Part II. Subproduct systems

References

- [1] Bruns W, Gubeladze J. Polytopes, Rings, and K-Theory. Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
- [2] Davidson KR, Ramsey C, Shalit OM. The isomorphism problem for some universal operator algebras. Advances in Mathematics **228** (2011), no. 1, 167–218.
- [3] Dor-On A, Markiewicz D, Operator algebras and subproduct systems arising from stochastic matrices. Journal of Functional Analysis **267** (2014), no. 4, 1057–1120.
- [4] Kakariadis ETA, Shalit OM. On operator algebras associated with monomial ideals in noncommuting variables. Journal of Mathematical Analysis and Applications **472** (2019), no. 1, 738-813.
- [5] Popescu G. Poisson Transforms on Some C*-Algebras Generated by Isometries. Journal of Functional Analysis **161** (1999), no. 1, 27–61.
- [6] Smith K, Kahanpaa L, Kekalainen P, Traves W. An invitation to Algebraic Geometry. Universitext, Springer, 2000.
- [7] Shalit OM, Solel B. Subproduct Systems. Documenta Mathematica 14 (2009), 801–868.

Definition

Let $d < \infty$. A subproduct system over \mathbb{C} consists of a family of subspaces:

 $X(n) \subseteq (\mathbb{C}^d)^{\otimes n}$ s.t. $X(n) \subseteq X(k) \otimes X(m)$ for all k, m with n = k + m.

We write p_n for the projection onto X(n). We write $\mathscr{F}_d = \sum_n^{\oplus} (\mathbb{C}^d)^{\otimes n}$ and $\mathscr{F}_X = p \mathscr{F}_d$ for $p = \sum_n p_n$.

Notation

Let $\mathbb{C}\langle x_1, \ldots, x_d \rangle$ be the polynomial ring in *d* noncommuting variables. Let $\{e_1, \ldots, e_d\}$ be the o.n. basis of \mathbb{C}^d . We write

$$f(\underline{e}) = \sum_{w \in \mathbb{F}^d_+} \lambda_w e_{w_1} \otimes \cdots \otimes e_{w_{|w|}} \text{ when } f(\underline{x}) = \sum_{w \in \mathbb{F}^d_+} \lambda_w \underline{x}^w \in \mathbb{C} \langle x_1, \dots, x_d \rangle.$$

Theorem (Shalit-Solel 2009)

There is a bijection between the s.p.s. X = (X(n)) on $d < \infty$ variables, and the homogeneous ideals $I = \bigcup_n I(n) \triangleleft \mathbb{C}\langle x_1, \dots, x_d \rangle$ in the sense

$$\{f(\underline{e}) \mid f \in I(n)\} =: X(n)^{\perp} \longleftrightarrow I(n) := \operatorname{span}\{f \mid f(\underline{e}) \in X(n)^{\perp}\}$$

Quantization

- Let $\mathscr{F}_d = \sum_n^{\oplus} (\mathbb{C}^d)^{\otimes n}$ and let $L_i: \mathscr{F}_d \to \mathscr{F}_d$ be the canonical shift operators. We write $\mathfrak{A}_d = \overline{\operatorname{alg}}\{L_i \mid i = 1, \dots, d\}$ for Popescu's non-commutative disc algebra. - If $X = (X(n), p_n)$ is a s.p.s. then let $S_i = pL_i p = pL_i$ and write $\mathscr{F}_X = p\mathscr{F}_d$. We write $\mathscr{A}_X := \overline{\operatorname{alg}}\{S_i \mid i = 1, \dots, d\} = \overline{p \cdot \mathfrak{A}_d}$.

Theorem (Shalit-Solel 2009)

 \mathscr{A}_X has the following property: if $\underline{T} = [T_1, \dots, T_d]$ is a row contraction that satisfies $f(T_1, \dots, T_d) = 0$ for all $f \in I_X$ then there exists a completely conctractive map s.t. $S_i \mapsto T_i$ for all $i = 1, \dots, d$.

Proof.

