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Motivation

Thanks to the Gelfand-Naimark Theorem, if B an Abelian
C ∗-algebra, B ∼= C0(X ).

Abelian C ∗-algebras can be studied using algebra, analysis, and
topology.

If A not Abelian but B ⊆ A is large and Abelian, we can say a lot
about A by just studying B.

“Large Abelian” for us means Cartan subalgebra.
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Cartan subalgebras in C ∗-algebras

Definition

Let A be a C ∗-algebra. A subalgebra B ⊆ A is Cartan if

1 B is maximal Abelian in A

2 There is a faithful conditional expectation Φ : A → B

Φ(bab′) = bΦ(a)b′ ∀ b, b′ ∈ B; Φ linear, contractive

3 N(B) := {n ∈ A : n∗bn, nbn∗ ∈ B∀b ∈ B} densely spans A

4 B contains an approximate identity for A.

Why important? Existence of a Cartan subalgebra is connected to
the classification program [BL17, Li19].
In many situations (cf. [MM14, BCW17, BNR+16, NR12]), an
(iso)morphism of Cartan subalgebras lifts to one of the larger
algebra.
A Cartan subalgebra gives a dynamical (groupoid) model for A
[Ren08].
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Renault’s Theorem

Theorem (Ren08)

If B ⊆ A is a Cartan subalgebra, then there is a unique
topologically principal étale groupoid G and a twist Σ over G such
that B ∼= C0(G(0)) and A ∼= C ∗

r (G; Σ).

G is often called the Weyl groupoid and Σ is the Weyl twist of the
pair (A,B).

Renault’s result builds on earlier work by Kumjian [Kum86], which
connected principal groupoids with a stricter version of Cartan
subalgebras called C ∗-diagonals.
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Our research question

Non-principal groupoids give rise to C ∗-algebras too!

And sometimes they even have Cartan subalgebras.

In that case, we have two groupoid models for the C ∗-algebra: the
original one, and the Weyl groupoid.

What’s the relationship between these two groupoids?
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What are groupoids?

A groupoid G is a generalization of a group, where every element
has an inverse but multiplication isn’t always defined. Write

G(2) = {(g , h) ∈ G × G composable}
for the set where we can multiply.

Example

1 Groups. G (2) = G × G .

2 Vector bundle V
π→ M: V (2) = {(v ,w) : π(v) = π(w)};

operations are pointwise addition in π−1(x) ∼= Cn.

3 Fundamental groupoid Π(X ) of a space X : homotopy classes
of f : [0, 1] → X . Π(X )(2) = {([f ], [g ]) : f (1) = g(0)};
[f ]−1 = [t 7→ f (1− t)]

4 Transformation groups: Given an action α of a group G on a
space X , X ⋊α G = X × G as a space;

(X ⋊α G )(2) = {((x , g)(y , h)) : αh(y) = x},

(αh(y), g)(y , h) = (y , gh). (x , g)−1 = (αg (x), g
−1).
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Group C ∗-algebras

Recall: for a (discrete) group G , C ∗
r (G ) is generated by the

left-regular representation {λg}g∈G of G on ℓ2(G ): C ∗
r (G ) is the

smallest norm-closed ∗-subalgebra of B(ℓ2(G )) containing
{λg : g ∈ G}.

What’s the left-regular representation? On basis vectors,

λg (δh) = δgh.

Equivalently, if f ∈ ℓ2(G ), λg (f )(h) = f (g−1h).
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Twisted group C ∗-algebras

We also have projective representations of G , associated to a
2-cocycle c : G × G → T.

c(g , h)c(gh, k) = c(g , hk)c(h, k).

C ∗
r (G , c) is generated by {λc

g}g∈G , where

λc
g (δh) = c(g , h)δgh.

Equivalently, for a function f ∈ ℓ2(G ),

λc
g f (h) = f (g−1h)c(g , g−1h).

(The 2-cocycle condition guarantees that λc
gλ

c
h = c(g , h)λc

gh.)
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Motivation for Groupoid C ∗-algebras

If G is a topological groupoid, in that multiplication and inversion
are continuous, we can form C ∗

r (G) ⊆ B(L2(G, µ)).

C ∗
r (G) isn’t generated by a unitary representation of G, generally;

however, if G = G is a group, C ∗
r (G) = C ∗

r (G ).

C ∗
r (X ⋊ G ) = C0(X )⋊r G .

So: C ∗
r (G) is a good substitute for unitary representations of a

groupoid G.

