CP-Semigroups and dilations, subproduct systems and superproduct systems

Orr Shalit (joint work with Michael Skeide)

Technion

Athens Functional Analysis Seminar, May 2022

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$ A family $T = (T_s)_{s \in \mathbb{S}}$ of maps on a unital C*-algebra \mathcal{B}

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

- T is said to be a CP-semigroup if
 - 1. T_s is a contractive CP (completely positive) map for all s
 - 2. $T_0 = \mathrm{id}_{\mathcal{B}}$ and $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

- T is said to be a **CP-semigroup** if
 - 1. T_s is a contractive CP (completely positive) map for all s
 - 2. $T_0 = \mathrm{id}_{\mathcal{B}}$ and $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$
- A CP-semigroup is a Markov semigroup if $T_s(1) = 1$ for all s

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

- T is said to be a **CP-semigroup** if
 - 1. T_s is a contractive CP (completely positive) map for all s
 - 2. $T_0 = \mathrm{id}_{\mathcal{B}}$ and $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$
- A CP-semigroup is a Markov semigroup if $T_s(1) = 1$ for all s
- An E-semigroup is a semigroup of *-endomorphisms

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

- T is said to be a **CP-semigroup** if
 - 1. T_s is a contractive CP (completely positive) map for all s
 - 2. $T_0 = \mathrm{id}_{\mathcal{B}}$ and $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$
- A CP-semigroup is a Markov semigroup if $T_s(1) = 1$ for all s
- An E-semigroup is a semigroup of *-endomorphisms
- Case of greatest interest: $\mathbb{S} = \mathbb{R}_+$, then Markov semigroups $T = (T_t)_{t \ge 0}$ have quantum dynamical interpretations:

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

A family $T = (T_s)_{s \in \mathbb{S}}$ of maps on a unital C*-algebra $\mathcal B$

- T is said to be a **CP-semigroup** if
 - 1. T_s is a contractive CP (completely positive) map for all s
 - 2. $T_0 = \mathrm{id}_{\mathcal{B}}$ and $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$
- A CP-semigroup is a Markov semigroup if $T_s(1) = 1$ for all s
- An E-semigroup is a semigroup of *-endomorphisms
- Case of greatest interest: $\mathbb{S} = \mathbb{R}_+$, then Markov semigroups $T = (T_t)_{t \ge 0}$ have quantum dynamical interpretations:

(Markov) $t \mapsto T_t(a)$ evolution in an irreversible quantum system

A semigroup $0 \in \mathbb{S} \subseteq \mathbb{R}^k_+$

A family $T = (T_s)_{s \in \mathbb{S}}$ of maps on a unital C*-algebra $\mathcal B$

- T is said to be a **CP-semigroup** if
 - 1. T_s is a contractive CP (completely positive) map for all s
 - 2. $T_0 = \mathrm{id}_{\mathcal{B}}$ and $T_{s+t} = T_s \circ T_t$, for all $s, t \in \mathbb{S}$
- A CP-semigroup is a Markov semigroup if $T_s(1) = 1$ for all s
- An E-semigroup is a semigroup of *-endomorphisms
- Case of greatest interest: $\mathbb{S} = \mathbb{R}_+$, then Markov semigroups $T = (T_t)_{t \ge 0}$ have quantum dynamical interpretations:

(Markov) $t \mapsto T_t(a)$ evolution in an irreversible quantum system

(***auto**) $t \mapsto \alpha_t(a)$ evolution in a reversible quantum system

Bhat's dilation theorem

Theorem (Bhat*, 1996)

Let $T = (T_t)_{t\geq 0}$ be a Markov-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and a unital E-semigroup $\vartheta = (\vartheta_t)_{t\geq 0}$ on $\mathcal{B}(K)$, such that

 $T_t(A) = P_H \vartheta_t(A) P_H$, for all $t \ge 0$ and $A \in \mathfrak{B}(H)$

Bhat's dilation theorem

Theorem (Bhat*, 1996)

Let $T = (T_t)_{t \ge 0}$ be a Markov-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and a unital E-semigroup $\vartheta = (\vartheta_t)_{t \ge 0}$ on $\mathcal{B}(K)$, such that

$$T_t(A) = P_H \vartheta_t(A) P_H$$
, for all $t \ge 0$ and $A \in \mathcal{B}(H)$

$$\begin{array}{ccc} \mathcal{B}(K) & & \stackrel{\vartheta_t}{\longrightarrow} \mathcal{B}(K) \\ & & \uparrow & & \downarrow^{P_H \bullet P_H} \\ \mathcal{B}(H) & & \stackrel{T_t}{\longrightarrow} \mathcal{B}(H) \end{array}$$

We study the possible generalizations of Bhat's theorem to CP-semigroups T on a C*-algebra \mathcal{B} , parameterized by a semigroup $\mathbb{S} \subseteq \mathbb{R}^k_+$.

We study the possible generalizations of Bhat's theorem to CP-semigroups T on a C*-algebra \mathcal{B} , parameterized by a semigroup $\mathbb{S} \subseteq \mathbb{R}^k_+$.

Definition

A dilation of T is a triple $(\mathcal{A}, \vartheta, p)$, where \mathcal{A} is a C*-algebra, $\vartheta = (\vartheta_s)_{s \in \mathbb{S}}$ is an E-semigroup, and $p \in \mathcal{A}$ is a projection, such that $\mathcal{B} = p\mathcal{A}p$, and such that

 $T_s(b) = p\vartheta_s(b)p$ for all $b \in \mathcal{B}, s \in \mathbb{S}$

We study the possible generalizations of Bhat's theorem to CP-semigroups T on a C*-algebra \mathcal{B} , parameterized by a semigroup $\mathbb{S} \subseteq \mathbb{R}^k_+$.

Definition

A dilation of T is a triple $(\mathcal{A}, \vartheta, p)$, where \mathcal{A} is a C*-algebra, $\vartheta = (\vartheta_s)_{s \in \mathbb{S}}$ is an E-semigroup, and $p \in \mathcal{A}$ is a projection, such that $\mathcal{B} = p\mathcal{A}p$, and such that

 $T_s(b) = p\vartheta_s(b)p$ for all $b \in \mathcal{B}, s \in \mathbb{S}$

Arveson, Bhat, Bhat-Skeide, Markiewicz, Muhly-Solel, Powers, SeLegue, S., S.-Solel, Skeide, Solel, Vernik,...

