
Part II. Subproduct systems
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Subproduct Systems

Definition
Let d < ∞. A subproduct system over C consists of a family of subspaces:

X(n) ⊆ (Cd)⊗n s.t. X(n) ⊆ X(k)⊗X(m) for all k,m with n = k+m.

We write pn for the projection onto X(n). We write Fd = ∑
⊕
n (C

d)⊗n and FX = pFd for
p = ∑n pn.

Notation
Let C〈x1, . . . ,xd〉 be the polynomial ring in d noncommuting variables. Let {e1, . . . ,ed} be the
o.n. basis of Cd . We write

f (e) = ∑
w∈Fd

+

λwew1 ⊗·· ·⊗ ew|w| when f (x) = ∑
w∈Fd

+

λwxw ∈ C〈x1, . . . ,xd〉.

Theorem (Shalit-Solel 2009)

There is a bijection between the s.p.s. X = (X(n)) on d < ∞ variables, and the homogeneous
ideals I = ∪nI(n) C C〈x1, . . . ,xd〉 in the sense

{ f (e) | f ∈ I(n)}=: X(n)⊥ oo // I(n) := span{ f | f (e) ∈ X(n)⊥}
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Subproduct Systems

Quantization

- Let Fd = ∑
⊕
n (C

d)⊗n and let Li : Fd →Fd be the canonical shift operators. We write Ad =
alg{Li | i = 1, . . . ,d} for Popescu’s non-commutative disc algebra.
- If X = (X(n), pn) is a s.p.s. then let Si = pLi p = pLi and write FX = pFd . We write
AX := alg{Si | i = 1, . . . ,d}= p ·Ad .

Theorem (Shalit-Solel 2009)

AX has the following property: if T = [T1, . . . ,Td ] is a row contraction that satisfies
f (T1, . . . ,Td) = 0 for all f ∈ IX then there exists a completely conctractive map s.t. Si 7→ Ti
for all i = 1, . . . ,d.

Proof.
(Popescu’s Poisson Transform). For 0≤ r < 1 set Kr(T ) : H→Fd ⊗H by

Kr(T )h = ∑w∈Fd
ew⊗ (r|w|∆(rT )1/2(T w)∗h) where ∆(T ) = I−∑i TiT ∗i .

Then the required map Φ : AX →B(H) is given by

Φ(a) = limr↑1 Kr(T )∗(a⊗ I)Kr(T ).
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Example
The Symmetric Fock space

For every permutation σ on n elements define the unitary Uσ on (Cd)⊗n by

Uσ (ξ1⊗·· ·⊗ξn) = ξσ(1)⊗·· ·⊗ξσ(n).

The n-th fold symmetric tensor product of Cd , denoted by En, is the subspace consisting of the
vectors fixed by Uσ for all σ . The symmetric Fock space is given by F+(Cd) = ∑

⊕
n En.

Writing pn : (Cd)⊗n→ En we get that the resulting algebra alg{pLi | i = 1, . . . ,d} corresponds
to AXI for the (commutator) ideal (as) generated by xix j = x jxi, denoted by Ad .

Alternatively, consider C[x1, . . . ,xd ] the ring of polynomials on commuting variables, with i.p.:

〈xα ,xβ 〉= δα ,β α !/|α|!, where (α1, . . . ,αn)! = α1! · · ·αn! and |α|= α1 + · · ·+αd ,

and take H2
d the completion. Then H2

d is identified with the space of holomorphic functions
f : Bd → C with power series f = ∑α cα xα such that

‖ f‖2
H2

d
= ∑α cα (α !/|α|!) < ∞.

Then the above Ad is unitarily equivalent to the norm closure of polynomials inside

Mult(H2
d ) := { f : Bd → C | f h ∈ H2

d for all h ∈ H2
d }= algw∗{Mxi | i = 1, . . . ,d}.

The identification is given by the unitary V : xα 7→ pxα . Hence the resulting tensor algebra is
an algebra of homolomorphic functions.
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Rigidity of the tensor algebras of subproduct systems
Definition
(i) X = (X(n), pn) is similar to Y = (Y (n),qn) if there are invertible Vn : X(n)→ Y (n) s.t.

V1⊗·· ·⊗V1︸ ︷︷ ︸
n−times

=

[
Vn 0
∗ ∗

]
∈B(X(n)⊕X(n)⊥,Y (n)⊕Y (n)⊥).

such that supn{‖Vn‖,‖V−1
n ‖}< ∞.

(ii) X = (X(n), pn) is isomorphic to Y = (Y (n),qn) if they are similar by unitaries (U(n)), i.e.

U1⊗·· ·⊗U1︸ ︷︷ ︸
n−times

=

[
Un 0
0 ∗

]
∈B(X(n)⊕X(n)⊥,Y (n)⊕Y (n)⊥).

Theorem
Let X and Y be subproduct systems. Then:

(i) AX and AY are cbis iff AX and AY are isomorphic as top. alg. iff X and Y are similar.

