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Weakly almost periodic representations

(G , τG ) – topological group,

Representation on a Banach space X : strong operator continuous
homomorphism π : G → Is(X ) (invertible isometries on X ).
Weak operator continuous ⇒ strong operator continuous if
• π unitary on Hilbert (folklore), X reflexive [Megrelishvili ‘98];
• τG locally compact [Johnson ‘74].

Defintion

A representation π : G → Is(X ) is called weakly almost periodic
(w.a.p.) if π(G )ξ

w
is weakly compact for each ξ in X .

Equivalently, π(G )
wot

is weak operator compact in B(X ).

Eg. X reflexive: any π weakly almost periodic



Weakly almost periodic part

π : G → Is(X ) representation:

X πW = {ξ : π(G )ξ
w

is weakly compact}

is a closed subspace of X .

In particular, in bounded continuous functions CB(G ), let

LUC(G ) = {f ∈ CB(G ) : s 7→ f (s−1 ·) continuous}
W(G ) = LUC(G )W (translation-invariant C*-subalgebra)

(really W(G ) = CB(G )W , also W(G ) = RUC(G )W with right
translations), and we call the latter space that of weakly almost
periodic functions.



A decomposition theorem

Theorem [Jacobs ‘54, Dye ‘65, Bergelson-Rosenblatt ‘88]

π : G → Is(X ) w.a.p. representation (unitary on Hilbert space)
Then X decomposes as two π-invariant (hence reducing) subspaces

X = X πret ⊕X πwm

where

X πret = {ξ ∈ X : ξ ∈ π(G )η
w

whenever η ∈ π(G )ξ
w}

X πwm = {ξ ∈ X : 0 ∈ π(G )ξ
w}

are spaces of “return” and “weakly mixing” vectors.



Decomposition of functions

Theorem [Eberlein ‘56, de Leeuw-Glicksberg ‘61]

W(G ) = AP(G )⊕W0(G )

where

AP(G ) = {u ∈ Cb(G ) : {f (s−1·) : s ∈ G}‖·‖∞ compact}
W0(G ) = {u ∈ W(G ) : m(|u|) = 0}CW(G )

for the unique invariant mean m on W(G ), with W0(G ) CW(G ).

Here, W0(G ) =W(G )wm.



Semitopological compactifications

GW – Gelfand spectrum of W(G ), εW : G → GW evaluation map

Proposition (folklore)

• GW semigroup: unique extension of multiplication from dense
subgroup εW(G ).
• GW semitopological: s 7→ st, t 7→ st each continuous.
• Universal property: h : G → S continuous homo’m into compact
semitop’l semigroup S , then C(S) ◦ h ⊆ W(G ), which induces
restriction ρ : GW → S with

GW

ρ

���
�
�

G

εW
=={{{{{{{{

h
// S

i.e. ρ ◦ εW = h.



Topologies

Definition: weakly almost periodic topologies

T (G ) = {τ ⊆ τG : (G , τ) top’l group with τ = σ(G ,Wτ (G ))}

where Wτ (G ) =W(G ) ∩ Cτb (G ) (τ -continuous elements)

Assumption: τG ∈ T (G ) and is Hausdorff
Warning: not all elements of T (G ) are Hausdorff

e.g. τtriv = {∅,G}, often τap = σ(G ,AP(G ))
Important subsets:
Tlc(G ) = {σ(G , {h}) | (H, τH) loc. compact, h : G → H cts. homo’m}
Tu(G ) = {σ(G , {π}) |π : G → (Un(H),wot) cts. unitary rep’n}
T (G ) = {σ(G , {π}) |π : G → (Is(X ),wot) cts. rep’n, X reflexive}

[Stern ‘94, Megrelishvili ‘98]

Tlc(G ) ⊆ Tu(G ) ⊆ T (G )



On the scope of the classes of topologies

• [Teleman ‘57] G any topological group: εLUC : G → GLUC

(spectrum of LUC(G )) homeomorphic embedding onto its range,
GLUC left topological semigroup.

• [Megrelishvili ‘01] T (Homeo+[0, 1]) = {τtriv}.

• [Ferri-Galindo ‘07] G = (c0,+) (norm topology), τG 6∈ T (G ).

• [Megrelishvili ‘02] G = (L4[0, 1],+) (norm topology):
τG ∈ T (G ) \ Tu(G ).

