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The problem

We study the possible generalizations of Bhat's theorem to CP-semigroups
T on a C*-algebra B, paramaterized by a semigroup S C Ri

Definition
A dilation of T is a triple (A, 3, p), where A is a C*-algebra, ¥ = (¥5)ses

is an E-semigroup, and p € A is a projection, such that B = pAp, and such
that

Ts(pap) = pds(a)p forallae A,s €S

Questions

1. Find necessary & sufficient conditions for existence of dilation.

2. Fix k. Does every Markov semigroup over N¥ have a dilation?
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that has a B-valued inner product (-,-) : E x E — B
An operator t : E — FE is adjointable if there is another operator ¢t* such
that

(tx,y) = (z,t*y) , forallz,yeFE

B4 (E) — the algebra of adjointable (bounded linear) operators
K(FE) =span{zy* : x,y € E} — “compact" operators zy* : z — x(y, 2)

A C*-correspondence is a Hilbert C*-module that also has a left action
by adjointable operators

Tensor product E ® F: obtained from E ®, F' by inner product

(z@y,a' @y) = (y,(z,2)y)

6/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

Construction: on & = B ®q4 B put inner product

(a®b,c®@d)=b"T(a"c)d

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

Construction: on & = B ®q4 B put inner product
(a®b,c®@d)=b"T(a"c)d

and bimodule operation
a(x ® y)b = ax ® yb

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

Construction: on & = B ®q4 B put inner product
(a®b,c®@d)=b"T(a"c)d

and bimodule operation
a(x ® y)b = ax ® yb

Complete the quotient, and put £ =1 ® 1.

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

Construction: on & = B ®q4 B put inner product
(a®b,c®@d)=b"T(a"c)d

and bimodule operation
a(x ® y)b = ax ® yb

Complete the quotient, and put £ =1 ® 1. This works:

(&, b8)

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

Construction: on & = B ®q4 B put inner product
(a®b,c®@d)=b"T(a"c)d

and bimodule operation
a(x ® y)b = ax ® yb

Complete the quotient, and put £ =1 ® 1. This works:

€0 =(1v1,b®1)

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T': B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &€

and
T(b) =(&,b¢) forallbeB

Construction: on & = B ®q4 B put inner product
(a®b,c®@d)=b"T(a"c)d

and bimodule operation
a(x ® y)b = ax ® yb

Complete the quotient, and put £ =1 ® 1. This works:

(b)) = (1©1,b® 1) = 1*T(1*b)1 = T(b)

7/27



Subproduct systems and dilations

The GNS representation (£, &) of a CP map

Let T : B — B be a CP map. Then there exists a unique
C*-correspondence &£ over B, and a vector £ € £, such that

span BEB = &£

and
T(b) =(&,b¢) forallbe B

Construction: on & = B ®q4 B put inner product
(a®b,c®@d) =b"T(a"c)d

and bimodule operation
a(x ® y)b = ax ® yb

Complete the quotient, and put £ =1 ® 1. This works:

(b)) = (1©1,b® 1) = 1*T(1*b)1 = T(b)

8/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define
Wep i Espt = Es O &
by
Wst - a&s14b — als © &b

and then extend linearly.

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define

Ws,t - gs+t —+ & &

by
Wst - a&s14b — als © &b

and then extend linearly. We check:

<a§s © &b, a,é‘s © ftb/>

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define

Ws,t - gs+t —+ & &

by
Wst - a&s14b — als © &b

and then extend linearly. We check:

<a§s © &b, a,é‘s © ftb/> = <£tb7 <a557 a1§s>ftb/>

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define

Ws,t - gs+t —+ & &

by
Wst - a&s14b — als © &b

and then extend linearly. We check:

<a§s © &b, a,é‘s © ftb/> = <£tb7 <a557 a1§s>ftb/> =b" <§t> Ts(a*al)£t>b/

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define

Ws,t - gs+t —+ & &

by
Wst - a&s14b — als © &b

and then extend linearly. We check:

<a§s © &b, a,é‘s © ftb/> = <£tb7 <a557 a1§s>ftb/> =b" <§t> Ts(a*al)£t>b/ =

= BTy (Ty(a*d)V/

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define

Ws,t - gs+t —+ & &

by
Wst - a&s14b — als © &b

and then extend linearly. We check:

<a§s © &b, a,é‘s © ftb/> = <£tb7 <a557 a1§s>ftb/> =b" <§t> Ts(a*al)£t>b/ =

=0Ty (Ts(a*a))V = b* Ty s(a*a" )t/

9/27



Subproduct systems and dilations

The GNS representation of a CP-semigroup

Let ' = (Ts)ses be a CP-semigroup on B
For every s, let (&s,&s) be the GNS representation of T
For s,t € S, define