(ii) AX and AY are cisis iff AX and AY are isis iff X and Y are isomorphic;

Remark
Combines results from Shalit–Solel (2009), Davidson–Ramsey–Shalit (2010),
Dor-On–Markiewisz (2013), K.–Shalit (2015).
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Subproduct Systems

Proposition

Let X = (X(n), pn) be a s.p.s.. If I denotes the closure of I ≡ { f (L) | f ∈ IX} in Ad , then
AX is completely isometrically isomorphic to Ad/I. In particular, the isomorphism is given by
ψ(x+ I) = px, and AX = p ·Ad .

Proof.
By construction there is a unital c.c. homomorphism Ad →AX : Li 7→ Si. Its kernel contains I
and consequently it contains I. Thus we obtain a c.c. homomorphism

ψ : Ad/I→AX ;Li + I 7→ Ti.

On the other hand the row contraction L̂ = [L1 + I, . . . ,Ld + I] satisfies f (L̂) = 0 for all f ∈ IX ,
and thus gives a c.c. homomorphism

σ : AX → Ad/I;Si 7→ Li + I

which is the inverse of ψ (thus ψ and σ are c.is.).
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Subproduct Systems

Definition
A character of an operator algebra is an algebraic homomorphism in C (and automatically c.c.).

The character space

For a s.p.s. X we write

Z(IX ) = {z ∈Bd | f (z) = 0 for all f ∈ IX}.

Then there is a bijection

MAX 3 ρ ←→ (ρ(S1), . . . ,ρ(Sd)) ∈ Z(IX ).

Indeed:

1. A character ρ of AX defines a character, say ρ ′ on Ad which must annihilate
I ≡ { f (L) | f ∈ IX}. For f ∈ IX we have

f (ρ(S)) = ρ ′( f (L)) = 0⇒ ρ(S) ∈ Z(IX ).

2. Conversely, for z ∈ Z(IX ) we have that f (z) = 0 and z = (z1, . . . ,zd) is a row contraction.
Thus ρz lifts to a c.c. homomorphism of AX (due to the property of AX ).
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Subproduct Systems

Lemma
Let X be a s.p.s. and let z ∈ Z(IX ). Then we have that the following diagram

Ad

  

ρz // C

AX

ρz

>>

is commutative. In particular, for every x ∈ Ad the map x̂ : Bd → C given by λ 7→ ρλ (x) is
continuous on Bd and holomorphic in Bd .

Proof.
We may apply in particular for the commutator ideal Id to obtain that the function

λ 7→ ρλ (x) = ρλ (x+ Id)

is in Ad . The latter is the norm closure of polynomials in Mult(H2
d ).
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Subproduct Systems

Lemma (K.-Shalit 2015)

Let X = (X(n), pn) and Y = (Y (n),qn) be s.p.s. on d and d′ variables, respectively. If φ : AX→
AY is an algebraic (resp. bounded, isometric) isomorphism, then there exists a continuous map
F̃ : Bd′ → Cd that is holomorphic on Bd′ and extends φ∗ : MAY →MAX .

Proof.
For every i = 1, . . . ,d, let Wi ∈ Ad′ so that

φ (Si) = qWi ∈AY .

Let the (continuous) map

φ∗ : Z(IY )→ Z(IX );z 7→ (ρzφ (S1), . . . ,ρzφ (Sd)).

We then see that the map λ 7→ ρλ (φ (Si)) extends to the continuous map Ŵi : Bd′ 7→ C, which
is holomorphic on Bd′ by Lemma 4. The required map F̃ : Bd′ → Cd is then defined by

F̃(z) = (Ŵ1(z), . . . ,Ŵd(z)).
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Subproduct Systems
Lemma (Davidson-Ramsey-Shalit 2010)

Let X = (X(n), pn) and Y = (Y (n),qn) be s.p.s. on d and d′ variables, respectively. If
φ : AX →AY is an algebraic (resp. bounded, isometric) isomorphism then there exists a vac-
uum preserving algebraic (resp. bounded, isometric) isomorphism φ ′ : AX →AY .

Proof.
Step 1. If V = V (I) is a variety in Cd for a homogeneous ideal I then either it has singular
points or it is a linear subspace. We denote by Sing(V ) the singular points of V and define

N(V ) = Sing(· · · (Sing(V )) · · · ) called the singular nucleus.

Step 2. For X and Y we see that φ∗ maps Bd′ ∩N(V (IY )) onto Bd ∩N(V (IX )). These are the
same and thus a ball of dimension say n (up to permutation of the coordinates).
Step 3. Let ψ ∈ Aut(Bn). Then we can write φ∗ =U ◦ϕv for

1. some unique unitary U ,

2. ϕv(z) = (v−Pvz− (1−|v|2)1/2Qvz)(1−〈z,v〉)−1, where Pv is the projection onto Cv
and Qv = I−Pv, for v ∈Bn.