We study the possible generalizations of Bhat's theorem to CP-semigroups T on a C*-algebra \mathcal{B} , parameterized by a semigroup $\mathbb{S} \subseteq \mathbb{R}^k_+$

Definition

A dilation of T is a triple $(\mathcal{A}, \vartheta, p)$, where \mathcal{A} is a C*-algebra, $\vartheta = (\vartheta_s)_{s \in \mathbb{S}}$ is an E-semigroup, and $p \in \mathcal{A}$ is a projection, such that $\mathcal{B} = p\mathcal{A}p$, and such that

 $T_s(pap) = p\vartheta_s(a)p$ for all $a \in \mathcal{A}, s \in \mathbb{S}$

Questions

- 1. Find necessary & sufficient conditions for existence of dilation.
- 2. Fix k. Does every Markov semigroup over \mathbb{N}^k have a dilation?

Subproduct systems and dilations

Key tool: C*-correspondences

Subproduct systems and dilations

Key tool: C*-correspondences

Let \mathcal{B} be a C*-algebra.

Let \mathcal{B} be a C*-algebra. A Hilbert C*-module over \mathcal{B} is a right module E that has a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{B}$

Let \mathcal{B} be a C*-algebra. A Hilbert C*-module over \mathcal{B} is a right module E that has a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{B}$ An operator $t : E \to E$ is adjointable if there is another operator t^* such that

$$\langle tx, y \rangle = \langle x, t^*y \rangle$$
, for all $x, y \in E$

Let \mathcal{B} be a C*-algebra. A Hilbert C*-module over \mathcal{B} is a right module E that has a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{B}$ An operator $t : E \to E$ is adjointable if there is another operator t^* such that

$$\langle tx, y \rangle = \langle x, t^*y \rangle$$
, for all $x, y \in E$

 $\mathcal{B}^{a}(E)$ — the algebra of adjointable (bounded linear) operators

Let \mathcal{B} be a C*-algebra. A Hilbert C*-module over \mathcal{B} is a right module E that has a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{B}$ An operator $t : E \to E$ is adjointable if there is another operator t^* such that

$$\langle tx,y\rangle = \langle x,t^*y\rangle \quad,\quad \text{for all } x,y\in E$$

 $\mathbb{B}^{a}(E)$ — the algebra of adjointable (bounded linear) operators

 $\mathcal{K}(E) = \overline{\operatorname{span}}\{xy^*: x, y \in E\} - \text{``compact" operators } xy^*: z \mapsto x \langle y, z \rangle$

Let \mathcal{B} be a C*-algebra. A Hilbert C*-module over \mathcal{B} is a right module E that has a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{B}$ An operator $t : E \to E$ is adjointable if there is another operator t^* such that

$$\langle tx, y \rangle = \langle x, t^*y \rangle$$
, for all $x, y \in E$

 $\mathcal{B}^{a}(E)$ — the algebra of adjointable (bounded linear) operators

 $\mathcal{K}(E) = \overline{\operatorname{span}}\{xy^*: x, y \in E\} - \text{``compact" operators } xy^*: z \mapsto x \langle y, z \rangle$

A **C*-correspondence** is a Hilbert C*-module that also has a left action by adjointable operators

Let \mathcal{B} be a C*-algebra. A Hilbert C*-module over \mathcal{B} is a right module E that has a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{B}$ An operator $t : E \to E$ is adjointable if there is another operator t^* such that

$$\langle tx, y \rangle = \langle x, t^*y \rangle$$
, for all $x, y \in E$

 $\mathcal{B}^{a}(E)$ — the algebra of adjointable (bounded linear) operators

 $\mathcal{K}(E) = \overline{\operatorname{span}}\{xy^*: x, y \in E\} - \text{``compact" operators } xy^*: z \mapsto x\langle y, z\rangle$

A **C*-correspondence** is a Hilbert C*-module that also has a left action by adjointable operators

Tensor product $E \odot F$: obtained from $E \otimes_{alg} F$ by inner product

$$\langle x \otimes y, x' \otimes y' \rangle := \langle y, \langle x, x' \rangle y' \rangle$$

Subproduct systems and dilations

The GNS representation (\mathcal{E},ξ) of a CP map

Subproduct systems and dilations

The GNS representation (\mathcal{E},ξ) of a CP map

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}=\mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span} \overline{\mathcal{B}\xi \mathcal{B}} = \mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span} \overline{\mathcal{B}\xi \mathcal{B}} = \mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x\otimes y)b = ax\otimes yb$$

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span} \overline{\mathcal{B}\xi \mathcal{B}} = \mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x\otimes y)b = ax\otimes yb$$

Complete the quotient, and put $\xi = 1 \otimes 1$.

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span} \overline{\mathcal{B}\xi \mathcal{B}} = \mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x\otimes y)b = ax\otimes yb$$

$$\langle \xi, b\xi \rangle$$

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}=\mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x\otimes y)b = ax\otimes yb$$

$$\langle \xi, b\xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle$$

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

$$\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}=\mathcal{E}$$

and

$$T(b) = \langle \xi, b\xi \rangle$$
 for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

$$\langle a \otimes b, c \otimes d \rangle = b^* T(a^*c) d$$

and bimodule operation

$$a(x \otimes y)b = ax \otimes yb$$

$$\langle \xi, b\xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^*T(1^*b)1 = T(b)$$

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

 $\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}=\mathcal{E}$

and

 $T(b) = \langle \xi, b\xi \rangle$ for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

 $\langle a \otimes b, c \otimes d \rangle = b^*T(a^*c)d$

and bimodule operation

$$a(x \otimes y)b = ax \otimes yb$$

$$\langle \xi, b\xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^* T(1^*b) 1 = T(b)$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly. We check:

 $\langle a\xi_s \odot \xi_t b, a'\xi_s \odot \xi_t b' \rangle$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly. We check:

$$\langle a\xi_s \odot \xi_t b, a'\xi_s \odot \xi_t b' \rangle = \langle \xi_t b, \langle a\xi_s, a'\xi_s \rangle \xi_t b' \rangle$$
Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly. We check:

 $\langle a\xi_s \odot \xi_t b, a'\xi_s \odot \xi_t b' \rangle = \langle \xi_t b, \langle a\xi_s, a'\xi_s \rangle \xi_t b' \rangle = b^* \langle \xi_t, T_s(a^*a')\xi_t \rangle b'$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly. We check:

