Cartan subalgebras in groupoid C^* -algebras

Elizabeth Gillaspy

joint with Jonathan H. Brown, Anna Duwenig, Rachael Norton, Sarah Reznikoff, Sarah Wright [DGN⁺20, DGNar]

May 27, 2022

I want to start by acknowledging that the University of Montana is in the aboriginal territories of the Salish and Kalispel people. I honor the path they have always shown us in caring for this place for the generations to come.

I would also like to acknowledge and honor the history of all of the Indigenous people who have called Montana home.

Recognizing that such acknowledgments are not enough, I remind myself and others to keep working to combat injustices, past and present.

Thanks to the Gelfand-Naimark Theorem, if B an Abelian C^* -algebra, $B \cong C_0(X)$.

Abelian C^* -algebras can be studied using algebra, analysis, and topology.

If A not Abelian but $B \subseteq A$ is large and Abelian, we can say a lot about A by just studying B.

"Large Abelian" for us means Cartan subalgebra.

Cartan subalgebras in C^* -algebras

Definition

Let A be a C^{*}-algebra. A subalgebra $B \subseteq A$ is Cartan if

- B is maximal Abelian in A
- **②** There is a faithful conditional expectation $\Phi: A \rightarrow B$

 $\Phi(bab') = b\Phi(a)b' \ \forall \ b, b' \in B; \quad \Phi \text{ linear, contractive}$

- $N(B) := \{n \in A : n^*bn, nbn^* \in B \forall b \in B\}$ densely spans A
- B contains an approximate identity for A.

Why important? Existence of a Cartan subalgebra is connected to the classification program [BL17, Li19].

In many situations (cf. [MM14, BCW17, BNR⁺16, NR12]), an (iso)morphism of Cartan subalgebras lifts to one of the larger algebra.

A Cartan subalgebra gives a dynamical (groupoid) model for A [Ren08].

Theorem (Ren08)

If $B \subseteq A$ is a Cartan subalgebra, then there is a unique topologically principal étale groupoid \mathcal{G} and a twist Σ over \mathcal{G} such that $B \cong C_0(\mathcal{G}^{(0)})$ and $A \cong C_r^*(\mathcal{G}; \Sigma)$.

 \mathcal{G} is often called the <u>Weyl groupoid</u> and Σ is the <u>Weyl twist</u> of the pair (A, B).

Renault's result builds on earlier work by Kumjian [Kum86], which connected principal groupoids with a stricter version of Cartan subalgebras called C^* -diagonals.

Non-principal groupoids give rise to C^* -algebras too!

And sometimes they even have Cartan subalgebras.

In that case, we have two groupoid models for the C^* -algebra: the original one, and the Weyl groupoid.

What's the relationship between these two groupoids?

What are groupoids?

A groupoid ${\cal G}$ is a generalization of a group, where every element has an inverse but multiplication isn't always defined. Write

$$\mathcal{G}^{(2)} = \{(g, h) \in \mathcal{G} imes \mathcal{G} ext{ composable}\}$$

for the set where we can multiply.

Example

• Groups.
$$G^{(2)} = G \times G$$
.

- Vector bundle V ^π→ M: V⁽²⁾ = {(v, w) : π(v) = π(w)};
 operations are pointwise addition in $\pi^{-1}(x) \cong \mathbb{C}^n$.
- Fundamental groupoid $\Pi(X)$ of a space X: homotopy classes of $f : [0,1] \rightarrow X$. $\Pi(X)^{(2)} = \{([f],[g]) : f(1) = g(0)\};$ $[f]^{-1} = [t \mapsto f(1-t)]$
- Transformation groups: Given an action α of a group G on a space X, X ⋊_α G = X × G as a space;

$$(X \rtimes_{\alpha} G)^{(2)} = \{((x,g)(y,h)) : \alpha_h(y) = x\},\$$

Recall: for a (discrete) group G, $C_r^*(G)$ is generated by the left-regular representation $\{\lambda_g\}_{g\in G}$ of G on $\ell^2(G)$: $C_r^*(G)$ is the smallest norm-closed *-subalgebra of $B(\ell^2(G))$ containing $\{\lambda_g : g \in G\}$.