Ws,t - gs+t —+ & &

by
Wst - a&s14b — als © &b

and then extend linearly. We check:
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A product system is a subproduct system in which w; are all unitaries.
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Example of subproduct systems over C

Example (full tensor product). Let E be a Hilbert space. Define

E, = E®"

Then E® = (E,)nen is a subproduct system, in fact a product system:

Em ® En = E®m & E®n = E®(m+n) = Em+n

Example (symmetric tensor product). Let
En=span{r® ---@z:x€ L} CE,
Then £° = (€,)nen is a (proper) subproduct system
Emtn CERL®E,

Quiz: What is the CP-semigroup that £° is its GNS system?
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Reminder: The GNS representation (£,&) of a CP map

Let T : B — B be a CP map. Then there exists a unique
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Following Bhat-Skeide 2000, Muhly-Solel 2002 and S-Solel 2009, we found:

Theorem (S.-Skeide 2022)

A Markov semigroup T on B has a strict dilation (A = B*(E), v, p) if and
only if the GNS subproduct system of T' can be embedded into a product
system of B-correspondences.

Question: what about non strict or non-full A # B%(E)?
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T"(b) = pd™(b)p , foralln e N,be B
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Sufficient condition for dilation

Theorem (Reformulated)
Let T' be a Markov semigroup. If the GNS subproduct system of T can be
embedded into a product system, then T has a dilation.
Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra B. Then there exists a triple
(A, ¥, p) such that ¥ is a unital x-endomorphism and

T"(b) = pd™(b)p , foralln e N,be B

Proof. We need to show that the GNS subproduct system (&, )nen of the
semigroup (7, := T™),en embeds into a product system.
Define E,, = EP". Then Epyn — Em © &, , by induction:

En o En10E — - = EP"=E,

preserves structure! By the theorem above, T' has a dilation.
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Dilations and superproduct systems

The converse direction

We saw above: a sufficient condition for the existence of a dilation for a

unital CP-semigroup T is that its GNS subproduct system embeds into a
product system.
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The converse direction

We saw above: a sufficient condition for the existence of a dilation for a
unital CP-semigroup T is that its GNS subproduct system embeds into a
product system.

What about the converse direction?
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Dilations and superproduct systems

Dilation = what?

Let (A, ¥, p) be a dilation of a CP-semigroup 7' = (Ts)ses on B
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Let (A, ¥, p) be a dilation of a CP-semigroup 7' = (Ts)ses on B
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Ns = ﬁs(p)p € E;
(Es,ns) represents T

(15,0 - ms) = pds(p)Is(0)Is(p)p = pis(b)p = Ts(b)

16 /27



Dilations and superproduct systems

Dilation = what? 1l

Let 7' = (T5)ses be a CP-semigroup on B, and (A, 9, p) a dilation
We constructed a family (E5)ses of B-corresopndences, and a family
(ns)ses of unit vectors (ns € Ey) that represent T":

<T]Sa b- 7]5) = pﬁs(b)p = Ts(b)
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Dilations and superproduct systems

Dilation = what? 1l

Let 7' = (T5)ses be a CP-semigroup on B, and (A, 9, p) a dilation
We constructed a family (E5)ses of B-corresopndences, and a family
(ns)ses of unit vectors (ns € Ey) that represent T":

(ns,b-ns) = pds(b)p = Ts(b)
By uniqueness (Es,ns) "contains" the GNS representation (&, &) of T
Q: is (Ey)ses a PRODUCT system?

A: sometimes, but not always.
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Dilations and superproduct systems

Dilation = what? Il

Let T' = (T5)ses be a CP-semigroup on B, and (A, 9, p) a dilation. Let
((Es)s€S7 (ns)seS) be as above, <7787 b- 775) = Ts(b)
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Dilations and superproduct systems

Dilation = what? Il

Let T' = (Ts)ses be a CP-semigroup on B, and (A, ¥, p) a dilation. Let

((Es)s€S7 (ns)seS) be as above, <7]8) b- 775) = Ts(b)
Define

Vst ES ® Et — Es+t
Vst Ts O Yp = Vi(T5) Y

A direct calculation shows:
(s O yp, 2, O yp) = ... = (Fe(@s)ye, Ve () 1)
Hence vs; : By © By — Egyy is an isometry:
EsOFE C Egyy
(Es)ses is a superproduct system (but not always a product system)
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Dilations and superproduct systems

Superproduct systems

A superproduct system is a family E® = (E;)4es of B-correspondences,
where £y = B
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A superproduct system is a family E® = (E;)4es of B-correspondences,
where E = B3, together with a family {vs; : E; ©® E; — Egy} of isometric
bimodule maps, which iterate associatively, i.e., the following diagram is
commutative (Vr, s, t):
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Dilations and superproduct systems