 $\langle a\xi_s \odot \xi_t b, a'\xi_s \odot \xi_t b' \rangle = \langle \xi_t b, \langle a\xi_s, a'\xi_s \rangle \xi_t b' \rangle = b^* \langle \xi_t, T_s(a^*a')\xi_t \rangle b' =$

 $= b^* T_t(T_s(a^*a'))b'$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly. We check:

 $\langle a\xi_s \odot \xi_t b, a'\xi_s \odot \xi_t b' \rangle = \langle \xi_t b, \langle a\xi_s, a'\xi_s \rangle \xi_t b' \rangle = b^* \langle \xi_t, T_s(a^*a')\xi_t \rangle b' =$

$$= b^* T_t(T_s(a^*a'))b' = b^* T_{t+s}(a^*a')b'$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} For every s, let (\mathcal{E}_s, ξ_s) be the GNS representation of T_s For $s, t \in \mathbb{S}$, define

$$w_{s,t}: \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t$$

by

$$w_{s,t}:a\xi_{s+t}b\mapsto a\xi_s\odot\xi_tb$$

and then extend linearly. We check:

$$\langle a\xi_s \odot \xi_t b, a'\xi_s \odot \xi_t b' \rangle = \langle \xi_t b, \langle a\xi_s, a'\xi_s \rangle \xi_t b' \rangle = b^* \langle \xi_t, T_s(a^*a')\xi_t \rangle b' =$$

$$=b^*T_t(T_s(a^*a'))b'=b^*T_{t+s}(a^*a')b'=\langle a\xi_{s+t}b,a'\xi_{s+t}b'\rangle$$

 $w_{s,t}$ is an isometry!

Definition (S.-Solel and Bhat-Mukherjee; Viselter; S.-Skeide)

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $\mathcal{E}_0 = \mathcal{B}$

Definition (S.-Solel and Bhat-Mukherjee; Viselter; S.-Skeide)

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $\mathcal{E}_0 = \mathcal{B}$, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate co-associatively

Definition (S.-Solel and Bhat-Mukherjee; Viselter; S.-Skeide)

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $\mathcal{E}_0 = \mathcal{B}$, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate co-associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

Definition (S.-Solel and Bhat-Mukherjee; Viselter; S.-Skeide)

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $\mathcal{E}_0 = \mathcal{B}$, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate co-associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

A product system is a subproduct system in which $w_{s,t}$ are all unitaries.

Definition (S.-Solel and Bhat-Mukherjee; Viselter; S.-Skeide)

A subproduct system is a family $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $\mathcal{E}_0 = \mathcal{B}$, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \odot \mathcal{E}_t\}$ of isometric bimodule maps, which iterate co-associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

A product system is a subproduct system in which $w_{s,t}$ are all unitaries.

Definition

A family $\{\xi_s \in \mathcal{E}_s\}_{s \in \mathbb{S}}$ is called a **unit** if $w_{s,t}\xi_{s+t} = \xi_s \odot \xi_t$ for all s, t.

Example (full tensor product). Let E be a Hilbert space. Define

 $E_n = E^{\otimes n}$

Example (full tensor product). Let E be a Hilbert space. Define

$$E_n = E^{\otimes n}$$

Then $E^{\odot} = (E_n)_{n \in \mathbb{N}}$ is a subproduct system, in fact a product system:

Example (full tensor product). Let E be a Hilbert space. Define

$$E_n = E^{\otimes n}$$

Then $E^{\odot} = (E_n)_{n \in \mathbb{N}}$ is a subproduct system, in fact a product system:

 $E_m \otimes E_n = E^{\otimes m} \otimes E^{\otimes n}$

Example (full tensor product). Let E be a Hilbert space. Define

$$E_n = E^{\otimes n}$$

Then $E^{\odot} = (E_n)_{n \in \mathbb{N}}$ is a subproduct system, in fact a product system:

$$E_m \otimes E_n = E^{\otimes m} \otimes E^{\otimes n} = E^{\otimes (m+n)} = E_{m+n}$$

Example of subproduct systems over ${\mathbb C}$

Example (full tensor product). Let E be a Hilbert space. Define

$$E_n = E^{\otimes n}$$

Then $E^{\odot} = (E_n)_{n \in \mathbb{N}}$ is a subproduct system, in fact a product system:

$$E_m \otimes E_n = E^{\otimes m} \otimes E^{\otimes n} = E^{\otimes (m+n)} = E_{m+n}$$

Example (symmetric tensor product). Let

$$\mathcal{E}_n = \overline{\operatorname{span}} \{ x \otimes \cdots \otimes x : x \in E \} \subset E_n$$

Example (full tensor product). Let E be a Hilbert space. Define

$$E_n = E^{\otimes n}$$

Then $E^{\odot} = (E_n)_{n \in \mathbb{N}}$ is a subproduct system, in fact a product system:

$$E_m \otimes E_n = E^{\otimes m} \otimes E^{\otimes n} = E^{\otimes (m+n)} = E_{m+n}$$

Example (symmetric tensor product). Let

$$\mathcal{E}_n = \overline{\operatorname{span}} \{ x \otimes \cdots \otimes x : x \in E \} \subset E_n$$

Then $\mathcal{E}^{\otimes} = (\mathcal{E}_n)_{n \in \mathbb{N}}$ is a (proper) subproduct system

$$\mathcal{E}_{m+n} \subseteq \mathcal{E}_m \otimes \mathcal{E}_n$$

Example (full tensor product). Let E be a Hilbert space. Define

$$E_n = E^{\otimes n}$$

Then $E^{\odot} = (E_n)_{n \in \mathbb{N}}$ is a subproduct system, in fact a product system:

$$E_m \otimes E_n = E^{\otimes m} \otimes E^{\otimes n} = E^{\otimes (m+n)} = E_{m+n}$$

Example (symmetric tensor product). Let

$$\mathcal{E}_n = \overline{\operatorname{span}} \{ x \otimes \cdots \otimes x : x \in E \} \subset E_n$$

Then $\mathcal{E}^{\otimes} = (\mathcal{E}_n)_{n \in \mathbb{N}}$ is a (proper) subproduct system

$$\mathcal{E}_{m+n} \subseteq \mathcal{E}_m \otimes \mathcal{E}_n$$

Quiz: What is the CP-semigroup that \mathcal{E}^{\otimes} is its GNS system?

