Extensions, unitarizability, and amenable operator algebras

Yemon Choi Lancaster University

Functional Analysis and Operator Algebras Seminar Athens (online), 3rd June 2022

[Typos corrected after talk]

Prologue: when "is" a Banach algebra a C^* -algebra?

Notation. If A is a Banach algebra, we write $A \cong \mathbb{C}^*$ if there is a \mathbb{C}^* -algebra B and an isomorphism of Banach algebras $A \leftrightarrow B$.

(In this talk, homomorphisms between Banach algebras are always assumed to be continuous, but they need not be contractive. Likewise, isomorphisms of Banach algebras are not necessarily isometric.)

Example 1. Let $T \in \mathbb{M}_d$ with d distinct eigenvalues. Since T is diagonalizable, the subalgebra $A = \operatorname{alg}(T)$ is isomorphic to \mathbb{C}^d . If we give \mathbb{C}^d its natural \mathbb{C}^* -norm, then the isomorphism $A \leftrightarrow \mathbb{C}^d$ is usually not isometric. Moreover, without diagonalizing T it is not obvious how to equip A with the "correct" involution.

In general it seems hard to find "non-trivial" conditions on a given Banach algebra A which ensure $A \cong \mathbb{C}^*$. Necessary conditions are easier.

Lemma 2. Every unital C^* -algebra is spanned (as a complex vector space) by its group of unitaries.

Therefore: if A is a unital Banach algebra and $A \cong \mathbb{C}^*$, there is a bounded subgroup $G \subset (A)_{inv}$ which spans A.

Less well-known is the following result.

Theorem 3. [CLEVELAND, **1963**] Every injective homomorphism from a C^* -algebra to a Banach algebra is bounded below.

Therefore: if $A \cong \mathbb{C}^*$ and B is any Banach algebra, then every bounded HM $A \to B$ has closed range.

We remark that if $A \cong \mathbb{C}^*$ and J is a closed ideal of A, then $J \cong \mathbb{C}^*$ and $A/J \cong \mathbb{C}^*$. It turns out that the converse is false: that is, the property of being $\cong \mathbb{C}^*$ is not preserved by extensions.

Extensions of Banach algebras

By an extension of Banach algebras, we mean a short exact sequence

$$0 \to J \xrightarrow{f} A \xrightarrow{g} B \to 0$$

- J, A, B are Banach algebras;
- f is an injective continuous homomorphism;
- *g* is a surjective continuous homomorphism;
- $\operatorname{im}(f) = \ker(g)$.

Typically J and B are given as "simpler" or "known" examples and we wish to understand which A can arise.

The case we focus on today: $J_d := c_0 \otimes \mathbb{M}_d$ with multiplier algebra $M(J_d) = \ell^{\infty} \otimes \mathbb{M}_d$.

We also want to consider the **corona algebra** of J_d . This is the quotient algebra $\mathcal{Q}_d := M(J_d)/J_d = (\ell^{\infty}/c_0) \otimes \mathbb{M}_d$.

The Busby correspondence

Throughout J is a Banach algebra with a BAI, and B is a Banach algebra.

- An extension $J \to A \to B$ gives rise to a continuous homomorphism $\phi: B \to M(J)/J$, called the associated "Busby map" of the extension.
- ullet Given a continuous HM $\phi: B o M(J)/J$, there is a pullback algebra

$$P_{\phi} := \{(b,m) : \phi(b) = q_J(m)\} \subset B \oplus_{\infty} M(J)$$

which fits into a natural extension $J \to P_\phi \to B$.

• If $J \to A \to B$ has Busby map ϕ , then $A \cong P_{\phi}$.

Proposition 4. Suppose J and B are C^* -algebras and $\phi: B \to M(J)/J$ is a continuous HM. If $s \in (M(J)/J)_{\text{inv}}$ and $\psi:=s\phi(\cdot)s^{-1}$ is a *-HM, then $P_{\phi} \cong P_{\psi}$ and P_{ψ} is a **self-adjoint** subalgebra of $B \oplus_{\infty} M(J)$.

The message. Given $J \to A \to B$ where J and B are C^* -algebras: under some extra conditions, $A \cong C^*$.