G(0) = {gg−1 : g ∈ G} “space of units”. C0(G(0)) ⊆ C ∗
r (G) is an

Abelian subalgebra.
If G is topologically principal then C0(G(0)) is a Cartan subalgebra.
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Groupoid C ∗-algebras

Given a locally compact Hausdorff groupoid G, represent
Cc(G) ∋ f on L2(G, µ) ∋ ξ by

π(f )ξ(γ) =

∫
η:(γ,η)∈G(2)

f (γη)ξ(η−1)dµ(η).

Check: If G is a group, ξ = δg , f = χh, what is π(f )ξ?

Given γ, need η = γ−1h and η−1 = g . So γ = hg , and

π(χh)δg = δhg .

Note that π(f ) ∈ B(L2(G, µ)) since integration is linear and f was
assumed compactly supported.
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Groupoid C ∗-algebras

Check: π(f )π(g) = π(fg), where

fg(γ) =

∫
η:(γ,η)∈G(2)

f (γη)g(η−1)dµ(η).

In general we don’t have fg = gf , but if f , g ∈ Cc(G(0)) we do.

Proposition

Cc(G(0)) is an Abelian subalgebra of Cc(G).

G(0) is the space of units in that if u ∈ G(0) and (u, γ) ∈ G(2), then
uγ = γ. Similarly, if (η, u) ∈ G(2) then ηu = η.
Proof: If f , g ∈ Cc(G(0)) then

fg(γ) =

∫
η∈G(0)

f (γη)g(η−1) dµ(η)

is nonzero only when γ = η = η−1 is a unit.
That is, fg(u) = f (u)g(u); pointwise multiplication is Abelian. 2
Similarly, π(f )∗ = π(f ∗) where f ∗(γ) = f (γ−1).
Define C ∗

r (G) = π(Cc(G)) ⊆ B(L2(G , µ)).
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Twisted groupoid C ∗-algebras

We can also build C ∗-algebras from projective representations of
groupoids.

A 2-cocycle on G is a function c : G(2) → T such that

c(g , hk)c(h, k) = c(gh, k)c(g , h) ∀ g , h, k ∈ G with (g , h), (h, k) ∈ G(2).

If we take c(g , h) = 1 for all (g , h) ∈ G(2) we get the trivial
2-cocycle. C ∗

r (G, c) = C ∗
r (G).

Usually we assume that if u ∈ G(0) then c(g , u) = c(u, g) = 1
for all g .

Elizabeth Gillaspy Cartan subalgebras in groupoid C∗-algebras



Twisted groupoid C ∗-algebras

Given a locally compact Hausdorff groupoid G with a 2-cocycle c ,
represent Cc(G, c) ∋ f on L2(G, µ) ∋ ξ by

πc(f )ξ(γ) =

∫
η:(γ,η)∈G(2)

f (γη)ξ(η−1)c(γη, η−1)dµ(η).

Check: if G = G , πc(χh)δg = c(h, g)δhg , so πc(χh) = λc
h.

We have πc(f )πc(g) = πc(f ·c g), where

f ·c g(γ) =
∫
η:(γ,η)∈G(2)

f (γη)g(η−1)c(γη, η−1)dµ(η).

Again, Cc(G(0)) is an Abelian subalgebra.

Similarly, πc(f )
∗ = πc(f

∗) where f ∗(γ) = f (γ−1)c(γ, γ−1).

The reduced twisted groupoid C ∗-algebra is
C ∗
r (G, c) = πc(Cc(G, c)) ⊆ B(L2(G , µ)).
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Definitions from Renault’s Theorem

Theorem (Ren08)

If B ⊆ A is a Cartan subalgebra, then there is a unique
topologically principal étale groupoid G and a twist Σ over G such
that B ∼= C0(G(0)) and A ∼= C ∗

r (G; Σ).

G is étale if r , s : G → G(0) are local homeomorphisms; for a group
G, or group action X ⋉ G, this means G is discrete.

G is topologically principal if points with trivial isotropy are dense
in G(0).

{u ∈ G(0) : {γ ∈ G : r(γ) = s(γ) = u} = {u}} = G(0).

If G is a (nontrivial) group, G(0) = {e}, so G is never topologically
principal.
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Motivating example: C ∗
r (Z, cθ)

Our motivating question: Given a non-principal group(oid) G with
a 2-cocycle c , when can we find Cartan subalgebras in C ∗

r (G, c)?

In that case, we have two group(oid) models for the C ∗-algebra.
What’s the relationship between (G, c) and the Weyl
groupoid/twist (H,Σ)?

