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CP-semigroups — Background

The objects of study

A semigroup 0 ∈ S ⊆ Rk
+

A family T = (Ts)s∈S of maps on a unital C*-algebra B
• T is said to be a CP-semigroup if
1. Ts is a contractive CP (completely positive) map for all s
2. T0 = idB and Ts+t = Ts ◦ Tt, for all s, t ∈ S
• A CP-semigroup is a Markov semigroup if Ts(1) = 1 for all s
• An E-semigroup is a semigroup of ∗-endomorphisms
• Case of greatest interest: S = R+, then Markov semigroups T = (Tt)t≥0
have quantum dynamical interpretations:

(Markov) t 7→ Tt(a) evolution in an irreversible quantum system

(∗auto) t 7→ αt(a) evolution in a reversible quantum system
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CP-semigroups — Background

Bhat’s dilation theorem

Theorem (Bhat*, 1996)

Let T = (Tt)t≥0 be a Markov-semigroup on B(H). Then there exists a
Hilbert space K containing H, and a unital E-semigroup ϑ = (ϑt)t≥0 on
B(K), such that

Tt(A) = PHϑt(A)PH , for all t ≥ 0 and A ∈ B(H)

B(K)
ϑt // B(K)

PH•PH

��

B(H)

i

OO

Tt // B(H)

3 / 27



CP-semigroups — Background

Bhat’s dilation theorem

Theorem (Bhat*, 1996)

Let T = (Tt)t≥0 be a Markov-semigroup on B(H). Then there exists a
Hilbert space K containing H, and a unital E-semigroup ϑ = (ϑt)t≥0 on
B(K), such that

Tt(A) = PHϑt(A)PH , for all t ≥ 0 and A ∈ B(H)

B(K)
ϑt // B(K)

PH•PH

��

B(H)

i

OO

Tt // B(H)

3 / 27



The problem

We study the possible generalizations of Bhat’s theorem to CP-semigroups
T on a C*-algebra B, paramaterized by a semigroup S ⊆ Rk

+.

Definition
A dilation of T is a triple (A, ϑ, p), where A is a C*-algebra, ϑ = (ϑs)s∈S
is an E-semigroup, and p ∈ A is a projection, such that B = pAp, and such
that

Ts(b) = pϑs(b)p for all b ∈ B, s ∈ S

A ϑs // A
p•p
��

B

i

OO

Ts // B
Arveson, Bhat, Bhat-Skeide, Markiewicz, Muhly-Solel, Powers, SeLegue,
S., S.-Solel, Skeide, Solel, Vernik,. . .
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The problem

We study the possible generalizations of Bhat’s theorem to CP-semigroups
T on a C*-algebra B, paramaterized by a semigroup S ⊆ Rk

+

Definition
A dilation of T is a triple (A, ϑ, p), where A is a C*-algebra, ϑ = (ϑs)s∈S
is an E-semigroup, and p ∈ A is a projection, such that B = pAp, and such
that

Ts(pap) = pϑs(a)p for all a ∈ A, s ∈ S

Questions
1. Find necessary & sufficient conditions for existence of dilation.

2. Fix k. Does every Markov semigroup over Nk have a dilation?

.
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Subproduct systems and dilations

Key tool: C*-correspondences

Let B be a C*-algebra. A Hilbert C*-module over B is a right module E
that has a B-valued inner product 〈·, ·〉 : E × E → B
An operator t : E → E is adjointable if there is another operator t∗ such
that

〈tx, y〉 = 〈x, t∗y〉 , for all x, y ∈ E

Ba(E) — the algebra of adjointable (bounded linear) operators

K(E) = span{xy∗ : x, y ∈ E} — “compact" operators xy∗ : z 7→ x〈y, z〉

A C*-correspondence is a Hilbert C*-module that also has a left action
by adjointable operators

Tensor product E � F : obtained from E ⊗alg F by inner product

〈x⊗ y, x′ ⊗ y′〉 := 〈y, 〈x, x′〉y′〉
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Subproduct systems and dilations