• After [Schoenberg ‘38], G = (`1,+) (norm topology):

τG ∈ Tu(G ) as e−‖·‖1
2
∈ P(G ).

Conclusions: say G = Z⊕N = (Z2)⊕N ↪→ R⊕N
(i) Tlc(G ) ( Tu(G ) ( T (G ) ( {group topologies}.
(ii) Quotient groups of unitarizable groups may not be unitarizable.

• [Mayer ‘97] G = N o R (certain connected Lie), Tlc(G ) = T (G ).



Co-Cauchy/co-compact topologies, after [Ruppert ‘90]

τ ∈ T (G )
GW

τ
– Gelfand spectrum of Wτ (G ), εW

τ
: G → GW

τ
– evaluation

Completion: Gτ = GW
τ
(εW

τ
(eG )) – intrinsic group at identity

Gτ complete w.r.t. 2-sided unifomity

τ ⊆ τ ′ in T (G ) ⇒ Wτ (G ) ⊆ Wτ ′(G ), induces ρτ
′
τ : GW

τ ′ → GW
τ

⇒ ητ
′
τ = ρτ

′
τ |Gτ ′ : Gτ ′ → Gτ cts. homo’m, dense range

Lemma (after [Ruppert ‘90] in abelian case)

For τ ⊆ τ ′ in T (G ) TFAE
(co-compact) ητ

′
τ : Gτ ′ → Gτ open with ker ητ

′
τ compact

(co-Cauchy) each τ -Cauchy filter admits a τ ′-Cauchy refinement

Write τ ⊆c τ
′, in this case.



Idempotents

Definition

ZE(GW) = {e ∈ GW : e2 = e & eεW(s) = εW(s)e ∀s ∈ G}.

In ZE(GW): e ≤ e ′ ⇔ ee ′ = e



A Galois connection

Theorem (after [Ruppert ‘90]; he covers abelian case)

There are maps T : ZE(GW)→ T (G ) and E : T (G )→ ZE(GW)
s.t.

T (e) ⊆ T (e ′) if e ≤ e ′

E (τ) ≤ E (τ ′) if τ ⊆ τ ′

E (τ) = E (τ ′) if τ ⊆c τ
′

E ◦ T = idZE(GW ) and τ ⊆c T ◦ E (τ).

Thus, if T (G ) = T (ZE(GW)), then T ◦ E |T (G) = idT (G).

• (E ,T ) is a Galois connection for p.o. sets (T (G ),ZE(GW)).
• T ◦ E : T (G )→ T (G ) is a closure operator.



Idea of proof

• Definition of T . For e ∈ ZE(GW) let

T (e) = σ(G , {s 7→ eεW(s) ∈ GW(e)}).

• Defintion of E . For τ ∈ T (G ) let ρτ : GW → GW
τ
, given by

restriction to Wτ (G ) ⊆ W(G ), and

Sτ = ρ−1τ ({εWτ
(eG )}) ⊆ GW

which is a closed subsemigroup. [Ruppert’s Book ‘90]: the minimal
ideal K (Sτ ) of Sτ is unique and is a group, with identity E (τ). I.e.

E (τ) = minE(Sτ ) ⇒ E (τ) ∈ ZE(GW).



Picture of GW

If τ ∈ T (G ) then

GW
τ ∼= E (τ)GW (compression of GW)

Gτ = GW(E (τ)) (intrinsic group at E (τ))

Further, if τ ∈ T (G )

Kτ = K (Sτ ) ∼= ker ηT◦E(τ)
τ

is centric in GW , and letting mKτ be normalized Haar measure we
have in convolution on W(G )∗ ∼= M(GW) that mKτ ≤ E (τ) and

GW
τ ∼= E (τ)GW/Kτ ∼= mKτ ∗ GW (averaged over Kτ )

Gτ = GW(E (τ))/Kτ ∼= mKτ ∗ GW(E (τ))



Ideals

Definition

An ideal J of W(G ) is called an Eberlein-de Leeuw-Glicksberg
(E-dL-G) ideal provided
• J is translation invariant; and
• J admits a linear complement A, a C*-subalgebra of W(G ).

Main Theorem on Ideals

(i) Let τ ∈ T (G ), then Wτ (G ) = E (τ) · W(G ) and

I(τ) = {u ∈ W(G ) : E (τ) · u = 0}

is an E-dL-G ideal. Further

W(G ) =Wτ (G )⊕ I(τ).