Reminder: The GNS representation (\mathcal{E},ξ) of a CP map

Let $T : \mathcal{B} \to \mathcal{B}$ be a CP map. Then there exists a unique C*-correspondence \mathcal{E} over \mathcal{B} , and a vector $\xi \in \mathcal{E}$, such that

 $\operatorname{span}\overline{\mathcal{B}\xi\mathcal{B}}=\mathcal{E}$

and

 $T(b) = \langle \xi, b\xi \rangle$ for all $b \in \mathcal{B}$

Construction: on $\mathcal{E}_0 = \mathcal{B} \otimes_{alg} \mathcal{B}$ put inner product

 $\langle a \otimes b, c \otimes d \rangle = b^*T(a^*c)d$

and bimodule operation

$$a(x\otimes y)b = ax\otimes yb$$

Complete the quotient, and put $\xi = 1 \otimes 1$. This works:

$$\langle \xi, b\xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^*T(1^*b)1 = T(b)$$

Subproduct system: $\mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t}$

Subproduct system: Product system:

$$\mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t}$$
$$E_s \odot E_t = E_{s+t}$$

Subproduct system: Product system: Unit:

$$\mathcal{E}_{s} \odot \mathcal{E}_{t} \supseteq \mathcal{E}_{s+t}$$
$$E_{s} \odot E_{t} = E_{s+t}$$
$$\xi_{s} \odot \xi_{t} = \xi_{s+t}$$

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$

 $T_s(b) = \langle \xi_s, b\xi_s \rangle$ for all $s \in \mathbb{S}, b \in \mathcal{B}$

Following Bhat-Skeide 2000, Muhly-Solel 2002 and S-Solel 2009, we found:

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$

Following Bhat-Skeide 2000, Muhly-Solel 2002 and S-Solel 2009, we found:

Theorem (S.-Skeide 2022)

A Markov semigroup T on \mathcal{B} has a strict dilation ($\mathcal{A} = \mathbb{B}^{a}(E), \vartheta, p$) if and only if the GNS subproduct system of T can be embedded into a product system of \mathcal{B} -correspondences.

 $T_s(b) = \langle \xi_s, b\xi_s \rangle$ for all $s \in \mathbb{S}, b \in \mathcal{B}$

Following Bhat-Skeide 2000, Muhly-Solel 2002 and S-Solel 2009, we found:

Theorem (S.-Skeide 2022)

A Markov semigroup T on \mathcal{B} has a strict dilation ($\mathcal{A} = \mathcal{B}^a(E), \vartheta, p$) if and only if the GNS subproduct system of T can be embedded into a product system of \mathcal{B} -correspondences.

Question: what about non strict or non-full $\mathcal{A} \neq \mathcal{B}^{a}(E)$?

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra \mathcal{B} . Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that ϑ is a unital *-endomorphism and

 $T^n(b) = p\vartheta^n(b)p$, for all $n \in \mathbb{N}, b \in \mathcal{B}$

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra \mathcal{B} . Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that ϑ is a unital *-endomorphism and

 $T^n(b) = p\vartheta^n(b)p$, for all $n \in \mathbb{N}, b \in \mathcal{B}$

Proof. We need to show that the GNS subproduct system $(\mathcal{E}_n)_{n\in\mathbb{N}}$ of the semigroup $(T_n := T^n)_{n\in\mathbb{N}}$ embeds into a product system.

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra \mathcal{B} . Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that ϑ is a unital *-endomorphism and

 $T^{n}(b) = p\vartheta^{n}(b)p$, for all $n \in \mathbb{N}, b \in \mathcal{B}$

Proof. We need to show that the GNS subproduct system $(\mathcal{E}_n)_{n\in\mathbb{N}}$ of the semigroup $(T_n := T^n)_{n\in\mathbb{N}}$ embeds into a product system. Define $E_n = \mathcal{E}_1^{\odot n}$.

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra \mathcal{B} . Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that ϑ is a unital *-endomorphism and

 $T^{n}(b) = p\vartheta^{n}(b)p$, for all $n \in \mathbb{N}, b \in \mathcal{B}$

Proof. We need to show that the GNS subproduct system $(\mathcal{E}_n)_{n\in\mathbb{N}}$ of the semigroup $(T_n := T^n)_{n\in\mathbb{N}}$ embeds into a product system. Define $E_n = \mathcal{E}_1^{\odot n}$. Then $\mathcal{E}_{m+n} \hookrightarrow \mathcal{E}_m \odot \mathcal{E}_n$

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra \mathcal{B} . Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that ϑ is a unital *-endomorphism and

 $T^n(b) = p\vartheta^n(b)p$, for all $n \in \mathbb{N}, b \in \mathcal{B}$

Proof. We need to show that the GNS subproduct system $(\mathcal{E}_n)_{n\in\mathbb{N}}$ of the semigroup $(T_n := T^n)_{n\in\mathbb{N}}$ embeds into a product system. Define $E_n = \mathcal{E}_1^{\odot n}$. Then $\mathcal{E}_{m+n} \hookrightarrow \mathcal{E}_m \odot \mathcal{E}_n$, by induction:

$$\mathcal{E}_n \hookrightarrow \mathcal{E}_{n-1} \odot \mathcal{E}_1 \hookrightarrow \cdots \hookrightarrow \mathcal{E}_1^{\odot n} = E_n$$

preserves structure!

Theorem (Reformulated)

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded into a **product system**, then T has a dilation.

Corollary (Bhat-Skeide 2000)

Let T be a UCP map on a C*-algebra \mathcal{B} . Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that ϑ is a unital *-endomorphism and

 $T^n(b) = p\vartheta^n(b)p$, for all $n \in \mathbb{N}, b \in \mathcal{B}$

Proof. We need to show that the GNS subproduct system $(\mathcal{E}_n)_{n\in\mathbb{N}}$ of the semigroup $(T_n := T^n)_{n\in\mathbb{N}}$ embeds into a product system. Define $E_n = \mathcal{E}_1^{\odot n}$. Then $\mathcal{E}_{m+n} \hookrightarrow \mathcal{E}_m \odot \mathcal{E}_n$, by induction:

$$\mathcal{E}_n \hookrightarrow \mathcal{E}_{n-1} \odot \mathcal{E}_1 \hookrightarrow \cdots \hookrightarrow \mathcal{E}_1^{\odot n} = E_n$$

preserves structure! By the theorem above, T has a dilation.

The converse direction

We saw above: a sufficient condition for the existence of a dilation for a unital CP-semigroup T is that its GNS subproduct system embeds into a product system.

