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Correlations

Throughout, we’ll let [n] = {1, 2, . . . , n}.

Let n,m ∈ N. We call a tuple

p = {p(a, b|x , y)}a,b∈[m],x ,y∈[n]

a correlation if each p(a, b|x , y) ≥ 0 and for every x , y ∈ [n]∑
a,b∈[m]

p(a, b|x , y) = 1.

A correlation models a scenario where Alice & Bob each get
questions from a set of n questions and must each give answers
from a set of m answers. We interpret p(a, b|x , y) to be the
probability that (Alice, Bob) return answers (a, b) given that they
received questions (x , y).
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Nonsignalling correlations

We call a correlation p nonsignalling if the marginal densities
given by

pA(a|x) :=
∑
c∈[m]

p(a, c |x ,w) and pB(b|y) :=
∑
c∈[m]

p(c , b|z , y)

are well-defined.

We call these relations the nonsignalling conditions and they
ensure Alice and Bob provide answers independently.

We let Cns(n,m) denote the set of all nonsignalling correlations in
the n-question m-answer scenario. We have that Cns(n,m) is a
convex polytope in Rn2m2

.
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Local correlations

A correlation is deterministic it is nonsignalling and if every
pA(a|x), pB(b|y) ∈ {0, 1}.

A convex combination of deterministic correlations is called a local
correlation. We let Cloc(n,m) denote the set of all local
correlations.

The set Cloc(n,m) is a convex polytope by its definition.
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Quantum correlations

A correlation p is called a quantum correlation if there exist finite
dimensional Hilbert spaces HA,HB , projections {Ex ,a} ⊆ B(HA)
and {Fy ,b} ⊆ B(HB) satisfying∑

a Ex ,a = IA for all x ,∑
b Fy ,b = IB for all y ,

and a unit vector ϕ ∈ HA ⊗ HB such that
p(a, b|x , y) = ⟨Ex ,a ⊗ Fy ,bϕ, ϕ⟩.

We let Cq(n,m) denote the set of all quantum correlations

If the state ϕ is separable, then p is a local correlation. Hence,
correlations in Cq(n,m) \ Cloc(n,m) arise from entangled states.
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Quantum commuting correlations

A correlation p is called a quantum commuting correlation if
there exists a Hilbert space H, projections {Ex ,a,Fy ,b} ⊆ B(H)
satisfying∑

a Ex ,a = I for all x ,∑
b Fy ,b = I for all y ,

Ex ,aFy ,b = Fy ,bEx ,a,

and a unit vector ϕ ∈ H such that p(a, b|x , y) = ⟨Ex ,aFy ,bϕ, ϕ⟩.

We let Cqc(n,m) denote the set of all quantum commuting
correlations

The definition of a quantum commuting correlation is based on the
Haag-Kastler axioms of quantum mechanics.
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Hierarchy of correlation sets

We have the following inclusions:

Cloc(n,m) ⊆ Cq(n,m) ⊆ Cqc(n,m) ⊆ Cns(n,m).

Each inclusion has been demonstrated to be proper.

Cloc(n,m) ⊆ Cq(n,m): John Bell, 1960s.

Cq(n,m) ⊆ Cqc(n,m): William Slofstra, 2017.

Cqc(n,m) ⊆ Cns(n,m): Boris Tsirelson, 1980s.

The inclusion Cq(n,m) ⊆ Cqc(n,m) is proper by work of
Ji-Natarajan-Vidick-Wright-Yuen from early 2020. This result
solved a 50-year-old open problem in operator algebras, Connes’
embedding problem (due to work of Fritz and
Junge-Navascues-Palazuelos-Perez-Garcia-Scholz-Werner).
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Correlations from abstract structures
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Operator Theoretic vs. Algebraic definitions

The correlation definition

p(a, b|x , y) = ⟨Ex ,aFy ,bϕ, ϕ⟩

is physical or operator theoretic in nature:

Hilbert space H ≃ a physical system.

State ϕ ≃ the state of that system.

Operators Ex ,a,Fy ,b ≃ measurements performed in labs.

Is there an essentially algebraic framework for generating
correlations?

11 / 34



Correlations from C*-algebras

Theorem

A correlation p is quantum commuting if and only if there exists a
C*-algebra A, projection-valued measures {Ex ,a}, {Fy ,b} ⊆ A with
[Ex ,a,Fy ,b] = 0 and a state ϕ such that p(a, b|x , y) = ϕ(Ex ,aFy ,b).
Moreover,

p ∈ Cq(n,m) if and only if the statement holds for a
finite-dimensional A.

p ∈ Cloc(n,m) if and only if the statement holds for a
commutative A.

Proof.

=⇒ : Consider A = C ∗(Ex ,a,Fy ,b) and ϕ(x) = ⟨xh, h⟩.
⇐= : GNS theorem.
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Operator Systems

An operator system is a ∗-closed unital subspace of B(H).