What's the left-regular representation? On basis vectors,

$$\lambda_g(\delta_h) = \delta_{gh}.$$

Equivalently, if $f \in \ell^2(G)$, $\lambda_g(f)(h) = f(g^{-1}h)$.

Twisted group C^* -algebras

We also have projective representations of *G*, associated to a 2-cocycle $c : G \times G \to \mathbb{T}$.

$$c(g,h)c(gh,k) = c(g,hk)c(h,k).$$

 $C^*_r(G,c)$ is generated by $\{\lambda^c_g\}_{g\in G}$, where

$$\lambda_g^c(\delta_h) = c(g,h)\delta_{gh}.$$

Equivalently, for a function $f \in \ell^2(G)$,

$$\lambda_g^c f(h) = f(g^{-1}h)c(g,g^{-1}h).$$

(The 2-cocycle condition guarantees that $\lambda_g^c \lambda_h^c = c(g, h) \lambda_{gh}^c$.)

If \mathcal{G} is a <u>topological</u> groupoid, in that multiplication and inversion are continuous, we can form $C_r^*(\mathcal{G}) \subseteq B(L^2(\mathcal{G}, \mu))$.

 $C_r^*(\mathcal{G})$ isn't generated by a unitary representation of \mathcal{G} , generally; however, if $\mathcal{G} = \mathcal{G}$ is a group, $C_r^*(\mathcal{G}) = C_r^*(\mathcal{G})$.

$$C_r^*(X \rtimes G) = C_0(X) \rtimes_r G.$$

So: $C_r^*(\mathcal{G})$ is a good substitute for unitary representations of a groupoid \mathcal{G} .

 $\mathcal{G}^{(0)} = \{gg^{-1} : g \in \mathcal{G}\}$ "space of units". $C_0(\mathcal{G}^{(0)}) \subseteq C_r^*(\mathcal{G})$ is an Abelian subalgebra. If \mathcal{G} is topologically principal then $C_0(\mathcal{G}^{(0)})$ is a Cartan subalgebra.

Groupoid C*-algebras

Given a locally compact Hausdorff groupoid \mathcal{G} , represent $C_c(\mathcal{G}) \ni f$ on $L^2(\mathcal{G}, \mu) \ni \xi$ by

$$\pi(f)\xi(\gamma) = \int_{\eta:(\gamma,\eta)\in\mathcal{G}^{(2)}} f(\gamma\eta)\xi(\eta^{-1})d\mu(\eta).$$

Check: If \mathcal{G} is a group, $\xi = \delta_g$, $f = \chi_h$, what is $\pi(f)\xi$?

Given γ , need $\eta = \gamma^{-1}h$ and $\eta^{-1} = g$. So $\gamma = hg$, and

$$\pi(\chi_h)\delta_g = \delta_{hg}.$$

Note that $\pi(f) \in B(L^2(\mathcal{G}, \mu))$ since integration is linear and f was assumed compactly supported.

Groupoid C^* -algebras

Check: $\pi(f)\pi(g) = \pi(fg)$, where $fg(\gamma) = \int_{\eta:(\gamma,\eta)\in\mathcal{G}^{(2)}} f(\gamma\eta)g(\eta^{-1})d\mu(\eta).$

In general we don't have fg = gf, but if $f, g \in C_c(\mathcal{G}^{(0)})$ we do.

Proposition

 $C_c(\mathcal{G}^{(0)})$ is an Abelian subalgebra of $C_c(\mathcal{G})$.

 $\mathcal{G}^{(0)}$ is the space of units in that if $u \in \mathcal{G}^{(0)}$ and $(u, \gamma) \in \mathcal{G}^{(2)}$, then $u\gamma = \gamma$. Similarly, if $(\eta, u) \in \mathcal{G}^{(2)}$ then $\eta u = \eta$. <u>Proof:</u> If $f, g \in C_c(\mathcal{G}^{(0)})$ then

$$fg(\gamma) = \int_{\eta\in\mathcal{G}^{(0)}} f(\gamma\eta) g(\eta^{-1}) \, d\mu(\eta)$$

is nonzero only when $\gamma = \eta = \eta^{-1}$ is a unit. That is, fg(u) = f(u)g(u); pointwise multiplication is Abelian. Similarly, $\pi(f)^* = \pi(f^*)$ where $f^*(\gamma) = \overline{f(\gamma^{-1})}$. Define $C^*(C) = \overline{\pi(C(C))} \subset B(U^2(C(U)))$ Elizabeth Gillasy

Twisted groupoid C^* -algebras

We can also build C^* -algebras from <u>projective</u> representations of groupoids.

