H}) : \tilde{\mathbb{E}}(\dot{\mathcal{T}}^* \dot{\mathcal{T}}) = 0 \}$ is a non-zero ideal, contradicting simplicity of Calkin alg.

Problem

Find $T \in \mathcal{B}(\mathcal{H}) \setminus \overline{\text{span}} \mathcal{N}(\mathcal{B}(\mathcal{H}), \mathcal{D})$.

ヘロト ヘワト ヘビト ヘビト

Some Behavior of Non-Commutative Compatifications

Desirable properties (e.g. extension property, regularity) may or may not be preserved under non-comm. compactification.

Example

Let (e_n) be usual o.n. basis for $\mathcal{H} := \ell^2(\mathbb{N})$. Put

$$\mathcal{D} = \overline{\text{span}} \{ e_n e_n^* : n \in \mathbb{N} \} \quad \& \quad \mathcal{C} := \mathcal{K}(\mathcal{H}),$$

so $(\mathcal{C}, \mathcal{D})$ is a C^* -diagonal. The following "compacifications" of $(\mathcal{C}, \mathcal{D})$ exhibit differing behaviors:

- $(\tilde{\mathbb{C}}, \tilde{\mathbb{D}})$ is a C^* -diagonal.
- 2 Let S be unilat. shift. Then $\mathbb{C} \trianglelefteq C^*(S)$ is essential, and $(C^*(S), \tilde{D})$ is Cartan, but not a C^* -diagonal (EP fails)

Pitts

③ $(M(\mathcal{C}), M(\mathcal{D})) = (\mathcal{B}(\mathcal{H}), \ell^{\infty})$ has EP (by recent spectacular solution of Kadison-Singer), but is not regular.

イロト イポト イヨト イヨト

The previous example suggests the following

Question

Suppose $(\mathcal{C}, \mathcal{D})$ is a C^{*}-diagonal, with \mathcal{C} not unital.

• When is $(M(\mathcal{C}), M(\mathcal{D}))$ regular?

2 Must $(M(\mathcal{C}), M(\mathcal{D}))$ have the extension property?

イロト イポト イヨト イヨト

THANK YOU!