The GNS representation (E , ξ) of a CP map

Let T : B → B be a CP map. Then there exists a unique
C*-correspondence E over B, and a vector ξ ∈ E , such that

spanBξB = E

and
T (b) = 〈ξ, bξ〉 for all b ∈ B

Construction: on E0 = B ⊗alg B put inner product

〈a⊗ b, c⊗ d〉 = b∗T (a∗c)d

and bimodule operation
a(x⊗ y)b = ax⊗ yb

Complete the quotient, and put ξ = 1⊗ 1. This works:

〈ξ, bξ〉 = 〈1⊗ 1, b⊗ 1〉 = 1∗T (1∗b)1 = T (b)
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Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let T = (Ts)s∈S be a CP-semigroup on B
For every s, let (Es, ξs) be the GNS representation of Ts

For s, t ∈ S, define
ws,t : Es+t → Es � Et

by
ws,t : aξs+tb 7→ aξs � ξtb

and then extend linearly. We check:

〈aξs � ξtb, a′ξs � ξtb′〉 = 〈ξtb, 〈aξs, a′ξs〉ξtb′〉 = b∗〈ξt, Ts(a∗a′)ξt〉b′ =

= b∗Tt(Ts(a
∗a′))b′ = b∗Tt+s(a

∗a′)b′ = 〈aξs+tb, a
′ξs+tb

′〉

ws,t is an isometry!
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Subproduct systems and dilations

Subproduct systems and product systems

Definition (S.-Solel and Bhat-Mukherjee; Viselter; S.-Skeide)

A subproduct system is a family E5 = (Es)s∈S of B-correspondences,
where E0 = B

, together with a family {ws,t : Es+t → Es � Et} of isometric
bimodule maps, which iterate co-associatively, i.e., the following diagram is
commutative (∀r, s, t):

Er+s+t
//

��

Er � Es+t

��

Er+s � Et // Er � Es � Et

A product system is a subproduct system in which ws,t are all unitaries.

Definition
A family {ξs ∈ Es}s∈S is called a unit if ws,tξs+t = ξs � ξt for all s, t.
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Subproduct systems and dilations

Example of subproduct systems over C
Example (full tensor product). Let E be a Hilbert space. Define

En = E⊗n

Then E� = (En)n∈N is a subproduct system, in fact a product system:

Em ⊗ En = E⊗m ⊗ E⊗n = E⊗(m+n) = Em+n

Example (symmetric tensor product). Let

En = span{x⊗ · · · ⊗ x : x ∈ E} ⊂ En

Then E5 = (En)n∈N is a (proper) subproduct system

Em+n ⊆ Em ⊗ En

Quiz: What is the CP-semigroup that E5 is its GNS system?
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Subproduct systems and dilations

Reminder: The GNS representation (E , ξ) of a CP map

Let T : B → B be a CP map. Then there exists a unique
C*-correspondence E over B, and a vector ξ ∈ E , such that

spanBξB = E

and
T (b) = 〈ξ, bξ〉 for all b ∈ B

Construction: on E0 = B ⊗alg B put inner product

〈a⊗ b, c⊗ d〉 = b∗T (a∗c)d

and bimodule operation
a(x⊗ y)b = ax⊗ yb

Complete the quotient, and put ξ = 1⊗ 1. This works:

〈ξ, bξ〉 = 〈1⊗ 1, b⊗ 1〉 = 1∗T (1∗b)1 = T (b)

12 / 27



Subproduct systems and dilations

Summary and statement of the basic theorem

Subproduct system: Es � Et ⊇ Es+t

Product system: Es � Et = Es+t

Unit: ξs � ξt = ξs+t

T on B a CP-semigroup  subproduct system E5 = (Es)s∈S of
B-correspondences (the GNS subproduct system) and a unit (ξs)s∈S
such that

Ts(b) = 〈ξs, bξs〉 for all s ∈ S, b ∈ B

Following Bhat-Skeide 2000, Muhly-Solel 2002 and S-Solel 2009, we found:

Theorem (S.-Skeide 2022)

A Markov semigroup T on B has a strict dilation (A = Ba(E), ϑ, p) if and
only if the GNS subproduct system of T can be embedded into a product
system of B-correspondences.