The converse direction

- We saw above: a sufficient condition for the existence of a dilation for a unital CP-semigroup T is that its GNS subproduct system embeds into a product system.
- What about the converse direction?

Dilation \Rightarrow what?

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B}

Dilation \Rightarrow what?

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p$$

Dilation \Rightarrow what?

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$
Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b) x_s$$

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s$$
, $x_s \cdot b := xb$, $x_s \in E_s, b \in \mathcal{B}$

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s$$
, $x_s \cdot b := xb$, $x_s \in E_s, b \in \mathcal{B}$

$$\langle x_s, y_s \rangle := x_s^* y_s \in p\mathcal{A}p = \mathcal{B}$$

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s$$
, $x_s \cdot b := xb$, $x_s \in E_s, b \in \mathcal{B}$

$$\langle x_s, y_s \rangle := x_s^* y_s \in p\mathcal{A}p = \mathcal{B}$$

Unit:

$$\eta_s := \vartheta_s(p)p \in E_s$$

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s$$
, $x_s \cdot b := xb$, $x_s \in E_s, b \in \mathcal{B}$

$$\langle x_s, y_s \rangle := x_s^* y_s \in p\mathcal{A}p = \mathcal{B}$$

Unit:

$$\eta_s := \vartheta_s(p)p \in E_s$$

 (E_s,η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle$$

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s$$
, $x_s \cdot b := xb$, $x_s \in E_s, b \in \mathcal{B}$

$$\langle x_s, y_s \rangle := x_s^* y_s \in p\mathcal{A}p = \mathcal{B}$$

Unit:

$$\eta_s := \vartheta_s(p)p \in E_s$$

 (E_s,η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(p) \vartheta_s(b) \vartheta_s(p) p = p \vartheta_s(b) p$$

Let $(\mathcal{A}, \vartheta, p)$ be a dilation of a CP-semigroup $T = (T_s)_{s \in \mathbb{S}}$ on \mathcal{B} Define a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences as follows:

$$E := \mathcal{A}p \quad , \quad E_s := \vartheta_s(p)E$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s$$
, $x_s \cdot b := xb$, $x_s \in E_s, b \in \mathcal{B}$

$$\langle x_s, y_s \rangle := x_s^* y_s \in p\mathcal{A}p = \mathcal{B}$$

Unit:

$$\eta_s := \vartheta_s(p)p \in E_s$$

 (E_s,η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(p) \vartheta_s(b) \vartheta_s(p) p = p \vartheta_s(b) p = T_s(b)$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b)$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b)$$

By uniqueness (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of T_s

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b)$$

By uniqueness (E_s,η_s) "contains" the GNS representation (\mathcal{E}_s,ξ_s) of T_s

Q:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b)$$

By uniqueness (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of T_s

Q: is $(E_s)_{s\in\mathbb{S}}$ a **PRODUCT** system?

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b)$$

By uniqueness (E_s,η_s) "contains" the GNS representation (\mathcal{E}_s,ξ_s) of T_s

Q: is
$$(E_s)_{s\in\mathbb{S}}$$
 a **PRODUCT** system?
A:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation We constructed a family $(E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -corresopndences, and a family $(\eta_s)_{s \in \mathbb{S}}$ of unit vectors $(\eta_s \in E_s)$ that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p \vartheta_s(b) p = T_s(b)$$

By uniqueness (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of T_s

Q: is
$$(E_s)_{s\in\mathbb{S}}$$
 a **PRODUCT** system?

A: sometimes, but not always.

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$

Let $T=(T_s)_{s\in\mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A},\vartheta,p)$ a dilation. Let $((E_s)_{s\in\mathbb{S}},(\eta_s)_{s\in\mathbb{S}})$ be as above, $\langle\eta_s,b\cdot\eta_s\rangle=T_s(b)$ Define

 $v_{s,t}: E_s \odot E_t \to E_{s+t}$ $v_{s,t}: x_s \odot y_t \mapsto \vartheta_t(x_s)y_t$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$ Define

$$v_{s,t}: E_s \odot E_t \to E_{s+t}$$
$$v_{s,t}: x_s \odot y_t \mapsto \vartheta_t(x_s)y_t$$

A direct calculation shows:

$$\langle x_s \odot y_t, x'_s \odot y'_t \rangle = \ldots = \langle \vartheta_t(x_s)y_t, \vartheta_t(x'_s)y'_t \rangle$$

Hence $v_{s,t}: E_s \odot E_t \to E_{s+t}$ is an isometry:

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$ Define

$$v_{s,t}: E_s \odot E_t \to E_{s+t}$$
$$v_{s,t}: x_s \odot y_t \mapsto \vartheta_t(x_s)y_t$$

A direct calculation shows:

$$\langle x_s \odot y_t, x'_s \odot y'_t \rangle = \ldots = \langle \vartheta_t(x_s)y_t, \vartheta_t(x'_s)y'_t \rangle$$

Hence $v_{s,t}: E_s \odot E_t \to E_{s+t}$ is an isometry:

$$E_s \odot E_t \subseteq E_{s+t}$$

Let $T = (T_s)_{s \in \mathbb{S}}$ be a CP-semigroup on \mathcal{B} , and $(\mathcal{A}, \vartheta, p)$ a dilation. Let $((E_s)_{s \in \mathbb{S}}, (\eta_s)_{s \in \mathbb{S}})$ be as above, $\langle \eta_s, b \cdot \eta_s \rangle = T_s(b)$ Define

$$v_{s,t}: E_s \odot E_t \to E_{s+t}$$
$$v_{s,t}: x_s \odot y_t \mapsto \vartheta_t(x_s)y_t$$

A direct calculation shows:

$$\langle x_s \odot y_t, x'_s \odot y'_t \rangle = \ldots = \langle \vartheta_t(x_s)y_t, \vartheta_t(x'_s)y'_t \rangle$$

Hence $v_{s,t}: E_s \odot E_t \to E_{s+t}$ is an isometry:

$$E_s \odot E_t \subseteq E_{s+t}$$

 $(E_s)_{s\in\mathbb{S}}$ is a superproduct system (but not always a product system)

Definition

A superproduct system is a family $E^{\otimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $E_0 = \mathcal{B}$

Definition

A superproduct system is a family $E^{\otimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $E_0 = \mathcal{B}$, together with a family $\{v_{s,t} : E_s \odot E_t \to E_{s+t}\}$ of isometric bimodule maps, which iterate associatively

Definition

A superproduct system is a family $E^{\bigotimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $E_0 = \mathcal{B}$, together with a family $\{v_{s,t} : E_s \odot E_t \to E_{s+t}\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

Definition

A superproduct system is a family $E^{\bigotimes} = (E_s)_{s \in \mathbb{S}}$ of \mathcal{B} -correspondences, where $E_0 = \mathcal{B}$, together with a family $\{v_{s,t} : E_s \odot E_t \to E_{s+t}\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

A **product system** is a superproduct system in which $v_{s,t}$ are all unitaries.

