Part II. Subproduct systems
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Subproduct Systems

Definition
Let d < oo. A subproduct system over C consists of a family of subspaces:
X (n) C (C9)®" s.t. X (n) C X (k) ® X (m) for all k,m with n = k -+ m.

We write p, for the projection onto X (n). We write #; = Y2 (C%)®" and Fx = p.Fy for
P=XuPn

Notation

Let C(xp,...,x;) be the polynomial ring in d noncommuting variables. Let {ej,...,e;} be the
0.1. basis of C4. We write

fle) = Z Awew, ® -+ ® ey, when fx)= Z Awx"” € Clxy,...,xg)-

weFL weFL

Theorem (Shalit-Solel 2009)

There is a bijection between the s.p.s. X = (X(n)) on d < eo variables, and the homogeneous
ideals I = U,I(n) < C{xy,...,x4) in the sense

{£(e) | f €1(n)} =X (n)" <—=I(n) := span{f | f(e) € X(n)"}
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Subproduct Systems

Quantization
-Let Z; = YP(C%)®" and let L;: .%; — %4 be the canonical shift operators. We write 2, =
alg{L; |i=1,...,d} for Popescu’s non-commutative disc algebra.

- If X = (X(n),pn) is a s.p.s. then let S; = pL;p = pL; and write Fx = pFy. We write
oy =alg{S;|i=1,....d} = p-AUy.

Theorem (Shalit-Solel 2009)

fx has the following property: if T = [T},...,Ty] is a row contraction that satisfies
f(1,...,T;) = 0 for all f € Ix then there exists a completely conctractive map s.t. S; — T;
foralli=1,...,d.

Proof.
(Popescu’s Poisson Transform). For 0 < r < 1 set K.(T): H — %, ® H by

K (T)h = Lyer, ew ® (rIA(rT)/2(T*)*h) where A(T) = I - ¥; T}
Then the required map ®: @y — Z(H) is given by
@(a) =lim,4; K- (T)* (a @ I)Kr(T).
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Example

For every permutation ¢ on n elements define the unitary Uy on (C?)®” by
Us(§1®+®&n) =E5(1)® ®Eg(n)-

The n-th fold symmetric tensor product of C¢, denoted by E”, is the subspace consisting of the
vectors fixed by Us for all 6. The symmetric Fock space is given by Z4 (C?) = Y2 E™.
Writing p,,: (C?)®" — E™ we get that the resulting algebra alg{pL; | i = 1,...,d} corresponds
to a7, for the (commutator) ideal (as) generated by x;x j = xjX;, denoted by Ay.

Alternatively, consider C|[x1,...,x,4] the ring of polynomials on commuting variables, with i.p.:

(x* xP) = 8, ga!/|ax

I, where (0y,...,0,)! = oy!--- 0! and || = oy + -+ + 0,

and take Hf the completion. Then Hj is identified with the space of holomorphic functions
f: By — C with power series f = Y 4 cqx® such that

1172 = Zacalal/|alt) <.
Then the above 7, is unitarily equivalent to the norm closure of polynomials inside
Mult(H}) :={f: By = C| fh€ H} forallh€ H}} = alg" {My |i=1,...,d}.

The identification is given by the unitary V : x* — px®. Hence the resulting tensor algebra is
an algebra of homolomorphic functions.
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Rigidity of the tensor algebras of subproduct systems

Definition
() X = (X(n),py) is similar to Y = (Y (n),qy) if there are invertible V,,: X (n) — Y (n) s.t.
V. 0
Vi@V = { 2 ] € BX(n)@X(n)L,Y(n)@Y(n)L).
—_ | x %

n—times
such that sup,, {||Va|l, |V, 1|} < o.
(i) X = (X (n), pn) is isomorphic to Y = (Y (n),q,) if they are similar by unitaries (U (n)), i.e.