(Popescu's Poisson Transform). For $0 \le r < 1$ set $K_r(\underline{T}) : H \to \mathscr{F}_d \otimes H$ by

 $\overline{K_r(\underline{T})h} = \sum_{w \in \mathbb{F}_d} e_w \otimes (r^{|w|} \Delta(r\underline{T})^{1/2} (\underline{T}^w)^* h) \text{ where } \Delta(\underline{T}) = I - \sum_i T_i T_i^*.$

Then the required map $\Phi: \mathscr{A}_X \to \mathscr{B}(H)$ is given by

$$\Phi(a) = \lim_{r \uparrow 1} K_r(\underline{T})^* (a \otimes I) K_r(\underline{T}).$$

Example

The Symmetric Fock space

For every permutation σ on *n* elements define the unitary U_{σ} on $(\mathbb{C}^d)^{\otimes n}$ by

$$U_{\sigma}(\xi_1 \otimes \cdots \otimes \xi_n) = \xi_{\sigma(1)} \otimes \cdots \otimes \xi_{\sigma(n)}.$$

The *n*-th fold symmetric tensor product of \mathbb{C}^d , denoted by E^n , is the subspace consisting of the vectors fixed by U_{σ} for all σ . The symmetric Fock space is given by $\mathscr{F}_+(\mathbb{C}^d) = \sum_n^{\oplus} E^n$. Writing $p_n: (\mathbb{C}^d)^{\otimes n} \to E^n$ we get that the resulting algebra $\overline{\mathrm{alg}}\{pL_i \mid i = 1, ..., d\}$ corresponds to \mathscr{A}_{X_l} for the (commutator) ideal (as) generated by $x_i x_j = x_j x_i$, denoted by \mathscr{A}_d .

Alternatively, consider $\mathbb{C}[x_1, \ldots, x_d]$ the ring of polynomials on commuting variables, with i.p.:

$$\langle x^{\alpha}, x^{\beta} \rangle = \delta_{\alpha,\beta} \alpha! / |\alpha|!$$
, where $(\alpha_1, \dots, \alpha_n)! = \alpha_1! \cdots \alpha_n!$ and $|\alpha| = \alpha_1 + \cdots + \alpha_d$,

and take H_d^2 the completion. Then H_d^2 is identified with the space of holomorphic functions $f: \mathbb{B}_d \to \mathbb{C}$ with power series $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ such that

$$||f||_{H^2_d}^2 = \sum_{\alpha} c_{\alpha}(\alpha!/|\alpha|!) < \infty.$$

Then the above \mathcal{A}_d is unitarily equivalent to the norm closure of polynomials inside

$$\operatorname{Mult}(H_d^2) := \{ f \colon \mathbb{B}_d \to \mathbb{C} \mid fh \in H_d^2 \text{ for all } h \in H_d^2 \} = \overline{\operatorname{alg}}^{\operatorname{ws}} \{ M_{x^i} \mid i = 1, \dots, d \}.$$

The identification is given by the unitary $V: x^{\alpha} \mapsto p\underline{x}^{\alpha}$. Hence the resulting tensor algebra is an algebra of homolomorphic functions.

Rigidity of the tensor algebras of subproduct systems

Definition

(i) $X = (X(n), p_n)$ is similar to $Y = (Y(n), q_n)$ if there are invertible $V_n \colon X(n) \to Y(n)$ s.t.

$$\underbrace{V_1 \otimes \cdots \otimes V_1}_{n-\text{times}} = \begin{bmatrix} V_n & 0 \\ * & * \end{bmatrix} \in \mathscr{B}(X(n) \oplus X(n)^{\perp}, Y(n) \oplus Y(n)^{\perp}).$$

such that $\sup_{n} \{ \|V_n\|, \|V_n^{-1}\| \} < \infty$.

(ii) $X = (\overline{X(n)}, p_n)$ is *isomorphic* to $Y = (Y(n), q_n)$ if they are similar by unitaries $\overline{(U(n))}$, i.e.

$$\underbrace{U_1 \otimes \cdots \otimes U_1}_{n-\text{times}} = \begin{bmatrix} U_n & 0\\ 0 & * \end{bmatrix} \in \mathscr{B}(X(n) \oplus X(n)^{\perp}, Y(n) \oplus Y(n)^{\perp}).$$

Theorem

Let *X* and *Y* be subproduct systems. Then:

(i) \mathscr{A}_X and \mathscr{A}_Y are cbis iff \mathscr{A}_X and \mathscr{A}_Y are isomorphic as top. alg. iff X and Y are similar.

(ii) \mathscr{A}_X and \mathscr{A}_Y are cisis iff \mathscr{A}_X and \mathscr{A}_Y are isis iff X and Y are isomorphic;

Remark

Combines results from Shalit–Solel (2009), Davidson–Ramsey–Shalit (2010), Dor-On–Markiewisz (2013), K.–Shalit (2015).