(ii) Any E-dL-G ideal of W(G ) is of the form I(τ), as above.



Some decompositions

Lemma

Given τ ∈ T (G ), eG ∈ U ∈ τ , ε > 0 and u1, . . . , un in I(τ), there
is s ∈ U s.t. |uj(s)| < ε for j = 1, . . . , n.

Theorem

Given a w.a.p. rep’n π : G → Is(X ), τ ∈ T (G ), the spaces

X πτ = {ξ ∈ X : π(·)ξ is τ -continuous}

X πτ⊥ = {ξ ∈ X : 0 ∈ π(U)ξ
w

for each e ∈ U ∈ τ}

are π-reducing with X = X πτ ⊕X πτ⊥.

Corollary (refinement of Jacobs, Dye, Bergelson-Rosenblatt)

X πwm = X πτap⊥ = {ξ ∈ X : 0 ∈ π(U)ξ
w

for each e ∈ U ∈ τap}



Some more decompositions

If τ ∈ T (G ) \ T (G ), we can average π over Kτ to get:

Theorem

Given a w.a.p. rep’n π : G → Is(X ) the space

X πτ = {ξ ∈ X : π(·)ξ is τ -continuous}

is π-reducing.

Examples

• [Segal-von Neumann ‘50] If π : Gd → Is(X ) is w.a.p., then X πτG
is reducing in X ; e.g. W(G ) reducing in W(Gd).
• (after [Lau-Losert ‘90]) If N C G (and is closed)

X πτG :N
= {ξ ∈ X : π(n)ξ = ξ for n in N}

is π-reducing in X , where τG :N = σ(G ,W(G/N) ◦ qN).



Unitarizable topologies

Tu(G ) = {τ ∈ T (G ) : τ = σ(G ,Pτ (G ))}

where Pτ (G ) = {u ∈ Cτb (G ) : u positive definite}.

Let $τ =
⊕

u∈Pτ (G) πu (GNS), so σ(G ,Pτ (G )) = σ(G , {$τ}).

Assume: τG ∈ Tu(G ).

Let $ = $τG . G$ = $(G )
wot

is a semitopological semigroup.

Theorem (Galois connection, revisited)

There are two order preserving maps

P : Tu(G )→ ZE(G$), Tu : ZE(G$)→ Tu(G )

so τ ⊆c Tu ◦ P(τ) for each τ in Tu(G ).

Let T u(G ) = Tu ◦ P(Tu(G )).



E-dL-G ideals in Fourier-Steiltjes algebras

B(G ) = spanP(G ), B(G )∗ ∼= W∗(G ) = $(G )′′.

$(s) 7→ $(s)⊗$(s) extends to W∗(G )→W∗(G )⊗W∗(G ).

Preadjoint makes B(G ) Banach algebra of continuous functions on
G ; see also [Lau-Ludwig ‘12].

Theorem

If τ ∈ T u(G ) then

Bτ (G ) := P(τ) · B(G ) = {u ∈ B(G ) : u is τ -continuous}
I(τ) := (I − P(τ)) · B(G ) C B(G ).

Moreover
B(G ) = Bτ (G )⊕`1 I(τ)

is the direct sum of a translation-invariant subalgebra and a
translation invariant ideal.



Application: Operator amenability of B(G )

Operator amenability ... is a certain “averaging property” for a
Banach algebra with cooperative operator space structure.

G – locally compact group: L1(G ), A(G ) group & Fourier algebras
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G convolution “Ĝ” functions



What is know/expected for l.c. G

Theorem

For locally comapct G , TFAE:
(i) G is amenable;
(ii) [Johnson] L1(G ) is (operator) amenable; and
(iii) [Ruan] A(G ) is operator amenable.

Theorem [Dales, Ghahramani & Helemskĭı]

For locally compact G :

M(G ) is (operator) amenable ⇔ G is discrete and amenable.

Näıve conjecture

B(G ) is operator amenable ⇔ G is compact.



On operator amenability of B(G )

Theorem [Runde-S.]

B(Qp oO×p ) is operator amenable.

Theorem

B(G ) operator amenable ⇒ |T u(G )| <∞.

Eg. G = Qp oO×p : T u(G ) = {τap, τG}.

Theorem

If G locally compact and connected, then

B(G ) is operator amenable ⇔ G is compact.
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