U, 0

U1®---QU = [O
— *

} e BX(n)®X(n)5Y(n) @Y (n)h).

n—times

Theorem

Let X and Y be subproduct systems. Then:
a/x and @ are cbis iff o7y and .oy are isomorphic as top. alg. iff X and ¥ are similar.
a/x and @ are cisis iff @7y and <% are isis iff X and Y are isomorphic;

Remark
Combines results from Shalit—Solel (2009), Davidson—Ramsey—Shalit (2010),
Dor-On—Markiewisz (2013), K.—Shalit (2015).
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Subproduct Systems

Proposition

Let X = (X(n),pn) be a s.p.s.. If I denotes the closure of I = {f(L) | f € Ix} in 2y, then
I is completely isometrically isomorphic to Uy /1. In particular, the isomorphism is given by
V(x+1) = px, and gx = p-2Ay.

Proof.

By construction there is a unital c.c. homomorphism 2A; — @7 : L; — S;. Its kernel contains [
and consequently it contains /. Thus we obtain a c.c. homomorphism

1/ Q(d/jﬁb@fx;l‘i-i-jf—) T;.

On the other hand the row contraction L = [Ly+1,...,Ly + 1] satisfies f (z) =0forall f €Iy,
and thus gives a c.c. homomorphism

(02 JZ{X —)Qld/T;SiHLi+7

which is the inverse of y (thus y and o are c.is.).
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Subproduct Systems

Definition

A character of an operator algebra is an algebraic homomorphism in C (and automatically c.c.).

The character space
For a s.p.s. X we write

Z(Ix) ={z€ B, | f(z) =0forall f € Ix}.
Then there is a bijection

Mgy 3 (p(S1)....p(Sa)) € Z(Ix).
Indeed:

A character p of % defines a character, say p’ on 2f; which must annihilate
I={f(L) | f € Ix}. For f € Ix we have

f(p(8)) = p'(f(L)) = 0= p(S) € Z(Ix).
Conversely, for z € Z(Ix) we have that f(z) =0and z = (z1,...,24) is a row contraction.
Thus p, lifts to a c.c. homomorphism of % (due to the property of @7).
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Subproduct Systems

Lemma

Let X be a s.p.s. and let z € Z(Ix ). Then we have that the following diagram

is commutative. In particular; for every x € 2, the map %: By — C given by A — p;, (x) is
continuous on B, and holomorphic in Bg,.

Proof.

We may apply in particular for the commutator ideal 7; to obtain that the function

A py(x) = pa(x+14)

is in .¢7;. The latter is the norm closure of polynomials in Mult(Hﬁ).
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Subproduct Systems

Lemma (K.-Shalit 2015)

LetX = (X(n),pn) andY = (Y (n),qn) be s.p.s. ond and d’ variables, respectively. If ¢ : olx —
szfy is an algebraic (resp. bounded, isometric) isomorphism, then there exists a continuous map
F: By — C? that is holomorphic on By and extends ¢* : Mgy, = Moy,

Proof.
Foreveryi=1,...,d, let W; € Ay so that

0(Si) = qW; € .
Let the (continuous) map
¢*: Z(Iy) = Z(Ix )iz = (pz(S1),- -, Pz (Sa))-

We then see that the map A — p; (¢(S;)) extends to the continuous map W; : B, — C, which
is holomorphic on By by Lemma 4. The required map F: By — C4 is then defined by

F(2) = (Wi (2).-...Wa(2))-
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Subproduct Systems
Lemma (Davidson-Ramsey-Shalit 2010)

Let X = (X(n),pn) and Y = (Y (n),qn) be s.p.s. on d and d' variables, respectively. If
@ oy — gy is an algebraic (resp. bounded, isometric) isomorphism then there exists a vac-
uum preserving algebraic (resp. bounded, isometric) isomorphism ¢’ : oty — <ty .

Proof.

Step 1. If V = V([) is a variety in C¢ for a homogeneous ideal I then either it has singular
points or it is a linear subspace. We denote by Sing(V') the singular points of V and define

N(V) = Sing(:-- (Sing(V)) - - - ) called the singular nucleus.

Step 2. For X and Y we see that ¢* maps By NN(V (Iy)) onto B;NN(V(Ix)). These are the
same and thus a ball of dimension say » (up to permutation of the coordinates).
Step 3. Let y € Aut(B,,). Then we can write ¢* = U o ¢, for
some unique unitary U,
0,(z2) = (v=Piz— (1= |v|*)"/20,2) (1 — (z,v)) !, where P, is the projection onto Cv
and Q, =1—P,, forv € B,,.
If v=0take D; = B, NL and D, = UD; for any one-dimensional space L in C".
Otherwise, take D; = CvNB, and D, = U(D;). Note that ¢,|p, = Dj.
In either case we have two “discs” so that ¢*(D;) = D;.
Step 4. Apply the disc-trick.
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Subproduct Systems
Theorem (Dor-On—Markiewisz 2014)
Let X and Y be s.p.s. . Then % and .o are cbis iff o7y and o7 are isomorphic as top. alg. iff

X and Y are similar.

