The Lifting Property for C^* -algebras

Gilles Pisier Texas A&M University and Université Paris-Sorbonne

Functional Analysis and Operator Algebras Athens, March 11 2022

.

Let me start by setting the stage by defining the **lifting problems** we wish to discuss:

Let C a C*-algebra. Let C/\mathcal{I} be a quotient C*-algebra. Let A be another C*-algebra.

LIFTING

Local Lifting Problem :

Discussion: contractions, positive contractions, global case open vNa: $C^{**} = \mathcal{I}^{**} \oplus (C/\mathcal{I})^{**}$

Let A be a unital C^* -algebra.

Definition

A (separable) has the lifting property (LP in short) if $\forall C/\mathcal{I}$, $\forall u : A \to C/\mathcal{I}$ u.c.p. $\exists \hat{u} : A \to C$ u.c.p. lifting u

C (There is also a non-separable variant)

Definition

A has the local lifting property (LLP in short) if $\forall C/\mathcal{I}$ $\forall u : A \to C/\mathcal{I}$ u.c.p. *u* is **locally liftable** i.e. $\forall E \subset A$ f.d. op. sys. $u_{|E} : E \to C/\mathcal{I}$ admits a u.c.p. lifting $u^E : E \to C$.

In the general case, we say A has LP (resp. LLP) if its unitization does

Open Problem (Kirchberg 1993) :

 $\mathsf{LLP} \Rightarrow \mathsf{LP} ?$

(in the separable case)

Partial Motivation :

If the Connes embedding problem has a positive ¹ solution then (Kirchberg) the LLP implies the LP

¹A recent paper entitled MIP* = RE posted on arxiv in Jan. 2020 by Ji, Natarajan, Vidick, Wright, and Yuen contains a negative solution \mathbb{R}

Examples of C*-algebras with LP

Nuclear C*-algebras (Choi-Effros 1977)
 (Typically: C*(G) for G amenable countable discrete group)

• $C^*(\mathbb{F}_N)$ where \mathbb{F}_N is a free group $(2 \le N \le \infty)$ (Kirchberg, 1994)

Both have the LP

Remark (digression): If $C_{\lambda}(G)$ is QWEP (no counterexample known) then

 $C_{\lambda}(G)$ LLP \Leftrightarrow G amenable

In particular $C_{\lambda}(\mathbb{F}_N)$ fails LLP for $N \geq 2$

CLASSICAL FACT: Any separable unital A can be written as $A = C^*(\mathbb{F}_{\infty})/\mathcal{I}$ for some ideal \mathcal{I}

Therefore it suffices to consider the lifting problem for

$${\mathcal C}={\mathcal C}^*({\mathbb F}_\infty)$$
 and ${\mathit u}={\mathit Id}:{\mathcal A} o {\mathcal C}/{\mathcal I}$

Definition (Equivalent definition)

A has the LP if any unital *-homomorphism $u : A \to C/\mathcal{I}$ is **liftable**, i.e. admits a u.c.p. lifting $\hat{u} : A \to C$.

Definition (Equivalent definition)

A separable C*-algebra A has the LLP if any unital *-homomorphism $u: A \to C/\mathcal{I}$ is **locally liftable**, i.e. for any $E \subset A$ f.d. operator system the restriction $u_{|E}: E \to C/\mathcal{I}$ admits a u.c.p. lifting $u^E: E \to C$. Let us say that a discrete group G has LP if $C^*(G)$ does. Note:

```
\{amenable\} \cup \{free groups\} \subset \{LP\}
```

 \rightarrow not so easy to find counterexamples !

Open Problem Does $\mathbb{F}_2\times\mathbb{F}_2$ (or a product of free groups) have the LP or the LLP ?

Counter-examples to LP: Property (T)

Among $C^*(G)$ for G discrete group (reduced case easier) All counterexamples are **Kazhdan property (T) groups** Ozawa (PAMS 2004): $\exists G$ with $C^*(G)$ failing LP Thom (2010) produced an explicit example with $C^*(G)$ failing LLP Ioana, Spaas and Wiersma (2020) showed

Theorem (ISW 2020)

For $G = SL(n, \mathbb{Z})$ for $n \ge 3$ $C^*(G)$ fails LLP.