Example

Fix θ ∈ R. Let G = Z2, cθ((m, n), (j , k)) = e2πiθ(nj). Then
C ∗
r (Z2, cθ) = Aθ is the noncommutative torus.

We can also view Aθ = C ∗
r (T ⋊θ Z), where θn(z) = e2πinθz . If

θ ̸∈ Q, T ⋊θ Z is topologically principal, so Kumjian/Renault
theory says C (T) ⊆ Aθ is Cartan.
That is, we have a Cartan subalgebra in C ∗

r (Z2, cθ) – even though
Z2 is not (topologically) principal.
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First Theorem

Theorem (Duwenig-G-Norton-Reznikoff-Wright)

Let G be a locally compact Hausdorff, second countable étale
groupoid with a 2-cocycle c . Suppose S is a subgroupoid of G
which is maximal among Abelian subgroupoids of G on which c is
symmetric – c(s, t) = c(t, s) for all s, t ∈ S. If S is clopen,
normal, and immediately centralizing, then C ∗

r (S, c) is a Cartan
subalgebra of C ∗

r (G, c).

Proof sketch.

S Abelian, c symmetric on S ⇒ C ∗
r (S, c) Abelian

Maximality of S + imm. cent. ⇒ C ∗
r (S, c) maximal Abelian.

S normal ⇒ normalizers of C ∗
r (S, c) generate C ∗

r (G, c).
S clopen ⇒ conditional expectation.

Maximality of S ⇒ G(0) ⊆ S ⇒ C ∗
r (S, c) contains an

approximate unit.
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Immediately centralizing

Definition

For k ≥ 1 and a subgroup S of a group G , denote
Ck(S) = {g ∈ G : ∀ s ∈ S , ∃ 1 ≤ j ≤ k s.t. gs j = s jg}. We say
S is immediately centralizing if Ck(S) = C1(S) for all k .

That is, if g eventually commutes with powers of s for all s ∈ S ,
then g commutes with S .

Example

1 G Abelian ⇒ S immediately centralizing for all S ≤ G .

2 G has the unique root property [Bau60]: whenever gk = hk

we have g = h.
If gs j = s jg , then (gsg−1)j = s j and so gsg−1 = s.
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Second Theorem

Theorem (Duwenig-G-Norton)

Let G,S, c be as in Theorem 1, so that C ∗
r (S, c) ≤ C ∗

r (G, c) is
Cartan. The associated Weyl groupoid is H = Ŝc ⋊ G/S. If we
have a continuous section s : G/S → G, then the Weyl twist Σ is
given by a 2-cocycle.

Recall: (H,Σ) built from (C ∗
r (S, c),C ∗

r (G, c)). Completions of
Cc(S, c),Cc(G, c). Tricky: how to describe every element of H
using just info from (S,G, c).

Ŝc is a bundle over G(0) = S(0), with fibres the 1-dimensional
projective representations of S.

Σ measures the failure of s to be multiplicative.
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Γ-Cartan subalgebras

Definition (BFPR)

A C ∗-algebra A is topologically graded by a discrete Abelian group
Γ if A =

⊕
g∈Γ Ag , where Ag is a subspace of A satisfying

A∗
g = A−g

AgAh ⊆ Ag+h

We have a faithful conditional expectation Ψ : A → A0.

A subalgebra B ⊆ A is Γ-Cartan if B ⊆ A0 is a Cartan subalgebra,
and N(B,A) densely spans A.

Γ-Cartan pairs also give rise to groupoid models:

Theorem (BFPR)

If B is a Γ-Cartan subalgebra of A, then there is a unique étale
groupoid H and a Γ-graded twist Σ over H such that
A ∼= C ∗

r (H,Σ) and B ∼= C0(H(0)).

Elizabeth Gillaspy Cartan subalgebras in groupoid C∗-algebras



Multiple groupoid models for Γ-Cartan algebras

Theorem (Brown-G)

If A = C ∗
r (G) is a groupoid C ∗-algebra, and B ⊆ A is a Γ-Cartan

subalgebra such that B = C ∗
r (S) for an open normal subgroupoid

S ≤ G, then H ∼= Ŝ ⋊ (G/S).

Future work:

What is the Weyl twist in this case?

If the section s : G/S → G is “almost” continuous, what can
we say about the Weyl twist?

Not all Cartan subalgebras in groupoid C ∗-algebras arise as in
our theorems; cf. [BNR+16]. Can we describe the Weyl
groupoid in these cases?
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