Proposition

Let $X = (X(n), p_n)$ be a s.p.s.. If \overline{I} denotes the closure of $I \equiv \{f(\underline{L}) \mid f \in I_X\}$ in \mathfrak{A}_d , then \mathscr{A}_X is completely isometrically isomorphic to $\mathfrak{A}_d/\overline{I}$. In particular, the isomorphism is given by $\psi(x+\overline{I}) = px$, and $\mathscr{A}_X = p \cdot \mathfrak{A}_d$.

Proof.

By construction there is a unital c.c. homomorphism $\mathfrak{A}_d \to \mathscr{A}_X : L_i \mapsto S_i$. Its kernel contains I and consequently it contains \overline{I} . Thus we obtain a c.c. homomorphism

$$\psi \colon \mathfrak{A}_d / \overline{I} \to \mathscr{A}_X; L_i + \overline{I} \mapsto T_i.$$

On the other hand the row contraction $\underline{\hat{L}} = [L_1 + \overline{I}, \dots, L_d + \overline{I}]$ satisfies $f(\underline{\hat{L}}) = 0$ for all $f \in I_X$, and thus gives a c.c. homomorphism

$$\sigma\colon \mathscr{A}_X \to \mathfrak{A}_d / \overline{I}; S_i \mapsto L_i + \overline{I}$$

which is the inverse of ψ (thus ψ and σ are c.is.).

Definition

A character of an operator algebra is an algebraic homomorphism in C (and automatically c.c.).

The character space

For a s.p.s. X we write

$$Z(I_X) = \{ z \in \overline{\mathbb{B}}_d \mid f(z) = 0 \text{ for all } f \in I_X \}.$$

Then there is a bijection

$$\mathcal{M}_{\mathcal{A}_X} \ni \rho \longleftrightarrow (\rho(S_1), \ldots, \rho(S_d)) \in Z(I_X).$$

Indeed:

1. A character ρ of \mathscr{A}_X defines a character, say ρ' on \mathfrak{A}_d which must annihilate $I \equiv \{f(\underline{L}) \mid f \in I_X\}$. For $f \in I_X$ we have

$$f(\rho(\underline{S})) = \rho'(f(\underline{L})) = 0 \Rightarrow \rho(\underline{S}) \in Z(I_X).$$

2. Conversely, for $\underline{z} \in Z(I_X)$ we have that $f(\underline{z}) = 0$ and $\underline{z} = (z_1, \dots, z_d)$ is a row contraction. Thus ρ_z lifts to a c.c. homomorphism of \mathscr{A}_X (due to the property of \mathscr{A}_X).

Lemma

Let X be a s.p.s. and let $\underline{z} \in Z(I_X)$. Then we have that the following diagram

is commutative. In particular, for every $x \in \mathfrak{A}_d$ the map $\widehat{x} \colon \overline{\mathbb{B}}_d \to \mathbb{C}$ given by $\lambda \mapsto \rho_{\lambda}(x)$ is continuous on $\overline{\mathbb{B}}_d$ and holomorphic in \mathbb{B}_d .

Proof.

We may apply in particular for the commutator ideal I_d to obtain that the function

$$\lambda \mapsto \rho_{\lambda}(x) = \rho_{\lambda}(x + \overline{I}_d)$$

is in \mathscr{A}_d . The latter is the norm closure of polynomials in Mult (H_d^2) .

Lemma (K.-Shalit 2015)

Let $X = (X(n), p_n)$ and $Y = (Y(n), q_n)$ be s.p.s. on d and d' variables, respectively. If $\phi \colon \mathscr{A}_X \to \mathscr{A}_Y$ is an algebraic (resp. bounded, isometric) isomorphism, then there exists a continuous map $\widetilde{F} \colon \overline{\mathbb{B}}_{d'} \to \mathbb{C}^d$ that is holomorphic on $\mathbb{B}_{d'}$ and extends $\phi^* \colon \mathscr{M}_{\mathscr{A}_Y} \to \mathscr{M}_{\mathscr{A}_X}$.

Proof.