Still open for general (T) groups

They also showed:

Theorem (ISW 2020)

If $C^*(G)$ has (T) and is NOT finitely presented then $C^*(G)$ fails LP. Moreover: There are uncountably many such groups

```
Originating in Japan in the late 1950's
Turumaru, then
Takesaki (1958), Guichardet (1965),
Lance (1973)
Choi-Effros, Kirchberg (1976-7)
Effros-Lance (1977)
Archbold-Batty (1980) Effros-Haagerup (1985)
Kirchberg (1993) ···
```

Minimal and a maximal tensor product denoted respectively by $A \otimes_{\min} B$ and $A \otimes_{\max} B$. These are obtained by completing the algebraic $A \otimes B$ with respect to the minimal and maximal C^* -norms $\| \|_{\min}$ or $\| \|_{\max}$ When $A \subset B(H)$ and $B \subset B(K)$ then

 $\forall t \in A \otimes B \quad ||t||_{\min} = ||t||_{B(H \otimes_2 K)} \text{ "spatial norm"}$ $\forall t \in A \otimes B \quad ||t||_{\max} = \sup\{||\pi \cdot \sigma(t)||_{B(\mathcal{H})} \mid \pi, \sigma \text{ with commuting ranges}\}$ where sup runs over all \mathcal{H} 's and all pairs (π, σ) of *-homomorphisms

Effros-Lance 1977: If A is a vNa : $(t \in A \otimes B)$

 $||t||_{nor} = \sup\{||\pi \cdot \sigma(t)||_{B(\mathcal{H})} | \pi \text{ normal }, \sigma \text{ with commuting ranges}\}$ If A and B are both vNa :

 $\|t\|_{\text{bin}} = \sup\{\|\pi \cdot \sigma(t)\|_{\mathcal{B}(\mathcal{H})} \mid \pi, \sigma \text{ both normal with commuting ranges}\}$

 $(A^{**} \otimes_{\text{bin}} B^{**}) \subset (A \otimes_{\max} B)^{**}$ isometrically

Let A, C be C^* -algebras for any C^* -norm || || on $A \otimes C$ (algebraic)

 $\| \|_{\min} \le \| \| \le \| \|_{\max}$

After Completions: $A \otimes_{\min} C$ and $A \otimes_{\max} C$ **Def:** A is nuclear if $A \otimes_{\min} C = A \otimes_{\max} C$ for any C

 $A \otimes_{\mathsf{max}} [C/\mathcal{I}] = [A \otimes_{\mathsf{max}} C] / [A \otimes_{\mathsf{max}} \mathcal{I}] \quad \text{``projectivity''}$

 $\forall B \subset C$ $A \otimes_{\min} B \subset A \otimes_{\min} C$ "injectivity"

Let A, C be C^* -algebras for any C^* -norm || || on $A \otimes C$ (algebraic)

 $\| \ \|_{\min} \le \| \ \| \le \| \ \|_{\max}$

After Completions: $A \otimes_{\min} C$ and $A \otimes_{\max} C$ A is nuclear if $A \otimes_{\min} C = A \otimes_{\max} C$ for any C

 $A \otimes_{\min} [C/\mathcal{I}] \neq [A \otimes_{\min} C]/[A \otimes_{\min} \mathcal{I}]$

$$\forall B \subset C \qquad A \otimes_{\mathsf{max}} B \not\subset A \otimes_{\mathsf{max}} C$$

Theorem

Let A be a C*-algebra

A has LLP
$$\, \Leftrightarrow A \otimes_{\mathsf{min}} B(\ell_2) = A \otimes_{\mathsf{max}} B(\ell_2)$$

A has LLP
$$\Leftrightarrow A \otimes_{\min} \mathbb{B} = A \otimes_{\max} \mathbb{B}$$

where

$$\mathbb{B}=(\oplus\sum_{n\geq 1}M_n)_{\infty}.$$

(often denoted $\prod_{n>1} M_n$ in C^{*}-literature)

Stability properties

- LP and LLP are stable under (finite) direct sums (easy)
- LP and LLP are stable under extensions
- LLP stable under (maximal) free products of arbitrary family (P. 1996)
- LP stable under (maximal) free products of arbitrary family (Boca 1996, easy by Boca 1991) Indeed, if A_i ($i \in I$) is such that id_{A_i} is liftable up in $C_i = C(\mathbb{F}_{\infty})$

