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Group von Neumann algebras (Murray-von Neumann, ’43)

Let G be a countable discrete group.

Let u : G → U(`2G ) be the left regular representation: ug (δh) = δgh.

Definition

The group von Neumann algebra L(G ) ⊂ B(`2G ) is defined as

L(G ) := span{ug | g ∈ G}WOT

Facts
1 τ : L(G )→ C given by τ(x) = 〈xδe , δe〉 is a faithful normal trace.

2 If G is infinite abelian, then L(G ) ∼= L∞(Ĝ ,Haar) ∼= L∞([0, 1],Leb).

3 L(G ) is a II1 factor (∞ dim vNa with a trace and trivial center) ⇔
G has ∞ conj. classes (icc): |{ghg−1 | g ∈ G}| =∞,∀h ∈ G \ {e}.
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Classification of group von Neumann algebras

Central problem

Classify L(G ) in terms of the group G .

Murray-von Neumann, 1936-43

1 ∃! approximately finite dimensional II1 factor, R = ⊗n∈NM2(C)
WOT

.

2 L(G ) ∼= R, ∀ G icc locally finite, for instance G = S∞ = ∪n∈NSn.

3 L(F2) 6∼= R, where F2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant
vectors: ∃ unit vectors ξn ∈ `2G such that ‖ugξn − ξn‖2 → 0,∀g ∈ G .
Example. Solvable grps. F2 and ∞ property (T) grps are nonamenable.

Connes, 1975

Any amenable II1 factor is isomorphic to R. Thus,
In particular, L(G ) ∼= R, ∀ G icc amenable.

Lack of rigidity: the vNa forgets algebraic properties of amenable grps.
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Property (T) group von Neumann algebras, I

Definition

A countable group G has Kazhdan’s property (T) if any unitary rep. of G
with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., SLn(Z), n ≥ 3.
2) Random groups: Gromov density model 1

3 < d < 1
2 (also hyperbolic).

3) Aut(Fk) (Novak-Kaluba-Ozawa k = 5 ; Novak-Kaluba-Kielak k > 5).

Connes (1980) If G is icc property (T), then the outer aut. group
Out(L(G )) and fundamental group F(L(G )) are countable.

Connes’ rigidity conjecture (1980) If G ,H are icc property (T) and
L(G ) ∼= L(H), then G ∼= H.

Connes-Jones (1983) Property (T) is an invariant of L(G ).

Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1,m) are
lattices and n 6= m, then L(G ) 6∼= L(H).

Ozawa (2002) ∃ uncountably many noniso. prop. (T) group factors.

Popa (2006) G 7→ L(G ) is countable-to-1 for icc prop. (T) groups.
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Property (T) group von Neumann algebras, II

Problem (Connes, 1994) Compute F(L(G )), for icc property (T) groups G .

Conjecture (Jones, 2000) Show that Out(L(G )) ∼= Char(G ) o Out(G ), for
icc property (T) groups G .

Popa’s strengthening of Connes’ rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group.
Let θ : L(G )t → L(H) be ∗-isomorphism, for any t > 0.
Then t = 1 and ∃ a group iso. δ : G → H and character η : G → T such
that (up to unitary conjugacy) θ(ug ) = η(g)vδ(g),∀g ∈ G .

In particular, Out(L(G )) ∼= Char(G ) o Out(G ), F(L(G )) = {1} and
G is W∗-superrigid: if L(G ) ∼= L(H), for any H, then G ∼= H.
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Deformation/rigidity theory

Since 2001, Popa’s deformation/rigidity theory has led to remarkable
advances in the classification of group factors and calculation of invariants.

Popa (2001) F(L(Z2 o SL2(Z)) = {1}.
Popa (2004) If G ,H icc property (T), L(Z oG ) ∼= L(Z oH)⇒ G ∼= H.
Here, A o B = (

⊕
b∈B A) o B is the wreath-product of A and B.

I-Peterson-Popa (2005) ∃ II1 factors M with Out(M) = {e}.
Popa-Vaes (2006) icc G with Out(L(G )) ∼= Char(G ) o Out(G ).

I-Popa-Vaes (2010) examples of W∗-superrigid icc groups G .

Remark. These results do not apply to property (T) group II1 factors.
This is because deformation/rigidity applies to II1 factors which admit
deformations, whose presence is typically incompatible with property (T).

Chifan-Das-Houdayer-Khan (2020) examples of icc property (T) groups
G such that F(L(G )) = {1}.
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Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B),

if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

43 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

44 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

45 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

46 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.

Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

47 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)

(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

48 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).
Proof. We have 〈〈H〉〉/S ∼=

⊕
t∈T tHt−1 ∼=

⊕
G/〈〈H〉〉H and

a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

49 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in

⊕
b∈B A.

Example. A o B = (
⊕

b∈B A) o B ∈ WR(A,B).

Definition. H < G is a Cohen-Lyndon subgroup if 〈〈H〉〉 = ∗t∈T tHt−1,
with T a left transversal for the normal subgrp 〈〈H〉〉C G generated by H.
Examples (1) H < H ∗ K (Proof. 〈〈H〉〉 = ∗k∈KkHk−1.)
(2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup H < G = Fn.

Proposition Let S = 〈[tHt−1, t ′Ht ′−1] | t, t ′ ∈ T , t 6= t ′〉, for a C-L
subgroup H < G . Then S < 〈〈H〉〉, S C G and G/S ∈ WR(H,G/〈〈H〉〉).

Proof. We have 〈〈H〉〉/S ∼=
⊕

t∈T tHt−1 ∼=
⊕

G/〈〈H〉〉H and
a short exact sequence {e} → 〈〈H〉〉/S → G/S → G/〈〈H〉〉 → {e}.
Remark. When G = H ∗ K , we have G/〈〈H〉〉 = K and G/S = H o K .

50 / 72



Wreath-like product groups, I

Definition

A group G is a wreath-like product of two groups A and B,
in symbols G ∈ WR(A,B), if there is a short exact sequence

{e} →
⊕

b∈B A→ G
ε−→ B → {e}

such that gAbg
−1 = Aε(g)b, with Ab the b-labelled copy of A in
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Wreath-like product groups, II

Dahmani-Guirardel-Osin 2011 (group theoretic Dehn filling), Sun 2020

Let H < G with G hyperbolic relative to H.
Then ∃F ⊂ H finite s.t. ∀N C H with N ∩ F = ∅ we have that:
1) 〈〈N〉〉 = ∗t∈T tNt−1, where T is a left transversal for H〈〈N〉〉 < G , and
2) G/〈〈N〉〉 is hyperbolic relative to H/N.

Fact: If G is icc hyperbolic and n ∈ N, then ∃H < G such that H ∼= Fn

and G is hyperbolic relative to H.

As before, it follows that G/S is a generalized wreath-like product group.
Using this, we prove the following:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let G be an icc hyperbolic group. Then for any finitely generated group A,
∃ a quotient W of G such that W ∈ WR(A,B), for B icc hyperbolic.

In particular, if G has property (T), then so does W ∈ WR(A,B).

This is surprising since wreath products A o B never have prop. (T) !
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Connes’ rigidity conjecture for wreath-like products

Theorem B (Chifan-I-Osin-Sun, 2021)

Let G ∈ WR(A,B) and H ∈ WR(C ,D) be property (T) groups,
where A,C are nontrivial abelian or icc and B,D are icc hyperbolic.

Let θ : L(G )t → L(H) be ∗-isomorphism, for any t > 0.
Then t = 1 and ∃ a group iso. δ : G → H and character η : G → T such
that (up to unitary conjugacy) θ(ug ) = η(g)vδ(g),∀g ∈ G .

Corollary C (CIOS, 2021)

∀ f.p. group Q, ∃ a continuum of icc property (T) groups {Gi}i∈I s.t.

1 L(Gi ) 6∼= L(Gj), ∀i 6= j .

2 Out(L(Gi )) ∼= Q and F(L(Gi )) = {1}, ∀i ∈ I .
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W∗-superrigid groups with property (T)

Connes’ rigidity conjecture (1980) If G ,H are icc property (T) and
L(G ) ∼= L(H), then G ∼= H.

Equivalently, any icc property (T) group G is
W∗-superrigid: if L(G ) ∼= L(H), for any group H, then G ∼= H.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and
Chifan-DiazArias-Drimbe 2021: W∗-superrigid grps without prop. (T)
(generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let G ∈ WR(A,B) be a property (T) group, where A is nontrivial abelian
and B is icc hyperbolic.Then G is W∗-superrigid.

Corollary E (CIOS, 2021)

Let H be an icc hyperbolic property (T) group and g ∈ H be an element of
infinite order. Then ∃d ∈ N such that ∀k ∈ N divisible by d , the quotient
group H/[〈〈gk〉〉, 〈〈gk〉〉] is a W∗-superrigid icc group with property (T).

These are the first examples of W∗-superrigid groups with property (T).
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