For every i = 1, ..., d, let $W_i \in \mathfrak{A}_{d'}$ so that

$$\phi(S_i) = qW_i \in \mathscr{A}_Y.$$

Let the (continuous) map

$$\phi^*: Z(I_Y) \to Z(I_X); \underline{z} \mapsto (\rho_{\underline{z}}\phi(S_1), \dots, \rho_{\underline{z}}\phi(S_d)).$$

We then see that the map $\lambda \mapsto \rho_{\lambda}(\phi(S_i))$ extends to the continuous map $\widehat{W}_i \colon \overline{\mathbb{B}}_{d'} \mapsto \mathbb{C}$, which is holomorphic on $\mathbb{B}_{d'}$ by Lemma 4. The required map $\widetilde{F} \colon \overline{\mathbb{B}}_{d'} \to \mathbb{C}^d$ is then defined by

$$\widetilde{F}(\underline{z}) = (\widehat{W}_1(\underline{z}), \dots, \widehat{W}_d(\underline{z})).$$

26/31

Lemma (Davidson-Ramsey-Shalit 2010)

Let $X = (X(n), p_n)$ and $Y = (Y(n), q_n)$ be s.p.s. on d and d' variables, respectively. If $\phi : \mathscr{A}_X \to \mathscr{A}_Y$ is an algebraic (resp. bounded, isometric) isomorphism then there exists a vacuum preserving algebraic (resp. bounded, isometric) isomorphism $\phi' : \mathscr{A}_X \to \mathscr{A}_Y$.

Proof.

Step 1. If V = V(I) is a variety in \mathbb{C}^d for a homogeneous ideal *I* then either it has singular points or it is a linear subspace. We denote by $\operatorname{Sing}(V)$ the singular points of *V* and define

 $N(V) = \operatorname{Sing}(\overline{\cdots}(\operatorname{Sing}(V))\cdots)$ called *the singular nucleus*.

Step 2. For *X* and *Y* we see that ϕ^* maps $\mathbb{B}_{d'} \cap N(V(I_Y))$ onto $\mathbb{B}_d \cap N(V(I_X))$. These are the same and thus a ball of dimension say *n* (up to permutation of the coordinates). Step 3. Let $\psi \in \operatorname{Aut}(\mathbb{B}_n)$. Then we can write $\phi^* = U \circ \phi_v$ for

- **1.** some unique unitary U,
- 2. $\varphi_{\nu}(\underline{z}) = (\nu P_{\nu}\underline{z} (1 |\nu|^2)^{1/2}Q_{\nu}\underline{z})(1 \langle \underline{z}, \nu \rangle)^{-1}$, where P_{ν} is the projection onto $\mathbb{C}\nu$ and $Q_{\nu} = I P_{\nu}$, for $\nu \in \mathbb{B}_n$.

If v = 0 take $D_1 = \mathbb{B}_n \cap L$ and $D_2 = UD_1$ for any one-dimensional space L in \mathbb{C}^n . Otherwise, take $D_1 = \mathbb{C}v \cap \mathbb{B}_n$ and $D_2 = U(D_1)$. Note that $\varphi_v|_{D_1} = D_1$. In either case we have two "discs" so that $\phi^*(D_1) = D_2$. Step 4. Apply the disc-trick.

Theorem (Dor-On-Markiewisz 2014)

Let X and Y be s.p.s. . Then \mathcal{A}_X and \mathcal{A}_Y are cbis iff \mathcal{A}_X and \mathcal{A}_Y are isomorphic as top. alg. iff X and Y are similar.

Proof.

Wlog let $\phi : \mathscr{A}_X \to \mathscr{A}_Y$ be vaccum preserving.

In this case ϕ is semi-graded in the sense that:

if the minimal degree in $f(S^X)$ is *n* then so it is for $\phi(f(S^X))$.

Indeed it suffices to show that the minimal degree of $\phi(S_1^X)$ is 1. If $\phi(S_1^X) = \lambda I^Y + T$ then

$$\lambda = \rho_{\underline{0}}(\phi(S_1^X)) = \phi^* \circ \rho_{\underline{0}}(S_1^X) = \rho_{\underline{0}}(S_1^X) = 0.$$

So ϕ does not drop degree and thus the minimal degree of $\phi(S_1^X)$ is at least 1. By symmetry on ϕ^{-1} we get that it is exactly 1.

The required map then is given by

 $V_n^{\phi}: X(n) \to Y(n); \overline{f(S^X)} \mapsto F_n \phi(f(S^X))$ for the *n*-th Fourier co-efficient F_n .