Boca 1991: u_i u.c.p. $\Rightarrow *_{i \in I} u_i$ u.c.p.

$$id_A: A \xrightarrow{u} C \xrightarrow{v} A$$

If id_A factors through C with decomposable maps u, v then

$$C \ LP \ (resp. \ LLP) \Rightarrow \ A \ LP \ (resp. \ LLP)$$

* * * * * * * * * * * * * * *

LLP stable under closure of union of arbitrary nested family $A = \overline{\cup A_i}$ (easy using $\mathbb{B} \otimes_{\min} A = \mathbb{B} \otimes_{\max} A$) \rightarrow analogue unclear for LP

New Characterization of LP for a C^* -algebra A

For any family $(D_i)_{i \in I}$ of C^* -algebras and any $t \in \ell_{\infty}(\{D_i\}) \otimes A$ we have

$$(*) ||t||_{\ell_{\infty}(\{D_i\})\otimes_{\max}A} \leq \sup_{i\in I} ||t_i||_{D_i\otimes_{\max}A}$$

where $t_i = (p_i \otimes Id_A)(t)$ with $p_i : \ell_{\infty}(\{D_i\}) \to D_i$ denoting the *i*-th coordinate projection.

In other words we have a natural isometric embedding

$$(*) \qquad \qquad \ell_{\infty}(\{D_i\}) \otimes_{\max} A \subset \ell_{\infty}(\{D_i \otimes_{\max} A\}).$$

More precisely $\ell_{\infty}(\{D_i\}) \otimes_{\max} A$ can be identified with the closure of $\ell_{\infty}(\{D_i\}) \otimes A$ (algebraic tensor product) in $\ell_{\infty}(\{D_i \otimes_{\max} A\})$.

Main result: $LP \Leftrightarrow (*)$

Remark: (*) is always true for the min-norm

Let $E \subset A$ (closed **linear** subspace), A, D C^* -algebras We denote (abusively)

$$D \otimes_{\mathsf{max}} E = \overline{D \otimes E}^{\| \cdot \|_{\mathsf{max}}} \subset D \otimes_{\mathsf{max}} A$$

or

$$E \otimes_{\max} D = \overline{E \otimes D}^{\| \|_{\max}} \subset A \otimes_{\max} D$$

equipped with induced max-norm

(*)
$$\ell_{\infty}(\{D_i\}) \otimes_{\max} A \subset \ell_{\infty}(\{D_i \otimes_{\max} A\}).$$

Proposition

 $LP \Rightarrow (*)$

Sketch of Proof Using $A = C^*(\mathbb{F}_{\infty})/\mathcal{I}$: Reduce to the case when $A = C^*(\mathbb{F}_{\infty})$. Let

$$E_N = \operatorname{span}[1, U_1, \cdots, U_{N-1}] \subset A = C^*(\mathbb{F}_\infty)$$

 $(U_0=1)$ Enough to show for any N and all $t\in\ell_\infty(\{D_i\})\otimes_{\max}E_N$

$$\|t\|_{\ell_{\infty}(\{D_i\})\otimes_{\max}E_N} \leq \sup_{i\in I} \|t_i\|_{\{D_i\otimes_{\max}E_N\}}.$$

Preliminary fact: $\forall D$, $\forall (x_j)_{0 \leq j \leq n} \in D^{N+1}$

$$\|\sum x_j \otimes U_j\|_{D \otimes_{\max} E_N} = \inf\{\|\sum a_j^* a_j\|^{1/2}\|\sum b_j^* b_j\|^{1/2} \mid x_j = a_j^* b_j\}$$

Then assume

$$\sup_{i\in I} \|\sum x_j(i)\otimes U_j\|_{D_i\otimes_{\max}E_N} < 1$$

$$\Rightarrow x_j(i) = a_j(i)^* b_j(i)$$

with

$$\|\sum_{i} a_{j}(i)^{*} a_{j}(i)\|^{1/2} \|\sum_{i} b_{j}(i)^{*} b_{j}(i)\|^{1/2} < 1$$

now $x_{j} = a_{j}^{*} b_{j}$ with $a_{j} = (a_{j}(i))$ and $b_{j} = (b_{j}(i))$
 $\Rightarrow \|\sum_{i} (x_{j}(i))_{i \in I} \otimes U_{j}\|_{\ell_{\infty}(\{D_{i}\}) \otimes_{\max} E_{N}} \le \|\sum_{i} a_{j}^{*} a_{j}\|^{1/2} \|\sum_{i} b_{j}^{*} b_{j}\|^{1/2} < 1$
QED