An abstract operator system consists of a ∗-vector space V, a
sequence of cones Cn ⊆ Mn(V)h satisfying

α∗Cnα ⊆ Cm

for every α ∈ Mn,m, and an element e ∈ Vh such that
(Mn(V),Cn, In ⊗ e) is an AOU space for every n ∈ N.

Theorem (Choi-Effros)

Let V be an abstract operator system. Then there exists a Hilbert
space H and a unital complete order embedding π : V → B(H).
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Correlations from operator systems?

Assume p ∈ Cqc(n,m) with p(a, b|x , y) = ⟨Ex ,aFy ,bϕ, ϕ⟩. Then:

V = span{Ex ,aFy ,b}

is an operator system and Ex ,aFy ,b 7→ ⟨Ex ,aFy ,bϕ, ϕ⟩ is a state on
V.

So correlations only require a finite dimensional operator system
and a state.

We can abstractly characterize operator systems, but what about
operator systems of the form

V = span{Ex ,aFy ,b}?
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Quantum commuting operator systems
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Projections in operator systems

Assume p ∈ V ⊆ B(H), and p is a projection, V an operator
system.

If we forget the concrete structure, then p remains a positive
contraction in the (abstract) operator system V.

The Choi-Effros Theorem allows us to recover p as an operator on
B(K ), but does not guarantee that p will be a projection.

Question

Can we detect the presence of a projection p in an abstract
operator system V?
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Compressions of operator systems

Proposition

Let p ∈ V ⊆ B(H), x ∈ V with x = x∗. Then pxp ≥ 0 if and only
if for every ϵ > 0 there exists a t > 0 such that

x + ϵp + t(I − p) ∈ V+.

Thus if p ∈ V is a projection, we can detect when pxp ≥ 0 using
only the data of the operator system (V, {Cn}, e).
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Characterization of projections

Assume p ∈ V ⊆ B(H) and p is a projection. Let q = I − p. Then
we may decompose each x ∈ V ⊆ B(H) = B(pH ⊕ qH) as

x =

(
pxp pxq
qxp qxq

)
.

Consider the compression of

(
x x
x x

)
by p ⊕ q, i.e.


(
pxp 0
0 0

) (
0 pxq
0 0

)
(

0 0
qxp 0

) (
0 0
0 qxq

)
 .

Observe that x ≥ 0 if and only if

(
x x
x x

)
has positive compression

by p ⊕ q.
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Characterization of projections

Definition

We call a positive contraction p in an abstract operator system V
an abstract projection if the set of x = x∗ ∈ Mn(V) satisfying for
every ϵ > 0 there exists t > 0 such that(

x x
x x

)
+ ϵIn ⊗ (p ⊕ q) + tIn ⊗ (q ⊕ p) ≥ 0

coincides with the positive cone of Mn(V).

Theorem (Araiza, R.)

A positive contraction p in an operator system (V, {Cn}, e) is an
abstract projection if and only if there exists a unital complete
order embedding π : V → B(H) such that π(p) is a projection.
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The set of abstract projections

The theorem allows us to build π : V → B(H) mapping a single
abstract projection p to an honest projection π(p). What if there
are many abstract projections?

Theorem (Araiza, R.)

Let p be an abstract projection in an operator system V. Then p is
a projection in C ∗

e (V).

Thus, if p1, p2, . . . , pN ∈ V are all abstract projections, then
p1, p2, . . . , pN are projections in C ∗

e (V).
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Quantum commuting operator systems

A quantum commuting operator system is a finite dimensional
operator system with unit e spanned by positive contractions
{Q(a, b|x , y) : a, b ∈ [m], x , y ∈ [n]} such that

For each x , y ∈ [n],
∑

a,b∈[m]Q(a, b|x , y) = e

For each x , y ∈ [n] and a, b ∈ [m], the vectors

E (a|x) :=
∑
c∈[m]

Q(a, c |x ,w) and F (b|y) :=
∑
c∈[m]

Q(c , b|z , y)

are well-defined

Each generator Q(a, b|x , y) is an abstract projection.
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Quantum correlations and operator systems

Theorem (Araiza, R.)

A correlation p is quantum commuting if and only if there exists a
quantum commuting operator system V = span{Q(a, b|x , y)} and
a state ϕ : V → C such that

p(a, b|x , y) = ϕ(Q(a, b|x , y)).

Proof elements:

The linear relations between {Q(a, b|x , y)} ensure p is
nonsignalling correlation.

Each Q(a, b|x , y) is a projection in C ∗
e (V).