The key observation here is that $F_n\phi = F_n\phi F_n$ (and likewise for ϕ^{-1}), and so for $f(S_X) = F_n(f(S^X))$ we get that

$$f(S^X) = F_n(f(S^X)) = F_n \phi^{-1} \phi(f(S^X)) = F_n \phi^{-1} F_n \phi(f(S^X)).$$

Theorem (Shalit-Solel 2009)

Let X and Y be s.p.s. . Then \mathcal{A}_X and \mathcal{A}_Y are cisis iff \mathcal{A}_X and \mathcal{A}_Y are isis iff X and Y are isomorphic.

Proof.

Wlog let $\phi : \mathscr{A}_X \to \mathscr{A}_Y$ be vaccum preserving.

By writing e_{\emptyset} for the vaccum vector we have that $||f(S)e_{\emptyset}|| = ||f(S)||$ for all $f \in X(n)$.

In this case ϕ preserves the grading. Indeed it suffices to show that if $\phi(S_1^X) = \sum_i \lambda_i S_i^Y + T$ then T = 0. If $T \neq 0$ then $\phi^{-1}(T) \neq 0$ (with minimal degree greater than 1) and so

$$1 = \|S_1^X\| = \|S_1^X e_{\emptyset}\| < \|(S_1^X - \phi^{-1}(T))e_{\emptyset}\| \le \|S_1^X - \phi^{-1}(T)\| = \|\sum_i \lambda_i S_i^Y\|$$

while

$$\|\sum_{i}\lambda_{i}S_{i}^{Y}\| = \|\sum_{i}\lambda_{i}S_{i}^{Y}e_{\emptyset}\| \le \|(\sum_{i}\lambda_{i}S_{i}^{Y}+T)e_{\emptyset}\| \le \|\phi(S_{1}^{X})\| = 1,$$

which is a contradiction.

Thus the map

$$V_n^{\phi}: X(n) \to Y(n); f(S^X) \mapsto \phi(f(S^X))$$

is a unitary at every level, that sends X(n) into Y(n).

Applications to monomial ideals

Definition

An ideal *I* of $\mathbb{C}\langle x_1, \ldots, x_d \rangle$ is called *monomial* if it is generated by monomials. Here we get:

$$T_i e_{\mu} = \begin{cases} e_{i\mu} & \text{if } i\mu \notin I \\ 0 & \text{otherwise.} \end{cases}$$

Theorem (K.-Shalit 2015)

Let *X* and *Y* be subproduct systems associated with the monomial ideals $I \triangleleft \mathbb{C}\langle x_1, \ldots, x_d \rangle$ and $J \triangleleft \mathbb{C}\langle y_1, \ldots, y_{d'} \rangle$. Wlog suppose that $x_i \notin I$ and $y_j \notin J$ for all *i*, *j*. TFAE:

- (i) \mathscr{A}_X and \mathscr{A}_Y are isometrically isomorphic;
- (ii) \mathscr{A}_X and \mathscr{A}_Y are algebraically isomorphic;
- (iii) $\mathbb{C}\langle x_1, \ldots, x_d \rangle / I$ and $\mathbb{C}\langle y_1, \ldots, y_{d'} \rangle / J$ are isomorphic by a graded isomorphism;
- (iv) X and Y are similar;
- (v) X and Y are isomorphic;
- (vi) d = d' and I = J up to a permutation of the variables.

Proof

H.t.s. that $[(v) \Rightarrow (vi)]$.

Applications to monomial ideals

Proof: H.t.s. that $[(v) \Rightarrow (vi)]$.

Note that the graded isomorphism ϕ is given by invertible matrices V_n .

For n = 1 we get an invertible V_1 , thus d = d'.

The groups of graded automorphisms of the quotients are linear algebraic groups. Then $T_J = \{ \rho \mid \rho(y_i) = a_i y_i, \underline{a} \in \mathbb{C}^d \}$ forms a maximal torus. By Borel's Theorem the tori T_J and the $\phi T_I \phi^{-1}$ are conjugate. Wlog we get a graded isomorphism s.t. $\phi T_I = T_J \phi$. If $V_1 = [a_{ij}]$ then we obtain that:

 \forall diagonal $D_1 \exists$ diagonal D_2 s.t. $[a_{ij}]D_1 = D_2[a_{ij}]$.

By Linear Algebra then V_1 is diagonal up to a permutation, say π . Thus we get $\phi(x_i + I) = a_{\pi(i)i}y_{\pi(i)} + J$ with $a_{\pi(i)i} \neq 0$.

End of Part II.

Thank you for your attention!

Stay safe, and physically and mentally healthy.