Wreath-like product groups and rigidity of their von Neumann algebras joint work with Ionut Chifan, Denis Osin and Bin Sun

Adrian Ioana

UCSD

Functional Analysis and Operator Algebras in Athens April 1, 2022

Let G be a countable discrete group.

Let G be a countable discrete group. Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Let G be a countable discrete group. Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$L(G) := \overline{\operatorname{span}\{u_g \mid g \in G\}}^{WOT}$$

Let G be a countable discrete group. Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WO}^-}$$

Facts

• $\tau: L(G) \to \mathbb{C}$ given by $\tau(x) = \langle x \delta_e, \delta_e \rangle$ is a faithful normal trace.

Let G be a countable discrete group. Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WOT}}$$

Facts

- $\tau: L(G) \to \mathbb{C}$ given by $\tau(x) = \langle x \delta_e, \delta_e \rangle$ is a faithful normal trace.
- **2** If G is infinite abelian, then $L(G) \cong L^{\infty}(\hat{G}, \text{Haar}) \cong L^{\infty}([0, 1], \text{Leb})$.

Let G be a countable discrete group. Let $u: G \to \mathcal{U}(\ell^2 G)$ be the left regular representation: $u_g(\delta_h) = \delta_{gh}$.

Definition

The group von Neumann algebra $L(G) \subset \mathbb{B}(\ell^2 G)$ is defined as

$$\mathsf{L}(G) := \overline{\mathsf{span}\{u_g \mid g \in G\}}^{\mathsf{WOT}}$$

Facts

- $\tau: L(G) \to \mathbb{C}$ given by $\tau(x) = \langle x \delta_e, \delta_e \rangle$ is a faithful normal trace.
- **2** If G is infinite abelian, then $L(G) \cong L^{\infty}(\hat{G}, \text{Haar}) \cong L^{\infty}([0, 1], \text{Leb})$.
- Solution 3 L(G) is a II₁ factor (∞ dim vNa with a trace and trivial center) ⇔
 G has ∞ conj. classes (icc): $|\{ghg^{-1} \mid g \in G\}| = \infty, \forall h \in G \setminus \{e\}.$

Central problem

Classify L(G) in terms of the group G.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

■ $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\bigotimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

● \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

② L(G) \cong R, ∀ G icc locally finite, for instance $G = S_{\infty} = \cup_{n \in \mathbb{N}} S_n$.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

• $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\bigotimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

2 $L(G) \cong R$, $\forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.

• $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

• \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

2 $L(G) \cong R, \forall G$ icc locally finite, for instance $G = S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$.

● $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $\xi_n \in \ell^2 G$ such that $||u_g \xi_n - \xi_n||_2 \to 0, \forall g \in G$.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

• \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

② L(G) \cong R, ∀ G icc locally finite, for instance $G = S_{\infty} = \cup_{n \in \mathbb{N}} S_n$.

● $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $\xi_n \in \ell^2 G$ such that $||u_g\xi_n - \xi_n||_2 \to 0, \forall g \in G$. **Example.** Solvable grps. \mathbb{F}_2 and ∞ property (T) grps are *nonamenable*.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

• $\exists!$ approximately finite dimensional II₁ factor, $R = \overline{\bigotimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$

② L(G) \cong R, ∀ G icc locally finite, for instance $G = S_{\infty} = \cup_{n \in \mathbb{N}} S_n$.

• $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $\xi_n \in \ell^2 G$ such that $||u_g\xi_n - \xi_n||_2 \to 0, \forall g \in G$. **Example.** Solvable grps. \mathbb{F}_2 and ∞ property (T) grps are *nonamenable*.

Connes, 1975

Any amenable II₁ factor is isomorphic to R. Thus, In particular, $L(G) \cong R$, $\forall G$ icc amenable.

Central problem

Classify L(G) in terms of the group G.

Murray-von Neumann, 1936-43

• \exists ! approximately finite dimensional II₁ factor, $R = \overline{\otimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{WOT}$.

② L(G) \cong R, ∀ G icc locally finite, for instance $G = S_{\infty} = \cup_{n \in \mathbb{N}} S_n$.

● $L(\mathbb{F}_2) \ncong R$, where \mathbb{F}_2 is the free group on two generators.

Definition. A group G is amenable if its regular rep. has almost invariant vectors: \exists unit vectors $\xi_n \in \ell^2 G$ such that $||u_g\xi_n - \xi_n||_2 \to 0, \forall g \in G$. **Example.** Solvable grps. \mathbb{F}_2 and ∞ property (T) grps are *nonamenable*.