Subproduct system: Product system: Unit:

$$\begin{aligned} \mathcal{E}_s \odot \mathcal{E}_t &\supseteq \mathcal{E}_{s+t} \\ E_s \odot E_t &= E_{s+t} \\ \xi_s \odot \xi_t &= \xi_{s+t} \end{aligned}$$

Subproduct system: Product system: Unit:

$$\mathcal{E}_{s} \odot \mathcal{E}_{t} \supseteq \mathcal{E}_{s+t}$$
$$E_{s} \odot E_{t} = E_{s+t}$$
$$\xi_{s} \odot \xi_{t} = \xi_{s+t}$$
$$E \supset E \subset E$$

Superproduct system: $E_s \odot E_t \subseteq E_{s+t}$

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$

We saw:

 If T unital, and if the GNS subproduct system can be embedded into a product system, then T has a strict dilation (A = B^a(E), θ, p).

$$T_s(b) = \langle \xi_s, b\xi_s \rangle$$
 for all $s \in \mathbb{S}, b \in \mathcal{B}$

We saw:

- If T unital, and if the GNS subproduct system can be embedded into a product system, then T has a strict dilation $(\mathcal{A} = \mathcal{B}^a(E), \vartheta, p)$.
- If T has a dilation $(\mathcal{A}, \vartheta, p)$, then the GNS subproduct system must embed into a superproduct system.

Dilations and superproduct systems

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a full and strict dilation, is that the GNS subproduct system of T embeds into a product system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Dilations and superproduct systems

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a full and strict dilation, is that the GNS subproduct system of T embeds into a product system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist a CP semigroup over \mathbb{N}^3 that has **no** dilation.

Dilations and superproduct systems

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a full and strict dilation, is that the GNS subproduct system of T embeds into a product system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist a CP semigroup over \mathbb{N}^3 that has **no** dilation.

Proof

We built an example of a subproduct system over \mathbb{N}^3 that cannot be embedded into a superproduct system.

Example Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i+e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i + e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2Let

$$w_{e_i,e_j} = \mathbf{id} : \mathcal{E}_{e_i+e_j} \to \mathcal{E}_{e_i} \otimes \mathcal{E}_{e_j}$$

for all $(i, j) \neq (3, 2)$

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i + e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2Let

$$w_{e_i,e_j} = \mathbf{id} : \mathcal{E}_{e_i+e_j} \to \mathcal{E}_{e_i} \otimes \mathcal{E}_{e_j}$$

for all $(i, j) \neq (3, 2)$ and let $w_{e_3, e_2} = \mathcal{F} : x \otimes y \mapsto y \otimes x$ be the flip

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i+e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2Let

$$w_{e_i,e_j} = \mathbf{id} : \mathcal{E}_{e_i+e_j} \to \mathcal{E}_{e_i} \otimes \mathcal{E}_{e_j}$$

for all $(i, j) \neq (3, 2)$ and let $w_{e_3, e_2} = \mathcal{F} : x \otimes y \mapsto y \otimes x$ be the flip Suppose can embed in a superproduct system

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i + e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2Let

$$w_{e_i,e_j} = \mathbf{id} : \mathcal{E}_{e_i+e_j} \to \mathcal{E}_{e_i} \otimes \mathcal{E}_{e_j}$$

for all $(i, j) \neq (3, 2)$ and let $w_{e_3, e_2} = \mathcal{F} : x \otimes y \mapsto y \otimes x$ be the flip Suppose can embed in a superproduct system using associativity we get

$$\mathbf{id}\otimes \mathcal{F}=\mathcal{F}\otimes \mathbf{id}$$

contradiction
Example

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i+e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2Let

$$w_{e_i,e_j} = \mathbf{id} : \mathcal{E}_{e_i+e_j} \to \mathcal{E}_{e_i} \otimes \mathcal{E}_{e_j}$$

for all $(i, j) \neq (3, 2)$ and let $w_{e_3, e_2} = \mathcal{F} : x \otimes y \mapsto y \otimes x$ be the flip Suppose can embed in a superproduct system using associativity we get

$$\mathbf{id}\otimes \mathcal{F}=\mathcal{F}\otimes \mathbf{id}$$

contradiction

We found a subproduct system that does not embed into superproduct system \Rightarrow a CP-semigroup w/o dilation

Example

Subproduct system of Hilbert spaces that does not embed into a superproduct system

Let e_1, e_2, e_3 be the standard basis of \mathbb{N}^3 $\mathcal{B} = \mathbb{C}$, $\mathcal{E}_{e_i} = \mathbb{C}^2$ and $\mathcal{E}_{e_i+e_j} = \mathbb{C}^2 \otimes \mathbb{C}^2$ for all i, j and $\mathcal{E}_n = 0$ for |n| > 2Let

$$w_{e_i,e_j} = \mathbf{id} : \mathcal{E}_{e_i+e_j} \to \mathcal{E}_{e_i} \otimes \mathcal{E}_{e_j}$$

for all $(i, j) \neq (3, 2)$ and let $w_{e_3, e_2} = \mathcal{F} : x \otimes y \mapsto y \otimes x$ be the flip Suppose can embed in a superproduct system using associativity we get

$$\mathbf{id}\otimes \mathcal{F}=\mathcal{F}\otimes \mathbf{id}$$

contradiction

We found a subproduct system that does not embed into superproduct system \Rightarrow a CP-semigroup w/o dilation

QUIZ: What's missing?