If v = 0 take D1 = Bn∩L and D2 =UD1 for any one-dimensional space L in Cn.
Otherwise, take D1 = Cv∩Bn and D2 =U(D1). Note that ϕv|D1 = D1.
In either case we have two “discs” so that φ∗(D1) = D2.
Step 4. Apply the disc-trick.
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Subproduct Systems
Theorem (Dor-On–Markiewisz 2014)

Let X and Y be s.p.s. . Then AX and AY are cbis iff AX and AY are isomorphic as top. alg. iff
X and Y are similar.

Proof.
Wlog let φ : AX →AY be vaccum preserving.

In this case φ is semi-graded in the sense that:

if the minimal degree in f (SX ) is n then so it is for φ ( f (SX )).

Indeed it suffices to show that the minimal degree of φ (SX
1 ) is 1. If φ (SX

1 ) = λ IY +T then

λ = ρ0(φ (SX
1 )) = φ∗ ◦ρ0(SX

1 ) = ρ0(SX
1 ) = 0.

So φ does not drop degree and thus the minimal degree of φ (SX
1 ) is at least 1. By symmetry on

φ−1 we get that it is exactly 1.

The required map then is given by

V φ
n : X(n)→ Y (n); f (SX ) 7→ Fnφ ( f (SX )) for the n-th Fourier co-efficient Fn.

The key observation here is that Fnφ = FnφFn (and likewise for φ−1), and so for f (SX ) =
Fn( f (SX )) we get that

f (SX ) = Fn( f (SX )) = Fnφ−1φ ( f (SX )) = Fnφ−1Fnφ ( f (SX )).
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Subproduct Systems
Theorem (Shalit-Solel 2009)

Let X and Y be s.p.s. . Then AX and AY are cisis iff AX and AY are isis iff X and Y are
isomorphic.

Proof.
Wlog let φ : AX →AY be vaccum preserving.

By writing e /0 for the vaccum vector we have that ‖ f (S)e /0‖= ‖ f (S)‖ for all f ∈ X(n).

In this case φ preserves the grading. Indeed it suffices to show that if φ (SX
1 ) = ∑i λiSY

i +T then
T = 0. If T 6= 0 then φ−1(T ) 6= 0 (with minimal degree greater than 1) and so

1 = ‖SX
1 ‖= ‖SX

1 e /0‖< ‖(SX
1 −φ−1(T ))e /0‖ ≤ ‖SX

1 −φ−1(T )‖= ‖∑i λiSY
i ‖

while

‖∑i λiSY
i ‖= ‖∑i λiSY

i e /0‖ ≤ ‖(∑i λiSY
i +T )e /0‖ ≤ ‖φ (SX

1 )‖= 1,

which is a contradiction.

Thus the map

V φ
n : X(n)→ Y (n); f (SX ) 7→ φ ( f (SX )

is a unitary at every level, that sends X(n) into Y (n).
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Applications to monomial ideals
Definition
An ideal I of C〈x1, . . . ,xd〉 is called monomial if it is generated by monomials. Here we get:

Tieµ =

{
eiµ if iµ /∈ I
0 otherwise.

Theorem (K.-Shalit 2015)

Let X and Y be subproduct systems associated with the monomial ideals ICC〈x1, . . . ,xd〉 and
JCC〈y1, . . . ,yd′〉. Wlog suppose that xi /∈ I and y j /∈ J for all i, j. TFAE:

(i) AX and AY are isometrically isomorphic;

(ii) AX and AY are algebraically isomorphic;

(iii) C〈x1, . . . ,xd〉/I and C〈y1, . . . ,yd′〉/J are isomorphic by a graded isomorphism;

(iv) X and Y are similar;

(v) X and Y are isomorphic;

(vi) d = d′ and I = J up to a permutation of the variables.

Proof
H.t.s. that [(v)⇒ (vi)].
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Applications to monomial ideals

Proof: H.t.s. that [(v)⇒ (vi)].

Note that the graded isomorphism φ is given by invertible matrices Vn.

For n = 1 we get an invertible V1, thus d = d′.

The groups of graded automorphisms of the quotients are linear algebraic groups.

Then TJ = {ρ | ρ(yi) = aiyi,a ∈ Cd} forms a maximal torus.

By Borel’s Theorem the tori TJ and the φTIφ
−1 are conjugate.

Wlog we get a graded isomorphism s.t. φTI = TJφ .

If V1 = [ai j ] then we obtain that:

∀ diagonal D1 ∃ diagonal D2 s.t. [ai j ]D1 = D2[ai j ].

By Linear Algebra then V1 is diagonal up to a permutation, say π .

Thus we get φ (xi + I) = aπ(i)iyπ(i)+ J with aπ(i)i 6= 0.

End of Part II.

Thank you for your attention!

Stay safe, and physically and mentally healthy.
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