Connes, 1975

Any amenable II₁ factor is isomorphic to R. Thus, In particular, $L(G) \cong R$, $\forall G$ icc amenable.

Lack of rigidity: the vNa forgets algebraic properties of amenable grps. $_{15/72}$

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors. **Examples**. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \ge 3$.

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors. **Examples**. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \ge 3$. 2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors. **Examples**. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \ge 3$.

2) Random groups: Gromov density model $\frac{1}{3} < d < \frac{1}{2}$ (also hyperbolic).

- 3) Aut(\mathbb{F}_k) (Novak-Kaluba-Ozawa k = 5; Novak-Kaluba-Kielak k > 5).
 - **Connes (1980)** If G is icc property (T), then the outer aut. group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \ge 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

- **Connes (1980)** If G is icc property (T), then the outer aut. group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.
- Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$.

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

- **Connes (1980)** If G is icc property (T), then the outer aut. group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.
- Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$.
- Connes-Jones (1983) Property (T) is an invariant of L(G).

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

- **Connes (1980)** If G is icc property (T), then the outer aut. group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.
- Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$.
- Connes-Jones (1983) Property (T) is an invariant of L(G).
- Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1, m) are lattices and $n \neq m$, then $L(G) \not\cong L(H)$.

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

- **Connes (1980)** If G is icc property (T), then the outer aut. group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.
- Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$.
- Connes-Jones (1983) Property (T) is an invariant of L(G).
- Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1, m) are lattices and $n \neq m$, then $L(G) \not\cong L(H)$.
- Ozawa (2002) \exists uncountably many noniso. prop. (T) group factors.

Definition

A countable group G has Kazhdan's property (T) if any unitary rep. of G with almost invariant vectors has nonzero invariant vectors.

Examples. 1) Higher rank lattices, e.g., $SL_n(\mathbb{Z})$, $n \geq 3$.

2) Random groups: Gromov density model $\frac{1}{3} < \mathbf{d} < \frac{1}{2}$ (also hyperbolic).

- **Connes (1980)** If G is icc property (T), then the outer aut. group Out(L(G)) and fundamental group $\mathcal{F}(L(G))$ are countable.
- Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$.
- Connes-Jones (1983) Property (T) is an invariant of L(G).
- Cowling-Haagerup (1988) If G < Sp(1, n) and H < Sp(1, m) are lattices and $n \neq m$, then $L(G) \not\cong L(H)$.
- Ozawa (2002) \exists uncountably many noniso. prop. (T) group factors.
- **Popa (2006)** $G \mapsto L(G)$ is countable-to-1 for icc prop. (T) groups.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group.

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$. Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$.

In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$, $\mathcal{F}(L(G)) = \{1\}$ and

Problem (Connes, 1994) Compute $\mathcal{F}(L(G))$, for icc property (T) groups G. Conjecture (Jones, 2000) Show that $Out(L(G)) \cong Char(G) \rtimes Out(G)$, for icc property (T) groups G.

Popa's strengthening of Connes' rigidity conjecture, 2006

Let G be an icc property (T) group and H be any group. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$.

In particular, $Out(L(G)) \cong Char(G) \rtimes Out(G)$, $\mathcal{F}(L(G)) = \{1\}$ and G is W*-superrigid: if $L(G) \cong L(H)$, for any H, then $G \cong H$.

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

• Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), $L(\mathbb{Z} \wr G) \cong L(\mathbb{Z} \wr H) \Rightarrow G \cong H$.

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Remark. These results do not apply to property (T) group II₁ factors.

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Remark. These results do not apply to property (T) group II_1 factors. This is because deformation/rigidity applies to II_1 factors which admit deformations, whose presence is typically incompatible with property (T).

Since 2001, Popa's deformation/rigidity theory has led to remarkable advances in the classification of group factors and calculation of invariants.

- Popa (2001) $\mathcal{F}(L(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})) = \{1\}.$
- Popa (2004) If G, H icc property (T), L(Z ≥ G) ≅ L(Z ≥ H) ⇒ G ≅ H. Here, A ≥ B = (⊕_{b∈B} A) ⋊ B is the wreath-product of A and B.
- I-Peterson-Popa (2005) $\exists II_1 \text{ factors } M \text{ with } Out(M) = \{e\}.$
- **Popa-Vaes (2006)** icc G with $Out(L(G)) \cong Char(G) \rtimes Out(G)$.
- I-Popa-Vaes (2010) examples of W*-superrigid icc groups G.

Remark. These results do not apply to property (T) group II_1 factors. This is because deformation/rigidity applies to II_1 factors which admit deformations, whose presence is typically incompatible with property (T).