Superproduct systems

Definition

A superproduct system is a family E® = (E;)4es of B-correspondences,
where E = B3, together with a family {vs; : E; ©® E; — Egy} of isometric
bimodule maps, which iterate associatively, i.e., the following diagram is
commutative (Vr, s, t):

E, OB, 0O —— E,.© Fsyy

| |

E iOF——E sy

A product system is a superproduct system in which v are all unitaries.
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Dilations and superproduct systems

Subproduct system: £ O & O syt
Product system: E;® Er = Esyy
Unit: §s ©& = Eoqt
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Dilations and superproduct systems

Subproduct system: £, ® & D Esit
Product system: E;® Er = Esyy
Unit: ’Ss © ft = £s+t
Superproduct system: E;® E; C Egyy
T on B a CP-semigroup ~ subproduct system £© = (&;)4es of
B-correspondences (the GNS subproduct system) and a unit (&;)ses
such that
Ts(b) = (&s,b8s) forall se S, be B
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Dilations and superproduct systems

Subproduct system: £ O & O syt
Product system: E;® Er = Esyy
Unit: ’Es © gt = {s—i—t
Superproduct system: E;® E; C Egyy
T on B a CP-semigroup ~ subproduct system £© = (&;)4es of
B-correspondences (the GNS subproduct system) and a unit (&;)ses
such that
Ts(b) = (&s,b8s) forall se S, be B

We saw:

e If T unital, and if the GNS subproduct system can be embedded into
a product system, then 7" has a strict dilation (A = B*(E), Y, p).

e If T has a dilation (A, ¥, p), then the GNS subproduct system must
embed into a superproduct system.
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Dilations and superproduct systems

Dilations and superproduct systems

Theorem (S.-Skeide 2022)
Let T = (Ts)ses be a Markov semigroup on a von Neumann algebra B.

e A sufficient condition for T to a have a full and strict dilation, is that
the GNS subproduct system of T embeds into a product system.

e A necessary condition for T to have a dilation, is that the GNS
subproduct system of T embeds into a superproduct system.
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Dilations and superproduct systems

Theorem (S.-Skeide 2022)
Let T = (Ts)ses be a Markov semigroup on a von Neumann algebra B.
e A suthicient condition for T to a have a full and strict dilation, is that
the GNS subproduct system of T embeds into a product system.
e A necessary condition for T to have a dilation, is that the GNS
subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist a CP semigroup over N that has no dilation.

Proof
We built an example of a subproduct system over N? that cannot be
embedded into a superproduct system.
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Dilations and superproduct systems

Example

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e1, e2, e3 be the standard basis of N3
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Dilations and superproduct systems

Example

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e1, e2, e3 be the standard basis of N3
B=C, &,=C*and &, 4e; = C*®@C? forall i, j and &, = 0 for [n| > 2
Let

We;e; = 1d : Eere; — Ee; @ Ee;

for all (4,7) # (3,2) and let wey e, = F : 2 Q@ y — y @ x be the flip
Suppose can embed in a superproduct system

using associativity we get
deF=F®id
contradiction

We found a subproduct system that does not embed into superproduct
system = a CP-semigroup w/o dilation

QUIZ: What's missing?
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Dilations and superproduct systems

Every* subproduct system gives rise to a CP-semigroup

But the subproduct system isn't recovered as the GNS system

Given an adjointable subproduct system £© = (&;)ses over B put

E:@gs

s€S
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Dilations and superproduct systems

Every* subproduct system gives rise to a CP-semigroup

But the subproduct system isn't recovered as the GNS system

Given an adjointable subproduct system £© = (&;)ses over B put

E:@gs

s€S

UtZEth%E
Then

v v(@s Oyr) = w (T Oy) €EEt CE

Ti(a) = vi(a©ide)v; , a€ BYE)
defines a strict CP-semigroup on B%(E)

However, the GNS system F© = (F)ses of T consists of correspondences
over B(E) not B so can't be £°

QUESTION: F© is certainly related to £° but how?
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The dual correspondence E* = {z* : z — (z,2) : © € E} C B*(E, B)

(*y" )y =ay* 1z x(y,2) , ay* € K(E)
a (full) correspondence from B to K(E)
E*OFE=B @@y~ (r,y), EOE"=K(E) (x @y" — xy*)
E is said to be a Morita equivalence from K(E) to B, and E* its inverse
If F a correspondence over K(E) ~~ Morita equivalent correspondence £

E=E*0OFOF

24 /27



Dilations and superproduct systems

Morita equivalence

E a (full) correspondence from K(E) C B*(E) to B
The dual correspondence E* = {z* : z — (z,2) : © € E} C B*(E, B)

(*y" )y =ay* 1z x(y,2) , ay* € K(E)
a (full) correspondence from B to K(E)
E*OFE=B @@y~ (r,y), EOE"=K(E) (x @y" — xy*)
E is said to be a Morita equivalence from K(E) to B, and E* its inverse
If F a correspondence over K(E) ~~ Morita equivalent correspondence £
E=E"OFOFE