A $\underline{2\text{-cocycle}}$ on $\mathcal G$ is a function $c:\mathcal G^{(2)}\to\mathbb T$ such that

 $c(g,hk)c(h,k) = c(gh,k)c(g,h) \forall g,h,k \in \mathcal{G} \text{ with } (g,h),(h,k) \in \mathcal{G}^{(2)}.$

If we take c(g, h) = 1 for all (g, h) ∈ G⁽²⁾ we get the trivial 2-cocycle. C^{*}_r(G, c) = C^{*}_r(G).

• Usually we assume that if $u \in \mathcal{G}^{(0)}$ then c(g, u) = c(u, g) = 1 for all g.

Twisted groupoid C^* -algebras

Given a locally compact Hausdorff groupoid \mathcal{G} with a 2-cocycle c, represent $C_c(\mathcal{G}, c) \ni f$ on $L^2(\mathcal{G}, \mu) \ni \xi$ by

$$\pi_{c}(f)\xi(\gamma) = \int_{\eta:(\gamma,\eta)\in\mathcal{G}^{(2)}} f(\gamma\eta)\xi(\eta^{-1})c(\gamma\eta,\eta^{-1})d\mu(\eta).$$

Check: if $\mathcal{G} = G$, $\pi_c(\chi_h)\delta_g = c(h,g)\delta_{hg}$, so $\pi_c(\chi_h) = \lambda_h^c$. We have $\pi_c(f)\pi_c(g) = \pi_c(f \cdot_c g)$, where

$$f \cdot_{c} g(\gamma) = \int_{\eta:(\gamma,\eta)\in\mathcal{G}^{(2)}} f(\gamma\eta)g(\eta^{-1})c(\gamma\eta,\eta^{-1})d\mu(\eta).$$

Again, $C_c(\mathcal{G}^{(0)})$ is an Abelian subalgebra. Similarly, $\pi_c(f)^* = \pi_c(f^*)$ where $f^*(\gamma) = \overline{f(\gamma^{-1})c(\gamma,\gamma^{-1})}$. The reduced twisted groupoid C^* -algebra is $C_r^*(\mathcal{G}, c) = \overline{\pi_c(C_c(\mathcal{G}, c))} \subseteq B(L^2(\mathcal{G}, \mu))$.

Theorem (Ren08)

If $B \subseteq A$ is a Cartan subalgebra, then there is a unique topologically principal étale groupoid \mathcal{G} and a twist Σ over \mathcal{G} such that $B \cong C_0(\mathcal{G}^{(0)})$ and $A \cong C_r^*(\mathcal{G}; \Sigma)$.

 \mathcal{G} is <u>étale</u> if $r, s : \mathcal{G} \to \mathcal{G}^{(0)}$ are local homeomorphisms; for a group \mathcal{G} , or group action $X \ltimes \mathcal{G}$, this means \mathcal{G} is discrete.

 ${\mathcal G}$ is topologically principal if points with trivial isotropy are dense in ${\mathcal G}^{(0)}.$

$$\overline{\{u\in \mathcal{G}^{(0)}:\{\gamma\in \mathcal{G}:r(\gamma)=s(\gamma)=u\}=\{u\}\}}=\mathcal{G}^{(0)}.$$

If \mathcal{G} is a (nontrivial) group, $\mathcal{G}^{(0)} = \{e\}$, so \mathcal{G} is never topologically principal.

Motivating example: $C_r^*(\mathbb{Z}, c_{\theta})$

Our motivating question: Given a non-principal group(oid) \mathcal{G} with a 2-cocycle c, when can we find Cartan subalgebras in $C_r^*(\mathcal{G}, c)$?