An unusual operator algebra

Recall: $J_d = c_0 \otimes \mathbb{M}_d$ and its multiplier algebra is $\ell^{\infty} \otimes \mathbb{M}_d$.

Theorem 5. [C.-Farah-Ozawa, **2014)**] There is a closed unital subalgebra $A \subset \ell^{\infty} \otimes \mathbb{M}_2$ with $J_2 \subset A$ such that:

- 1) $A/J_2 \cong C(X)$ for some separable non-metrizable X;
- 2) there is no bounded subgroup of $(A)_{inv}$ whose linear span is dense in A.

Property 1) implies that A is amenable as a Banach algebra.

Property 2) implies that A is not isomorphic to any C^* -algebra.

Brief comments on the proof. Recall: $Q_2 = (\ell^{\infty}/c_0) \otimes \mathbb{M}_2$.

- The example arises from a carefully chosen bounded subgroup $\Gamma \subset (\mathcal{Q}_2)_{\mathsf{inv}}$ which is abelian, locally finite but **uncountable**.
- The key idea/tactic: if A was spanned by a bounded group, this leads (indirectly) to the existence of $s \in (\mathcal{Q}_2)_{\text{inv}}$ such that $s\Gamma s^{-1}$ is contained in $U(\mathcal{Q}_2)$; and Γ is chosen so that no such s exists.

Unitarizable subgroups of unital C*-algebras

Notation. For D a unital (C^*) algebra $(D)_{\text{inv}} = \text{invertible group and } (D^+)_{\text{inv}}$ the positive part.

Lemma 6. Let G be a subgroup of $(D)_{inv}$. TFAE:

- 1) there exists $s \in (D)_{\text{inv}}$ such that $sGs^{-1} \subseteq \mathcal{U}(D)$.
- 2) the action $G \curvearrowright (D^+)_{inv}$, $\alpha_g(h) = ghg^*$, has a fixed point.

If either of these holds, we say that G is unitarizable (in D).

We list some examples where subgroups are unitarizable.

Example 7. D arbitrary, G a finite subgroup of $(D)_{\text{inv}}$. Take $h:=\sum_{x\in G} xx^*$.

Example 8. [DIXMIER/DAY] D a von Neumann algebra, Γ an amenable bounded subgroup of $(D)_{inv}$. Take h to be a weak-star average of xx^* over all x in Γ .

Example 9. Γ any bounded subgroup of $(\mathbb{M}_d)_{inv}$. Let G be the closure of Γ inside \mathbb{M}_d ; then G is a compact group and we may take $h := \int_G xx^* dx$.

Example 10. Γ any bounded subgroup of $(\ell^{\infty}(\mathbb{I}) \otimes \mathbb{M}_d)_{inv}$: use the previous example in each coordinate.

Warning. If $D=C(X)\otimes \mathbb{M}_d$ then there can be bounded subgroups of $(D)_{\text{inv}}$ which are not unitarizable in D, even though they are unitarizable inside the larger algebra $\ell^{\infty}(X)\otimes \mathbb{M}_d$ by the previous example.

(There are even counterexamples isomorphic to \mathbb{Z} inside $C(\mathbb{N}_{\infty}) \otimes \mathbb{M}_2$.)

Proposition 11. Let $Q_d := (\ell^{\infty}/c_0) \otimes \mathbb{M}_d$. Then every bounded countable subgroup of $(Q_d)_{inv}$ is unitarizable in Q_d .

The result may be known to experts but we did not locate an explicit reference in the literature. Details will appear in the PhD thesis of $B.\ GREEN$ (Lancaster).

An application to extensions

Using the fact that every unital C^* -algebra is spanned by its unitaries, the previous proposition yields:

Corollary 12. Let B be a separable C^* -algebra and let $\phi: B \to \mathcal{Q}_d$ be a bounded homomorphism. Then there exists $s \in (\mathcal{Q}_d)_{inv}$ such that $s\phi(\cdot)s^{-1}$ is a *-homomorphism. Hence:

If $J_d o A o B$ is an extension of Banach algebras then $A \cong \mathrm{C}^*$

Reminder. The "CFO example" is an extension $J_2 \to A \to C(X)$ where $A \ncong C^*$.