Main tool: Maximally bounded maps

Let $E \subset A$ be an operator space (A a C^{*}-algebra) Let D be another C^{*}-algebra. We denote (abusively)

$$D \otimes_{\max} E = \overline{D \otimes E}^{\| \|_{\max}} \subset D \otimes_{\max} A$$

Definition

 $u: E \rightarrow C$ is called maximally bounded if for any C*-algebra D

$$||u||_{mb} := ||Id_D \otimes u : D \otimes_{\max} E \to D \otimes_{\max} C|| < \infty$$

We denote by MB(E, C) the normed space of such u's

Similar definition for maximally positive for E operator system

$$u: A \to C$$

$$u = u_1 - u_2 + i(u_3 - u_4)$$

$$u_j \in CP(A, C) \quad \forall j = 1, 2, 3, 4$$

Haagerup (1985) : Assuming $v(a^*) = v(a)^* \forall a$

 $\|v: A \to B\|_{dec} = \inf\{\|v_1 + v_2\| \mid v = v_1 - v_2, v_1, v_2 \in CP(A, B)\}$

Kirchberg (unpublished) $||u||_{mb} = ||i_C u||_{dec}$

Theorem

Let $E \subset A$ be an operator subspace, $u : E \to C$

 $\|u\|_{mb} = \inf \|\tilde{u}\|_{dec},$

where the infimum runs over all maps $\tilde{u} : A \to C^{**}$ such that $\tilde{u}_{|E} = i_C u$ (infimum attained), where $i_C : C \to C^{**}$ is canonical inclusion

Theorem

The following are equivalent:

- (i) A has the LP
- (ii) A satisfies (*) (for any (D_i))
- (iii) ∀E ⊂ A f.d. ∀C MB(E, C**) ⊂ MB(E, C)** contractively
- (iv) $\forall D \quad D^{**} \otimes_{\max} A \subset (D \otimes_{\max} A)^{**}$ isometrically
- (v) $\forall M \ vNa$ $M \otimes_{max} A = M \otimes_{nor} A$ isometrically
- (vi) For any family $(D_i)_{i \in I}$ of C^{*}-algebras and any ultrafilter on I we have a natural isometric embedding

$$[\prod_{i\in I} D_i/\mathcal{U}] \otimes_{\max} A \subset \prod_{i\in I} [D_i \otimes_{\max} A]/\mathcal{U}.$$

Equivalent properties

- (i) A has the LP
- (ii) A satisfies (*) (for any (D_i))

(iii) $\forall E \subset A \text{ f.d. } \forall C \ MB(E, C^{**}) \subset MB(E, C)^{**} \text{ contractively}$

Proof: main new point is (ii) \Rightarrow (iii) . We set $MB(E, C)^* = C^* \otimes_{\alpha} E$ (recall dim $(E) < \infty$) Then (*) implies a property of α that leads to (iii) Equivalent properties

- (i) A has the LP
- (ii) A satisfies (*) (for any (D_i))
- (iii) $\forall E \subset A \text{ f.d. } \forall C \ MB(E, C^{**}) \subset MB(E, C)^{**} \text{ contractively}$

For (iii) \Rightarrow (i) the proof uses more conventional tools mainly $C^{**} \simeq [C/\mathcal{I}]^{**} \oplus \mathcal{I}^{**}$

Another formulation of

- (iii) $\forall E \subset A \text{ f.d. } \forall C \ MB(E, C^{**}) \subset MB(E, C)^{**} \text{ contractively}$ is :
- (iii)' For any $u \in MB(A, C^{**})$ with $||u||_{mb} \le 1$ there is a net $u_i \in MB(A, C)$ with $||u_i||_{mb} \le 1$ such that $u_i \to u$ pointwise weak*

Tensor Products of *C**-Algebras and Operator Spaces

The Connes–Kirchberg Problem

GILLES PISIER

London Mathematical Society Student Texts **96**

> MATHEMATICAI SOCIETY EST. 1865

Thank you !

CAMBRIDGE