In that case, we have two group(oid) models for the C*-algebra. What's the relationship between (\mathcal{G}, c) and the Weyl groupoid/twist (\mathcal{H}, Σ) ?

Example

Fix $\theta \in \mathbb{R}$. Let $G = \mathbb{Z}^2$, $c_{\theta}((m, n), (j, k)) = e^{2\pi i \theta(nj)}$. Then $C_r^*(\mathbb{Z}^2, c_{\theta}) = A_{\theta}$ is the noncommutative torus. We can also view $A_{\theta} = C_r^*(\mathbb{T} \rtimes_{\theta} \mathbb{Z})$, where $\theta_n(z) = e^{2\pi i n \theta} z$. If $\theta \notin \mathbb{Q}$, $\mathbb{T} \rtimes_{\theta} \mathbb{Z}$ is topologically principal, so Kumjian/Renault theory says $C(\mathbb{T}) \subseteq A_{\theta}$ is Cartan. That is, we have a Cartan subalgebra in $C_r^*(\mathbb{Z}^2, c_{\theta})$ – even though \mathbb{Z}^2 is not (topologically) principal.

First Theorem

Theorem (Duwenig-G-Norton-Reznikoff-Wright)

Let \mathcal{G} be a locally compact Hausdorff, second countable étale groupoid with a 2-cocycle c. Suppose S is a subgroupoid of \mathcal{G} which is maximal among Abelian subgroupoids of \mathcal{G} on which c is symmetric -c(s,t) = c(t,s) for all $s, t \in S$. If S is clopen, normal, and immediately centralizing, then $C_r^*(S,c)$ is a Cartan subalgebra of $C_r^*(\mathcal{G},c)$.

Proof sketch.

- \mathcal{S} Abelian, c symmetric on $\mathcal{S} \Rightarrow C^*_r(\mathcal{S}, c)$ Abelian
- Maximality of S + imm. cent. $\Rightarrow C_r^*(S, c)$ maximal Abelian.
- S normal \Rightarrow normalizers of $C_r^*(S, c)$ generate $C_r^*(\mathcal{G}, c)$.
- \mathcal{S} clopen \Rightarrow conditional expectation.
- Maximality of $S \Rightarrow \mathcal{G}^{(0)} \subseteq S \Rightarrow C_r^*(S, c)$ contains an approximate unit. \Box

Definition

For $k \ge 1$ and a subgroup S of a group G, denote $C_k(S) = \{g \in G : \forall s \in S, \exists 1 \le j \le k \text{ s.t. } gs^j = s^jg\}$. We say S is immediately centralizing if $C_k(S) = C_1(S)$ for all k.

That is, if g eventually commutes with powers of s for all $s \in S$, then g commutes with S.

Example

• G Abelian \Rightarrow S immediately centralizing for all $S \leq G$.

G has the <u>unique root property</u> [Bau60]: whenever g^k = h^k we have g = h.
 If gs^j = s^jg, then (gsg⁻¹)^j = s^j and so gsg⁻¹ = s.

Theorem (Duwenig-G-Norton)

Let $\mathcal{G}, \mathcal{S}, c$ be as in Theorem 1, so that $C_r^*(\mathcal{S}, c) \leq C_r^*(\mathcal{G}, c)$ is Cartan. The associated Weyl groupoid is $\mathcal{H} = \widehat{\mathcal{S}_c} \rtimes \mathcal{G}/\mathcal{S}$. If we have a continuous section $\mathfrak{s} : \mathcal{G}/\mathcal{S} \to \mathcal{G}$, then the Weyl twist Σ is given by a 2-cocycle.

Recall: (\mathcal{H}, Σ) built from $(C_r^*(\mathcal{S}, c), C_r^*(\mathcal{G}, c))$. Completions of $C_c(\mathcal{S}, c), C_c(\mathcal{G}, c)$. Tricky: how to describe every element of \mathcal{H} using just info from $(\mathcal{S}, \mathcal{G}, c)$.