Question: what about non strict or non-full A 6= Ba(E)?
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Subproduct systems and dilations

Sufficient condition for dilation

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be
embedded into a product system, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra B. Then there exists a triple
(A, ϑ, p) such that ϑ is a unital ∗-endomorphism and

Tn(b) = pϑn(b)p , for all n ∈ N, b ∈ B

Proof. We need to show that the GNS subproduct system (En)n∈N of the
semigroup (Tn := Tn)n∈N embeds into a product system.
Define En = E�n1 . Then Em+n ↪→ Em � En , by induction:

En ↪→ En−1 � E1 ↪→ · · · ↪→ E�n1 = En

preserves structure! By the theorem above, T has a dilation.
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Dilations and superproduct systems

The converse direction

We saw above: a sufficient condition for the existence of a dilation for a
unital CP-semigroup T is that its GNS subproduct system embeds into a
product system.

What about the converse direction?
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Dilations and superproduct systems

Dilation ⇒ what?

Let (A, ϑ, p) be a dilation of a CP-semigroup T = (Ts)s∈S on B

Define a family (Es)s∈S of B-correspondences as follows:

E := Ap , Es := ϑs(p)E

C*-correspondence structure:

b · xs := ϑs(b)xs , xs · b := xb, xs ∈ Es, b ∈ B

〈xs, ys〉 := x∗sys ∈ pAp = B
Unit:

ηs := ϑs(p)p ∈ Es

(Es, ηs) represents T

〈ηs, b · ηs〉 = pϑs(p)ϑs(b)ϑs(p)p = pϑs(b)p = Ts(b)
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Dilations and superproduct systems

Dilation ⇒ what? II

Let T = (Ts)s∈S be a CP-semigroup on B, and (A, ϑ, p) a dilation
We constructed a family (Es)s∈S of B-corresopndences, and a family
(ηs)s∈S of unit vectors (ηs ∈ Es) that represent T :

〈ηs, b · ηs〉 = pϑs(b)p = Ts(b)

By uniqueness (Es, ηs) "contains" the GNS representation (Es, ξs) of Ts

Q: is (Es)s∈S a PRODUCT system?

A: sometimes, but not always.
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Dilations and superproduct systems

Dilation ⇒ what? III

Let T = (Ts)s∈S be a CP-semigroup on B, and (A, ϑ, p) a dilation. Let
((Es)s∈S, (ηs)s∈S) be as above, 〈ηs, b · ηs〉 = Ts(b)

Define
vs,t : Es � Et → Es+t

vs,t : xs � yt 7→ ϑt(xs)yt

A direct calculation shows:

〈xs � yt, x′s � y′t〉 = . . . = 〈ϑt(xs)yt, ϑt(x′s)y′t〉

Hence vs,t : Es � Et → Es+t is an isometry:

Es � Et ⊆ Es+t

(Es)s∈S is a superproduct system (but not always a product system)
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Dilations and superproduct systems

Superproduct systems

Definition

A superproduct system is a family E4 = (Es)s∈S of B-correspondences,
where E0 = B

, together with a family {vs,t : Es �Et → Es+t} of isometric
bimodule maps, which iterate associatively, i.e., the following diagram is
commutative (∀r, s, t):

Er � Es � Et
//

��

Er � Es+t

��

Er+s � Et
// Er+s+t

A product system is a superproduct system in which vs,t are all unitaries.
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Dilations and superproduct systems

Recap

Subproduct system: Es � Et ⊇ Es+t

Product system: Es � Et = Es+t

Unit: ξs � ξt = ξs+t

Superproduct system: Es � Et ⊆ Es+t

T on B a CP-semigroup  subproduct system E5 = (Es)s∈S of
B-correspondences (the GNS subproduct system) and a unit (ξs)s∈S
such that

Ts(b) = 〈ξs, bξs〉 for all s ∈ S, b ∈ B

We saw:
• If T unital, and if the GNS subproduct system can be embedded into
a product system, then T has a strict dilation (A = Ba(E), ϑ, p).
• If T has a dilation (A, ϑ, p), then the GNS subproduct system must
embed into a superproduct system.
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Dilations and superproduct systems

Dilations and superproduct systems

Theorem (S.-Skeide 2022)

Let T = (Ts)s∈S be a Markov semigroup on a von Neumann algebra B.
• A sufficient condition for T to a have a full and strict dilation, is that

the GNS subproduct system of T embeds into a product system.
• A necessary condition for T to have a dilation, is that the GNS

subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist a CP semigroup over N3 that has no dilation.