Given an adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s\in\mathbb{S}}$ over \mathcal{B} put

$$E = \bigoplus_{s \in \mathbb{S}} \mathcal{E}_s$$

Given an adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ over \mathcal{B} put

$$E = \bigoplus_{s \in \mathbb{S}} \mathcal{E}_s$$

 $v_t: E \odot \mathcal{E}_t \to E$, $v_t(x_s \odot y_t) = w_{s,t}^*(x_s \odot y_t) \in \mathcal{E}_{s+t} \subset E$

Given an adjointable subproduct system $\mathcal{E}^{\oslash}=(\mathcal{E}_s)_{s\in\mathbb{S}}$ over \mathcal{B} put

$$E = \bigoplus_{s \in \mathbb{S}} \mathcal{E}_s$$

$$v_t: E \odot \mathcal{E}_t \to E$$
 , $v_t(x_s \odot y_t) = \mathbf{w}_{s,t}^*(x_s \odot y_t) \in \mathcal{E}_{s+t} \subset E$

$$T_t(a) = v_t(a \odot \mathbf{id}_t)v_t^* \quad , \quad a \in \mathcal{B}^a(E)$$

defines a strict CP-semigroup on $\mathcal{B}^a(E)$

Then

Given an adjointable subproduct system $\mathcal{E}^{\oslash}=(\mathcal{E}_s)_{s\in\mathbb{S}}$ over \mathcal{B} put

$$E = \bigoplus_{s \in \mathbb{S}} \mathcal{E}_s$$

$$v_t: E \odot \mathcal{E}_t \to E$$
 , $v_t(x_s \odot y_t) = w_{s,t}^*(x_s \odot y_t) \in \mathcal{E}_{s+t} \subset E$

Then

$$T_t(a) = v_t(a \odot \mathbf{id}_t)v_t^* \quad , \quad a \in \mathfrak{B}^a(E)$$

defines a strict CP-semigroup on $\mathcal{B}^{a}(E)$

However, the GNS system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in \mathbb{S}}$ of T consists of correspondences over $\mathcal{B}^a(E)$ not \mathcal{B} so can't be \mathcal{E}^{\otimes}

Given an adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s\in\mathbb{S}}$ over \mathcal{B} put

$$E = \bigoplus_{s \in \mathbb{S}} \mathcal{E}_s$$

$$v_t: E \odot \mathcal{E}_t \to E$$
 , $v_t(x_s \odot y_t) = w_{s,t}^*(x_s \odot y_t) \in \mathcal{E}_{s+t} \subset E$

Then

$$T_t(a) = v_t(a \odot \mathbf{id}_t)v_t^* \quad , \quad a \in \mathfrak{B}^a(E)$$

defines a strict CP-semigroup on $\mathcal{B}^{a}(E)$

However, the GNS system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in \mathbb{S}}$ of T consists of correspondences over $\mathcal{B}^a(E)$ not \mathcal{B} so can't be \mathcal{E}^{\otimes}

QUESTION: \mathcal{F}^{\otimes} is certainly related to \mathcal{E}^{\otimes} but how?

E a (full) correspondence from $\mathcal{K}(E)\subseteq \mathcal{B}^a(E)$ to \mathcal{B}

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^a(E)$ to \mathcal{B} The dual correspondence $E^* = \{x^* : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^a(E, \mathcal{B})$

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^{a}(E)$ to \mathcal{B} The dual correspondence $E^{*} = \{x^{*} : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^{a}(E, \mathcal{B})$

$$\langle x^*, y^* \rangle = xy^* : z \mapsto x \langle y, z \rangle \quad , \quad xy^* \in \mathcal{K}(E)$$

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^{a}(E)$ to \mathcal{B} The dual correspondence $E^{*} = \{x^{*} : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^{a}(E, \mathcal{B})$

$$\langle x^*, y^* \rangle = xy^* : z \mapsto x \langle y, z \rangle \quad , \quad xy^* \in \mathcal{K}(E)$$

a (full) correspondence from \mathcal{B} to $\mathcal{K}(E)$

 $E^* \odot E = \mathcal{B} \ (x^* \otimes y \mapsto \langle x, y \rangle) \ , \ E \odot E^* = \mathcal{K}(E) \ (x \otimes y^* \mapsto xy^*)$

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^{a}(E)$ to \mathcal{B} The dual correspondence $E^{*} = \{x^{*} : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^{a}(E, \mathcal{B})$

$$\langle x^*, y^* \rangle = xy^* : z \mapsto x \langle y, z \rangle \quad , \quad xy^* \in \mathcal{K}(E)$$

a (full) correspondence from \mathcal{B} to $\mathcal{K}(E)$

 $E^* \odot E = \mathcal{B} \ (x^* \otimes y \mapsto \langle x, y \rangle) \ , \ E \odot E^* = \mathcal{K}(E) \ (x \otimes y^* \mapsto xy^*)$

E is said to be a Morita equivalence from $\mathcal{K}(E)$ to \mathcal{B} , and E^* its inverse

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^a(E)$ to \mathcal{B} The dual correspondence $E^* = \{x^* : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^a(E, \mathcal{B})$

$$\langle x^*, y^* \rangle = xy^* : z \mapsto x \langle y, z \rangle \quad , \quad xy^* \in \mathcal{K}(E)$$

a (full) correspondence from ${\cal B}$ to ${\cal K}(E)$

 $E^* \odot E = \mathcal{B} \ (x^* \otimes y \mapsto \langle x, y \rangle) \ , \ E \odot E^* = \mathcal{K}(E) \ (x \otimes y^* \mapsto xy^*)$

E is said to be a Morita equivalence from $\mathcal{K}(E)$ to \mathcal{B} , and E^* its inverse If \mathcal{F} a correspondence over $\mathcal{K}(E) \rightsquigarrow$ Morita equivalent correspondence \mathcal{E}

$$\mathcal{E} = E^* \odot \mathcal{F} \odot E$$

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^a(E)$ to \mathcal{B} The dual correspondence $E^* = \{x^* : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^a(E, \mathcal{B})$

$$\langle x^*, y^* \rangle = xy^* : z \mapsto x \langle y, z \rangle \quad , \quad xy^* \in \mathcal{K}(E)$$

a (full) correspondence from ${\cal B}$ to ${\cal K}(E)$

 $E^* \odot E = \mathcal{B} \ (x^* \otimes y \mapsto \langle x, y \rangle) \ , \ E \odot E^* = \mathcal{K}(E) \ (x \otimes y^* \mapsto xy^*)$

E is said to be a Morita equivalence from $\mathcal{K}(E)$ to \mathcal{B} , and E^* its inverse If \mathcal{F} a correspondence over $\mathcal{K}(E) \rightsquigarrow$ Morita equivalent correspondence \mathcal{E}

$$\mathcal{E} = E^* \odot \mathcal{F} \odot E$$

If (\mathcal{F}_s) a sub/super-PS of $\mathcal{K}(E)$ -correspondences \rightsquigarrow sub/super-PS of \mathcal{B} correspondences $(\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E)$