 $\widehat{\mathcal{S}_c}$ is a bundle over $\mathcal{G}^{(0)} = \mathcal{S}^{(0)}$, with fibres the 1-dimensional projective representations of \mathcal{S} .

 Σ measures the failure of $\mathfrak s$ to be multiplicative.

F-Cartan subalgebras

Definition (BFPR)

A C^* -algebra A is topologically graded by a discrete Abelian group Γ if $A = \bigoplus_{g \in \Gamma} A_g$, where A_g is a subspace of A satisfying

- $A_g^* = A_{-g}$
- $A_g A_h \subseteq A_{g+h}$
- We have a faithful conditional expectation $\Psi: A
 ightarrow A_0$.

A subalgebra $B \subseteq A$ is $\underline{\Gamma}$ -Cartan if $B \subseteq A_0$ is a Cartan subalgebra, and N(B, A) densely spans A.

Γ-Cartan pairs also give rise to groupoid models:

Theorem (BFPR)

If B is a Γ -Cartan subalgebra of A, then there is a unique étale groupoid \mathcal{H} and a Γ -graded twist Σ over \mathcal{H} such that $A \cong C_r^*(\mathcal{H}, \Sigma)$ and $B \cong C_0(\mathcal{H}^{(0)})$.

Theorem (Brown-G)

If $A = C_r^*(\mathcal{G})$ is a groupoid C^* -algebra, and $B \subseteq A$ is a Γ -Cartan subalgebra such that $B = C_r^*(\mathcal{S})$ for an open normal subgroupoid $\mathcal{S} \leq \mathcal{G}$, then $\mathcal{H} \cong \widehat{\mathcal{S}} \rtimes (\mathcal{G}/\mathcal{S})$.

Future work:

- What is the Weyl twist in this case?
- If the section $\mathfrak{s}: \mathcal{G}/\mathcal{S} \to \mathcal{G}$ is "almost" continuous, what can we say about the Weyl twist?
- Not all Cartan subalgebras in groupoid C*-algebras arise as in our theorems; cf. [BNR+16]. Can we describe the Weyl groupoid in these cases?

Thanks!

- Gilbert Baumslag, <u>Some aspects of groups with unique roots</u>, Acta Math. **104** (1960), 217–303.
- N. Brownlowe, T.M. Carlsen, and M.F. Whittaker, <u>Graph</u> <u>algebras and orbit equivalence</u>, Ergodic Theory and Dynamical Systems **37** (2017), no. 2, 389–417.
- Selçuk Barlak and Xin Li, <u>Cartan subalgebras and the UCT</u> problem, Adv. Math. **316** (2017), 748–769.
- Jonathan H. Brown, Gabriel Nagy, Sarah Reznikoff, Aidan Sims, and Dana P. Williams, <u>Cartan subalgebras in</u> <u>C*-algebras of Hausdorff étale groupoids</u>, Integral Equations Operator Theory **85** (2016), no. 1, 109–126.

The end II

- A. Duwenig, E. Gillaspy, R. Norton, S. Reznikoff, and S. Wright, <u>Cartan subalgebras for non-principal twisted</u> <u>groupoid C^{*}-algebras</u>, J. Funct. Anal. **279** (2020), no. 6, 108611, 40.
- A. Duwenig, E. Gillaspy, and R. Norton, <u>Analyzing the Weyl</u> <u>construction for dynamical Cartan subalgebras</u>, Int. Math. Res. Not. (to appear), arXiv:2010.04137.
- A. Kumjian, <u>On *C**-diagonals</u>, Canad. J. Math. **38** (1986), 969–1008.
- Xin Li, <u>Every classifiable simple C*-algebra has a Cartan</u> <u>subalgebra</u>, Invent. Math. (2019), 47 pp.
- K. Matsumoto and H. Matui, <u>Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras</u>, Kyoto J. Math. 54 (2014), no. 4, 863–877.

- Gabriel Nagy and Sarah Reznikoff, <u>Abelian core of graph</u> <u>algebras</u>, J. Lond. Math. Soc. (2) **85** (2012), no. 3, 889–908.
- J. Renault, <u>Cartan subalgebras in C*-algebras</u>, Irish Math. Soc. Bull. **61** (2008), 29–63.