Chifan-Das-Houdayer-Khan (2020) examples of icc property (T) groups G such that $\mathcal{F}(L(G)) = \{1\}$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$,

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence $\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of A in $\bigoplus_{b \in B} A$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples (1)** H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.)

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in W\mathcal{R}(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup $H < G = \mathbb{F}_n$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in W\mathcal{R}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup $H < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] | t, t' \in T, t \neq t' \rangle$, for a C-L subgroup H < G. Then $S < \langle \! \langle H \rangle \! \rangle$, $S \lhd G$ and $G/S \in WR(H, G/\langle \! \langle H \rangle \! \rangle)$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in \mathcal{WR}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup $H < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] | t, t' \in T, t \neq t' \rangle$, for a C-L subgroup H < G. Then $S < \langle \langle H \rangle \rangle$, $S \lhd G$ and $G/S \in W\mathcal{R}(H, G/\langle \langle H \rangle \rangle)$. **Proof.** We have $\langle \langle H \rangle \rangle / S \cong \bigoplus_{t \in T} tHt^{-1} \cong \bigoplus_{G/\langle \langle H \rangle \rangle} H$ and a short exact sequence $\{e\} \rightarrow \langle \langle H \rangle \rangle / S \rightarrow G/S \rightarrow G/\langle \langle H \rangle \rangle \rightarrow \{e\}$.

Definition

A group G is a wreath-like product of two groups A and B, in symbols $G \in WR(A, B)$, if there is a short exact sequence

$$\{e\} \to \bigoplus_{b \in B} A \to G \xrightarrow{\varepsilon} B \to \{e\}$$

such that $gA_bg^{-1} = A_{\varepsilon(g)b}$, with A_b the *b*-labelled copy of *A* in $\bigoplus_{b \in B} A$. **Example.** $A \wr B = (\bigoplus_{b \in B} A) \rtimes B \in W\mathcal{R}(A, B)$.

Definition. H < G is a Cohen-Lyndon subgroup if $\langle\!\langle H \rangle\!\rangle = *_{t \in T} t H t^{-1}$, with T a left transversal for the normal subgrp $\langle\!\langle H \rangle\!\rangle \lhd G$ generated by H. **Examples** (1) H < H * K (Proof. $\langle\!\langle H \rangle\!\rangle = *_{k \in K} k H k^{-1}$.) (2) (Cohen-Lyndon, 1963) any maximal cyclic subgroup $H < G = \mathbb{F}_n$.

Proposition Let $S = \langle [tHt^{-1}, t'Ht'^{-1}] | t, t' \in T, t \neq t' \rangle$, for a C-L subgroup H < G. Then $S < \langle H \rangle \rangle$, $S \lhd G$ and $G/S \in \mathcal{WR}(H, G/\langle H \rangle \rangle)$. **Proof.** We have $\langle H \rangle / S \cong \bigoplus_{t \in T} tHt^{-1} \cong \bigoplus_{G/\langle H \rangle} H$ and a short exact sequence $\{e\} \rightarrow \langle \langle H \rangle / S \rightarrow G/S \rightarrow G/\langle \langle H \rangle \rangle \rightarrow \{e\}$. **Remark.** When G = H * K, we have $G/\langle \langle H \rangle = K$ and $G/S = H \wr K$.

Dahmani-Guirardel-Osin 2011 (group theoretic Dehn filling), Sun 2020

Let H < G with G hyperbolic relative to H.

Then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have that:

1) $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and 2) $G / \langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Fact: If G is icc hyperbolic and $n \in \mathbb{N}$, then $\exists H < G$ such that $H \cong \mathbb{F}_n$ and G is hyperbolic relative to H.

Dahmani-Guirardel-Osin 2011 (group theoretic Dehn filling), Sun 2020

Let H < G with G hyperbolic relative to H.

Then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have that:

1) $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and 2) $G / \langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Fact: If G is icc hyperbolic and $n \in \mathbb{N}$, then $\exists H < G$ such that $H \cong \mathbb{F}_n$ and G is hyperbolic relative to H.

As before, it follows that G/S is a generalized wreath-like product group. Using this, we prove the following:

Dahmani-Guirardel-Osin 2011 (group theoretic Dehn filling), Sun 2020

Let H < G with G hyperbolic relative to H.

Then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have that:

1) $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and 2) $G / \langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Fact: If G is icc hyperbolic and $n \in \mathbb{N}$, then $\exists H < G$ such that $H \cong \mathbb{F}_n$ and G is hyperbolic relative to H.