E a (full) correspondence from $\mathcal{K}(E) \subseteq \mathcal{B}^a(E)$ to \mathcal{B} The dual correspondence $E^* = \{x^* : z \mapsto \langle x, z \rangle : x \in E\} \subseteq \mathcal{B}^a(E, \mathcal{B})$

$$\langle x^*, y^* \rangle = xy^* : z \mapsto x \langle y, z \rangle \quad , \quad xy^* \in \mathcal{K}(E)$$

a (full) correspondence from ${\cal B}$ to ${\cal K}(E)$

 $E^* \odot E = \mathcal{B} \ (x^* \otimes y \mapsto \langle x, y \rangle) \ , \ E \odot E^* = \mathcal{K}(E) \ (x \otimes y^* \mapsto xy^*)$

E is said to be a Morita equivalence from $\mathcal{K}(E)$ to \mathcal{B} , and E^* its inverse If \mathcal{F} a correspondence over $\mathcal{K}(E) \rightsquigarrow$ Morita equivalent correspondence \mathcal{E}

$$\mathcal{E} = E^* \odot \mathcal{F} \odot E$$

If (\mathcal{F}_s) a sub/super-PS of $\mathcal{K}(E)$ -correspondences \rightsquigarrow sub/super-PS of \mathcal{B} correspondences $(\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$

 $= E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow \text{GNS system } \mathcal{F}^{\otimes}$ over $\mathcal{B}^{a}(E)$

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow$ GNS system \mathcal{F}^{\otimes} over $\mathcal{B}^{a}(E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$ $\subseteq E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow \text{GNS}$ system \mathcal{F}^{\otimes} over $\mathcal{B}^{a}(E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$ $\subseteq E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

Theorem

If T is strict then \mathcal{E}^{\otimes} with $\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E$ is a subproduct system, the subproduct system of \mathcal{B} -correspondences associated with T.

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow \text{GNS}$ system \mathcal{F}^{\otimes} over $\mathcal{B}^{a}(E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$ $\subseteq E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

Theorem

If T is strict then \mathcal{E}^{\otimes} with $\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E$ is a subproduct system, the subproduct system of \mathcal{B} -correspondences associated with T.

Corollary

For every adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ over \mathcal{B} there is a strict CP-semigroup T on $\mathcal{B}^a(E)$ for some \mathcal{B} -correspondence E such that \mathcal{E}^{\otimes} is the subproduct system of \mathcal{B} -correspondences associated with T.

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow \text{GNS}$ system \mathcal{F}^{\otimes} over $\mathcal{B}^{a}(E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$ $\subseteq E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

Theorem

If T is strict then \mathcal{E}^{\otimes} with $\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E$ is a subproduct system, the subproduct system of \mathcal{B} -correspondences associated with T.

Corollary

For every adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ over \mathcal{B} there is a strict CP-semigroup T on $\mathcal{B}^a(E)$ for some \mathcal{B} -correspondence E such that \mathcal{E}^{\otimes} is the subproduct system of \mathcal{B} -correspondences associated with T.

Return to example: \mathcal{E}^{\otimes} a subPS that does not embed into superPS

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow \text{GNS}$ system \mathcal{F}^{\otimes} over $\mathcal{B}^{a}(E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$ $\subseteq E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

Theorem

If T is strict then \mathcal{E}^{\otimes} with $\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E$ is a subproduct system, the subproduct system of \mathcal{B} -correspondences associated with T.

Corollary

For every adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ over \mathcal{B} there is a strict CP-semigroup T on $\mathcal{B}^a(E)$ for some \mathcal{B} -correspondence E such that \mathcal{E}^{\otimes} is the subproduct system of \mathcal{B} -correspondences associated with T.

Return to example: \mathcal{E}^{\otimes} a subPS that does not embed into superPS \mathcal{E}^{\otimes} Morita equivalent to the GNS system \mathcal{F}^{\otimes} of a CP-semigroup T

T CP-semigroup on $\mathcal{B}^{a}(E) \rightsquigarrow \text{GNS}$ system \mathcal{F}^{\otimes} over $\mathcal{B}^{a}(E)$

 $E^* \odot \mathcal{F}_s \odot E \odot E^* \odot \mathcal{F}_t \odot E = E^* \odot \mathcal{F}_s \odot \mathcal{K}(E) \odot \mathcal{F}_t \odot E$ $\subseteq E^* \odot \mathcal{F}_s \odot \mathcal{F}_t \odot E \supseteq E^* \odot \mathcal{F}_{s+t} \odot E$

Theorem

If T is strict then \mathcal{E}^{\otimes} with $\mathcal{E}_s = E^* \odot \mathcal{F}_s \odot E$ is a subproduct system, the subproduct system of \mathcal{B} -correspondences associated with T.

Corollary

For every adjointable subproduct system $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in \mathbb{S}}$ over \mathcal{B} there is a strict CP-semigroup T on $\mathcal{B}^a(E)$ for some \mathcal{B} -correspondence E such that \mathcal{E}^{\otimes} is the subproduct system of \mathcal{B} -correspondences associated with T.

Return to example: \mathcal{E}^{\otimes} a subPS that does not embed into superPS \mathcal{E}^{\otimes} Morita equivalent to the GNS system \mathcal{F}^{\otimes} of a CP-semigroup T \mathcal{E}^{\otimes} does not embed $\Rightarrow \mathcal{F}^{\otimes}$ does not embed $\Rightarrow T$ has no dilation

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Open problems:

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Open problems:

• Does embeddability of the GNS system into a superproduct system guarantee the existence of a dilation?

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Open problems:

- Does embeddability of the GNS system into a superproduct system guarantee the existence of a dilation?
- Does the existence of a dilation imply the existence of a strict full dilation? (full and strict dilation ≅ embed into PS)

Theorem (S.-Skeide 2022)

Let $T = (T_s)_{s \in \mathbb{S}}$ be a Markov semigroup on a von Neumann algebra \mathcal{B} .

- A sufficient condition for T to a have a dilation, is that the GNS subproduct system of T embeds into a **product** system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Open problems:

- Does embeddability of the GNS system into a superproduct system guarantee the existence of a dilation?
- Does the existence of a dilation imply the existence of a strict full dilation? (full and strict dilation ≅ embed into PS)
- Can every superproduct system be embedded into a product system?

Thank you!