Proof.
Wilog let ¢ : o7y — <% be vaccum preserving.
In this case ¢ is semi-graded in the sense that:
if the minimal degree in f(SX) is n then so it is for ¢ (f(5¥)).
Indeed it suffices to show that the minimal degree of ¢ (SY) is 1. If ¢ (S¥) = AI¥ + T then
A =po(9(S7)) = 9*opo(SY) = po(ST) =0.

So ¢ does not drop degree and thus the minimal degree of ¢ (S)f ) is at least 1. By symmetry on
¢! we get that it is exactly 1.

The required map then is given by
vl X(n) = Y (n); £(SX) — F,0 (£(SX)) for the n-th Fourier co-efficient F,.

The key observation here is that F,¢ = F,¢F, (and likewise for ¢ 1), and so for f (Sx) =
Fo(£(SX)) we get that

F(8%) = F(f(S%)) = Fo 7' 0(£(SX)) = R0 Fi9 (£(S¥)).
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Subproduct Systems
Theorem (Shalit-Solel 2009)
Let X and Y be s.p.s. . Then o and oy are cisis iff @7y and oy are isis iff X and Y are

isomorphic.

Proof.
Wilog let ¢ : o7y — <% be vaccum preserving.
By writing ey for the vaccum vector we have that || f(S)ep|| = || f(S)|| for all f € X (n).

In this case ¢ preserves the grading. Indeed it suffices to show that if ¢ (S)l( )=Y; ),,-SlY + T then
T = 0. If T # 0 then ¢ —'(T) # 0 (with minimal degree greater than 1) and so

1= |IS¥[| = IS eoll < (ST — ¢~ (T))eoll < IS¥ — ¢~ (T)|l = | Zi A:SY |
while
i ST 1| = 11X AiSY eoll < (i AiSY +Teoll < [l9 (STl = 1,
which is a contradiction.
Thus the map
Vs X(n) = ¥ (m); £(S%) = 9 (F(SY)
is a unitary at every level, that sends X (n) into ¥ (n).
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Applications to monomial ideals

Definition
Anideal I of C(xy,...,xg) is called monomial if it is generated by monomials. Here we get:

Te. — ein ifig &1
s (0] otherwise.

Theorem (K.-Shalit 2015)

Let X and Y be subproduct systems associated with the monomial ideals / <1 C(xy,...,xz) and
J<AC(y1,-.-,ya). Wlog suppose that x; ¢ I and y; ¢ J for all i, j. TFAE:

a/x and @ are isometrically isomorphic;

a/x and @ are algebraically isomorphic;

C(xy,...,xg) /I and C(y1,...,yz)/J are isomorphic by a graded isomorphism;
X and Y are similar;

X and Y are isomorphic;

d =d' and I = J up to a permutation of the variables.

Proof
H.tss. that [(v) = (vi)].
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Applications to monomial ideals

Proof: H.t.s. that [(v) = (vi)].
Note that the graded isomorphism ¢ is given by invertible matrices V;,.

For n = 1 we get an invertible Vi, thus d = d’.

The groups of graded automorphisms of the quotients are linear algebraic groups.

Then T; = {p | p(yi) = a;yi,a € C?} forms a maximal torus.
By Borel’s Theorem the tori 7 and the ¢7;¢ ! are conjugate.
Wilog we get a graded isomorphism s.t. 977 = T;¢.
If Vi = [a;j] then we obtain that:
V diagonal D 3 diagonal D s.t. [a;;]D) = D;[a;j].
By Linear Algebra then V) is diagonal up to a permutation, say 7.
Thus we get ¢ (x; +1) = az(;)iVz(i) +J With az;); # 0.

Thank you for your attention!

Stay safe, and physically and mentally healthy.

End of Part II.
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