As before, it follows that G/S is a generalized wreath-like product group. Using this, we prove the following:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let G be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient W of G such that $W \in W\mathcal{R}(A, B)$, for B icc hyperbolic.

Dahmani-Guirardel-Osin 2011 (group theoretic Dehn filling), Sun 2020

Let H < G with G hyperbolic relative to H.

Then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have that:

1) $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and 2) $G / \langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Fact: If G is icc hyperbolic and $n \in \mathbb{N}$, then $\exists H < G$ such that $H \cong \mathbb{F}_n$ and G is hyperbolic relative to H.

As before, it follows that G/S is a generalized wreath-like product group. Using this, we prove the following:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let G be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient W of G such that $W \in \mathcal{WR}(A, B)$, for B icc hyperbolic.

In particular, if G has property (T), then so does $W \in W\mathcal{R}(A, B)$.

Dahmani-Guirardel-Osin 2011 (group theoretic Dehn filling), Sun 2020

Let H < G with G hyperbolic relative to H.

Then $\exists F \subset H$ finite s.t. $\forall N \lhd H$ with $N \cap F = \emptyset$ we have that:

1) $\langle\!\langle N \rangle\!\rangle = *_{t \in T} t N t^{-1}$, where T is a left transversal for $H \langle\!\langle N \rangle\!\rangle < G$, and 2) $G / \langle\!\langle N \rangle\!\rangle$ is hyperbolic relative to H/N.

Fact: If G is icc hyperbolic and $n \in \mathbb{N}$, then $\exists H < G$ such that $H \cong \mathbb{F}_n$ and G is hyperbolic relative to H.

As before, it follows that G/S is a generalized wreath-like product group. Using this, we prove the following:

Theorem A (Chifan-I-Osin-Sun, 2021)

Let G be an icc hyperbolic group. Then for any finitely generated group A, \exists a quotient W of G such that $W \in W\mathcal{R}(A, B)$, for B icc hyperbolic.

In particular, if G has property (T), then so does $W \in W\mathcal{R}(A, B)$.

This is surprising since wreath products $A \wr B$ never have prop. (T) !

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic.

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0.

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$.

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$.

Corollary C (CIOS, 2021)

 \forall f.p. group Q, \exists a continuum of icc property (T) groups $\{G_i\}_{i \in I}$ s.t.

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$.

Corollary C (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ and $H \in W\mathcal{R}(C, D)$ be property (T) groups, where A, C are nontrivial abelian or icc and B, D are icc hyperbolic. Let $\theta : L(G)^t \to L(H)$ be *-isomorphism, for any t > 0. Then t = 1 and \exists a group iso. $\delta : G \to H$ and character $\eta : G \to \mathbb{T}$ such that (up to unitary conjugacy) $\theta(u_g) = \eta(g)v_{\delta(g)}, \forall g \in G$.

Corollary C (CIOS, 2021)

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$.

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic.

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let *H* be an icc hyperbolic property (T) group and $g \in H$ be an element of infinite order.

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let *H* be an icc hyperbolic property (T) group and $g \in H$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by *d*, the quotient group $H/[\langle g^k \rangle \rangle, \langle g^k \rangle]$ is a W^{*}-superrigid icc group with property (T).

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let H be an icc hyperbolic property (T) group and $g \in H$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $H/[\langle g^k \rangle \rangle, \langle \langle g^k \rangle \rangle]$ is a W*-superrigid icc group with property (T).

These are the first examples of W*-superrigid groups with property $(T)_{._{71/72}}$

Connes' rigidity conjecture (1980) If G, H are icc property (T) and $L(G) \cong L(H)$, then $G \cong H$. Equivalently, any icc property (T) group G is W*-superrigid: if $L(G) \cong L(H)$, for any group H, then $G \cong H$.

I-Popa-Vaes 2010, Berbec-Vaes 2012, Chifan-I 2017, and Chifan-DiazArias-Drimbe 2021: W*-superrigid grps *without* prop. (T) (generalized wreath products and amalgamated free products).

Theorem D (CIOS, 2021)

Let $G \in W\mathcal{R}(A, B)$ be a property (T) group, where A is nontrivial abelian and B is icc hyperbolic. Then G is W*-superrigid.

Corollary E (CIOS, 2021)

Let H be an icc hyperbolic property (T) group and $g \in H$ be an element of infinite order. Then $\exists d \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$ divisible by d, the quotient group $H/[\langle g^k \rangle \rangle, \langle \langle g^k \rangle \rangle]$ is a W*-superrigid icc group with property (T).

These are the first examples of W*-superrigid groups with property $(T)_{._{72/72}}$