If (Fs) a sub/super-PS of IC(E)-correspondences ~~ sub/super-PS of B
correspondences (€; = E* © Fs O F)

24 /27



Dilations and superproduct systems

Morita equivalence

E a (full) correspondence from K(E) C B*(E) to B
The dual correspondence E* = {z* : z — (z,2) : © € E} C B*(E, B)

(*y" )y =ay* 1z x(y,2) , ay* € K(E)

a (full) correspondence from B to K(E)

E*OFE=B @@y~ (r,y), EOE"=K(E) (x @y" — xy*)
E is said to be a Morita equivalence from K(E) to B, and E* its inverse
If F a correspondence over K(E) ~~ Morita equivalent correspondence £

E=E"OFOFE
If (Fs) a sub/super-PS of IC(E)-correspondences ~~ sub/super-PS of B
correspondences (€; = E* © Fs O F)
EFOF;0OFOFE 0 F 0 FE=E"0F;0KE)0FOF
=F'O0OF0OFROEDE O Fst OF

24 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on B%(E) ~~ GNS system F© over B*(E)

25 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on B%(E) ~~ GNS system F© over B*(E)

EF*OF,OFEOE 0F0E=E"0Fo0KE 0FROE
CEOF,0FOEDE OFOF

25 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on BY(E) ~~ GNS system F© over B*(E)
EFOF,0EOE 0OF0E=E0F0KE) 0FROE
CEOF,0F0EDE OFu ®F
Theorem

If T is strict then £ with & = E* ® Fs ® E is a subproduct system, the
subproduct system of B-correspondences associated with T.

25 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on BY(E) ~~ GNS system F© over B*(E)
EFOF,0EOE 0OF0E=E0F0KE) 0FROE
CEOF,0F0EDE OFu ®F
Theorem

If T is strict then £ with & = E* ® Fs ® E is a subproduct system, the
subproduct system of B-correspondences associated with T.

Corollary

For every adjointable subproduct system £E° = (E;)ses over B there is a
strict CP-semigroup T' on B%(E) for some B-correspondence E such that
EC is the subproduct system of B-correspondences associated with T .

25 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on BY(E) ~~ GNS system F© over B*(E)
EFOF,0EOE 0OF0E=E0F0KE) 0FROE
CEOF,0F0EDE OFu ®F
Theorem

If T is strict then £ with & = E* ® Fs ® E is a subproduct system, the
subproduct system of B-correspondences associated with T.

Corollary

For every adjointable subproduct system £E° = (E;)ses over B there is a
strict CP-semigroup T' on B%(E) for some B-correspondence E such that
EC is the subproduct system of B-correspondences associated with T .

Return to example: £€° a subPS that does not embed into superPS

25 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on B%(E) ~~ GNS system F© over B*(E)

EF*OF,OFEOE 0F0E=E"0Fo0KE 0FROE
CEOF,0FOEDE OFOF

Theorem

If T is strict then £ with & = E* ® Fs ® E is a subproduct system, the
subproduct system of B-correspondences associated with T.

Corollary

For every adjointable subproduct system £E° = (E;)ses over B there is a
strict CP-semigroup T' on B%(E) for some B-correspondence E such that
EC is the subproduct system of B-correspondences associated with T .

Return to example: £° a subPS that does not embed into superPS
£ Morita equivalent to the GNS system F© of a CP-semigroup T’

25 /27



Dilations and superproduct systems

ME subproduct system associated with a CP-semigroup

T CP-semigroup on B%(E) ~~ GNS system F© over B*(E)

EF*OF,OFEOE 0F0E=E"0Fo0KE 0FROE
CEOF,0FOEDE OFOF

Theorem

If T is strict then £ with & = E* ® Fs ® E is a subproduct system, the
subproduct system of B-correspondences associated with T.

Corollary

For every adjointable subproduct system £E° = (E;)ses over B there is a
strict CP-semigroup T' on B%(E) for some B-correspondence E such that
EC is the subproduct system of B-correspondences associated with T .

Return to example: £° a subPS that does not embed into superPS
£ Morita equivalent to the GNS system F© of a CP-semigroup T’

£© does not embed = F© does not embed = T has no dilation
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Dilations and superproduct systems: open problems

Theorem (S.-Skeide 2022)
Let T = (Ts)ses be a Markov semigroup on a von Neumann algebra B.

e A sufficient condition for T' to a have a dilation, is that the GNS
subproduct system of T embeds into a product system.

e A necessary condition for T to have a dilation, is that the GNS
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e Does embeddability of the GNS system into a superproduct system
guarantee the existence of a dilation?

e Does the existence of a dilation imply the existence of a strict full
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e Can every superproduct system be embedded into a product system?
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Thank youl!
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