Proof

We built an example of a subproduct system over N3 that cannot be
embedded into a superproduct system.
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Dilations and superproduct systems

Example
Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e1, e2, e3 be the standard basis of N3

B = C, Eei = C2 and Eei+ej = C2 ⊗ C2 for all i, j and En = 0 for |n| > 2
Let

wei,ej = id : Eei+ej → Eei ⊗ Eej
for all (i, j) 6= (3, 2) and let we3,e2 = F : x⊗ y 7→ y ⊗ x be the flip

Suppose can embed in a superproduct system

using associativity we get

id⊗F = F ⊗ id

contradiction

We found a subproduct system that does not embed into superproduct
system ⇒ a CP-semigroup w/o dilation

QUIZ: What’s missing?
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Dilations and superproduct systems

Every* subproduct system gives rise to a CP-semigroup
But the subproduct system isn’t recovered as the GNS system

Given an adjointable subproduct system E5 = (Es)s∈S over B put

E =
⊕
s∈S
Es

vt : E � Et → E , vt(xs � yt) = w∗s,t(xs � yt) ∈ Es+t ⊂ E

Then
Tt(a) = vt(a� idt)v

∗
t , a ∈ Ba(E)

defines a strict CP-semigroup on Ba(E)

However, the GNS system F5 = (Fs)s∈S of T consists of correspondences
over Ba(E) not B so can’t be E5

QUESTION: F5 is certainly related to E5 but how?
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Dilations and superproduct systems

Morita equivalence

E a (full) correspondence from K(E) ⊆ Ba(E) to B

The dual correspondence E∗ = {x∗ : z 7→ 〈x, z〉 : x ∈ E} ⊆ Ba(E,B)
〈x∗, y∗〉 = xy∗ : z 7→ x〈y, z〉 , xy∗ ∈ K(E)

a (full) correspondence from B to K(E)

E∗ � E = B (x∗ ⊗ y 7→ 〈x, y〉) , E � E∗ = K(E) (x⊗ y∗ 7→ xy∗)

E is said to be a Morita equivalence from K(E) to B, and E∗ its inverse
If F a correspondence over K(E)  Morita equivalent correspondence E

E = E∗ �F � E

If (Fs) a sub/super-PS of K(E)-correspondences  sub/super-PS of B
correspondences (Es = E∗ �Fs � E)

E∗ �Fs � E � E∗ �Ft � E = E∗ �Fs �K(E)�Ft � E
= E∗ �Fs �Ft � E ⊇ E∗ �Fs+t � E
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Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on Ba(E)  GNS system F5 over Ba(E)

E∗ �Fs � E � E∗ �Ft � E = E∗ �Fs �K(E)�Ft � E
⊆ E∗ �Fs �Ft � E ⊇ E∗ �Fs+t � E

Theorem

If T is strict then E5 with Es = E∗ �Fs � E is a subproduct system, the
subproduct system of B-correspondences associated with T .

Corollary

For every adjointable subproduct system E5 = (Es)s∈S over B there is a
strict CP-semigroup T on Ba(E) for some B-correspondence E such that
E5 is the subproduct system of B-correspondences associated with T .

Return to example: E5 a subPS that does not embed into superPS
E5 Morita equivalent to the GNS system F5 of a CP-semigroup T
E5 does not embed ⇒ F5 does not embed ⇒ T has no dilation
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Dilations and superproduct systems

Dilations and superproduct systems: open problems

Theorem (S.-Skeide 2022)

Let T = (Ts)s∈S be a Markov semigroup on a von Neumann algebra B.
• A sufficient condition for T to a have a dilation, is that the GNS

subproduct system of T embeds into a product system.
• A necessary condition for T to have a dilation, is that the GNS

subproduct system of T embeds into a superproduct system.

Open problems:

• Does embeddability of the GNS system into a superproduct system
guarantee the existence of a dilation?

• Does the existence of a dilation imply the existence of a strict full
dilation? (full and strict dilation ∼= embed into PS)

• Can every superproduct system be embedded into a product system?
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Thank you slide

Thank you!
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