An open problem

Fact (for background context). If X is compact Hausdorff, A is a closed subalgebra of $C(X) \otimes \mathbb{M}_d$, and $A \cong \mathbb{C}^*$, then A is amenable.

From the results of C.-FARAH-OZAWA we know that there is an amenable subalgebra of $\ell^{\infty} \otimes \mathbb{M}_2 = C(\beta \mathbb{N}) \otimes \mathbb{M}_2$ which is not $\cong C^*$.

Question. If X is metrizable, is every amenable subalgebra of $C(X) \otimes \mathbb{M}_d$ is isomorphic to a C^* -algebra?

This is open even for X=[0,1] (at time of writing). On the other hand, it follows from results of GIFFORD (1997, PhD thesis) that if A is an amenable subalgebra of $c_0 \otimes \mathbb{M}_d$ then $A \cong \mathbb{C}^*$.

This suggests trying to attack the question above in cases where X has "lots of isolated points".

Cantor-Bendixson rank

Throughout X is compact Hausdorff and **countable**. By (a version of) the Baire category theorem X must have at least one isolated point.

Definition. Let Is(X) denote the set of isolated points in X. We define the **Cantor-Bendixson derivative** of X to be the complement $X^{(1)} := X \setminus Is(X)$.

The higher CB-derivatives are defined recursively by $X^{(n)}:=(X^{(n-1)})^{(1)}$, etc. We say that X has **finite CB-rank** if $X^{(n)}=\emptyset$ for some $n\in\mathbb{N}$.

Example 13. Let \mathbb{N}_{∞} be the one-point compactification of \mathbb{N} and let $X = (\mathbb{N}_{\infty})^2$.

Then $\mathrm{Is}(X)=\mathbb{N}^2$, $X^{(1)}$ consists of "two copies of \mathbb{N}_{∞} joined at ∞ ", and $X^{(2)}=\{\infty\}$.

A partial result

The following result forms part of the Lancaster PhD thesis of B. GREEN (being written up).

Theorem 14. [C.+GREEN, in preparation] Let X be countable and compact with finite Cantor–Bendixson rank. Let A be an amenable subalgebra of $C(X) \otimes \mathbb{M}_d$ with the following extra property:

every bounded HM from A to a C^* -algebra has closed range. (\diamondsuit)

Then A is isomorphic to a (separable) C^* -algebra.

Comments on the condition (\diamondsuit) .

- If $X^{(1)}$ is finite, then we can drop the condition (\diamondsuit) .
- If A is a Banach algebra satisfying (\diamondsuit) then so does every quotient of A.
- If $A \cong C^*$ then it satisfies (\diamondsuit) ; this follows from the theorem of CLEVELAND mentioned at the start.

Outline of the proof

We argue by induction on the CB rank of X. (In the base case X is finite, so we are dealing with amenable subalgebras of \mathbb{M}_n for suitable n.)

Recall: Is(X) is the set of isolated points in X and $X^{(1)} = X \setminus Is(X)$.

Consider the restriction homomorphism $\rho: C(X) \otimes \mathbb{M}_d \to C(X^{(1)}) \otimes \mathbb{M}_d$, with kernel $C_0(\operatorname{Is}(X)) \otimes \mathbb{M}_d$. We make two observations:

- Since A satisies (\diamondsuit) , $\rho(A)$ is a closed subalgebra of $C(X^{(1)}) \otimes \mathbb{M}_d$ which also satisfies (\diamondsuit) . Also $\rho(A)$ is amenable. Hence, by the inductive hypothesis $\rho(A) \cong B$ for some (separable) C^* -algebra B.
- Since A is amenable, results of GIFFORD (1997 PhD thesis) imply that $\ker(\rho) \cap A$ is amenable and isomorphic to a c_0 -sum of matrix algebras.

To simplify the exposition, assume $\ker(\rho) \cap A \cong J_d = c_0 \otimes \mathbb{M}_d$. Then A fits into an extension of Banach algebras $J_d \to A \to B$. Since B is separable, we can invoke our earlier results to conclude that $A \cong \mathbb{C}^*$. \square