The relations Q(a, b|x , y) = E (a|x)F (y |b) = F (y |b)E (a|x)
are forced.
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Matricial AOU spaces
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k-AOU spaces

By a k-AOU space, we mean a ∗-vector space V with a positive
cone C ⊆ Mk(V)h satisfying α∗Cα ⊆ C for all α ∈ Mk , and an
element e ∈ V such that (Mk(V),C , Ik ⊗ e) is an archimedean
order unit space.

Given a k-AOU space V, we can define a canonical operator
system Vk-min by

C k-min
n = {x ∈ Mn(V)h : α∗xα ∈ C for all α ∈ Mn,k}.

If φ : V → W is k-positive (k-order embedding), then
φ : Vk-min → Wk-min is completely positive (complete order
embedding).
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k-minimal Operator Systems

If an operator system V is completely order isomoriphic to Vk-min,
we call it k-minimal.

Theorem (Araiza, R., Tomforde)

An operator system V is k-minimal if and only if there exists a
unital complete order embedding

π : V →
⊕
i∈I

Mdi

where each di ≤ k.

Proof idea:
Show that V satisfies the property that every k-positive map
ϕ : W → V is completely positive, then apply a theorem of Xhabli.
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C*-envelope

Theorem (Araiza-R.-Tomforde)

For a k-AOU space V, C ∗
e (Vk-min) is a C*-subalgebra of a direct

sum
⊕

i∈ΩMdi where di ≤ k.

Elements of proof:

We show that injective envelopes exist in the category of
k-AOU spaces, and I (V)k-min = I (Vk-min). In particular,
I (Vk-min) is k-minimal.

By a result of Hamana, C ∗
e (Vk-min) ⊆ I (Vk-min).

We argue that the irreducible representations of any
k-minimal C*-algebra have the form π : A → Mdi with di ≤ k .
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Projections in k-AOU spaces

Given a k-AOU space V with positive cone C ⊆ Mk(V), we can
characterize the abstract projections of Vk-min. An element p ∈ V,
is called an abstract projection in V if the set of x ∈ Mk(V)h
such that for every ϵ > 0 there exists t > 0 such that

(α+ β)∗x(α+ β) + (ϵα∗α+ tβ∗β)⊗ p + (ϵβ∗β + tα∗α)⊗ q ∈ C

for every α, β ∈ Mk coincides with the cone C ⊆ Mk(V ).

Theorem (Araiza-R.-Tomforde)

For a k-AOU space V, the following statements are equivalent:

p is an abstract projection in V.
p is an abstract projection in Vk-min.

p is a projection in C ∗
e (VK-min).

When p satisfies any (hence all) of these statements, we call p an
abstract projection in V.
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Quantum k-AOU space

A quantum k-AOU space is a finite dimensional k-AOU space
with unit e spanned by positive contractions
{Q(a, b|x , y) : a, b ∈ [m], x , y ∈ [n]} such that

For each x , y ∈ [n],
∑

a,b∈[m]Q(a, b|x , y) = e

For each x , y ∈ [n] and a, b ∈ [m], the vectors

E (a|x) :=
∑
c∈[m]

Q(a, c |x ,w) and F (b|y) :=
∑
c∈[m]

Q(c , b|z , y)

are well-defined

Each generator Q(a, b|x , y) is an abstract projection.
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Correlations from k-AOU spaces

Theorem (Araiza-R.-Tomforde)

A correlation p is quantum if and only if there exists a quantum
k-AOU space V = span{Q(a, b|x , y)} and a state ϕ : V → C such
that

p(a, b|x , y) = ϕ(Q(a, b|x , y)).

Proof elements:

The definitions ensure Vk-min is a quantum commuting
operator system, so p is quantum commuting.

Each Q(a, b|x , y) is a projection in C ∗
e (Vk-min), which is a

C*-subalgebra of
⊕

Mdi with each di ≤ k .

The resulting correlation is a convex combination of quantum
correlations. Apply Caratheodory’s theorem.
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Correlations from Operator Systems
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The paper MIP∗ = RE implies that Cqc(n,m) \ Cq(n,m) is
non-empty for some n,m ∈ N.

Theorem (Araiza-R.-Tomforde)

A correlation p ∈ Cqc(n,m) \ Cq(n,m) if and only if there exists a
qc operator system V with generators Q(a, b|x , y), a state φ on V,
and an ϵ > 0 such that whenever W is a q k-AOU space with
generators R(a, b|x , y) and ψ is a state on W we have

|φ(Q(a′, b′|x ′, y ′))− ψ(R(a′, b′|x ′, y ′))| > ϵ

for some a′, b′ ∈ [m] and x ′, y ′ ∈ [n].
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QC operator systems vs. Q k-AOU spaces

An equivalent statement is something like the following...

Theorem

There exists a quantum commuting operator system V which
cannot be approximated by any quantum k-AOU space at its first
matrix level.

Question

What obstructions prevent the cone C1 in a QC operator system
from being approximated by C k-min

1 of a quantum k-AOU space?
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Thanks!
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