Rigidity of Analytic Operator Algebras

Evgenios Kakariadis

Newcastle University

Functional Analysis and Operator Algebras in Athens, February 2022

Framework

Main Idea: Encode Structures via Operator Algebras

$$\left\{\begin{array}{c} S: \text{ set of generators} \\ \text{ and relations} \end{array}\right\} \quad \rightsquigarrow \quad \left\{\begin{array}{c} \text{Subalgebras of } \mathscr{B}(H) \end{array}\right\}$$

Rigidity

$$\left\{\begin{array}{c} S_1 \sim S_2 \end{array}\right\} \quad \iff \quad \left\{\begin{array}{c} C_{S_1}^* \sim C_{S_2}^*, \, \mathscr{A}_{S_1} \sim \mathscr{A}_{S_2} \\ \\ \\ \left\{\begin{array}{c} \text{strong Morita equivalence/isomorphisms} \end{array}\right\} \end{array}\right.$$

Question: $S_1 \sim S_2 \Leftrightarrow \overset{??}{\iff} C^*_{S_1} \simeq C^*_{S_2}$

Example: Let G_1, G_2 be free abelian discrete groups, i.e. $G_i = \mathbb{Z}^{d_i}$. Then:

 $C^*(G_1) \simeq C^*(G_2)$ iff $C_0(\widehat{G}_1) \simeq C_0(\widehat{G}_2)$, iff $\widehat{G}_1 \simeq \widehat{G}_2$, iff $d_1 = d_2$, iff $G_1 \simeq G_2$. But in general, we require more elements than just *-isomorphism.

- Hoare-Parry 1960's: C*-crossed products do not classify ℤ-actions up to conjugacy.
- Semigroup algebras: $C^*(S) \simeq C^*(\mathbb{Z}_+)$ for any positive cone $S \subseteq \mathbb{Z}$.
- Work on graphs by Eilers-Restorff-Ruiz-Sørensen: moves plus *K*-theory.

Framework

Positive answers: $S_1 \sim S_2 \iff \mathscr{A}_{S_1} \simeq \mathscr{A}_{S_2}$

It started in 1960's by Arveson. Some examples:

- Aperiodic C*-correspondences: Muhly-Solel (2000).
- Graphs: Katsoulis-Kribs (2004), Solel (2004).
- Dynamical systems: Arveson (1967), Arveson-Josephson (1969), Peters (1984),
 Hadwin-Hoover (1988), Davidson-Katsoulis (2008²); Davidson-K. (2012); K.-Katsoulis (2012); Katsoulis-Ramsey (2021).
 Cornelissen Marcolli use results of Davidson Katsoulis to settle questions in Number.
 - Cornelissen-Marcolli use results of Davidson-Katsoulis to settle questions in Number Theory.
- Topological graphs: Davidson-Roydor (2009).
- Analytic varieties: Shalit-Solel (2009), Davidson-Ramsey-Shalit (2011), Hartz (2015).
- 6 Stochastic matrices: Dor-On and Markiewisz (2014).
- Weighted shifts: Dor-On (2015).
- 8 Triangular limit algebras: Katsoulis-Ramsey (2015).
- Subproduct systems: K.-Shalit (2015).
- B. Subvarieties of the nc ball: Salomon-Shalit-Shamovich (2018).

Framework

Structural differences

```
C*-algebras = topological objects vs. Nsa = analytical objects.
```

Strategy for rigidity of nsa

Let \mathscr{A}_{S_1} and \mathscr{A}_{S_2} be nsa's related to structures S_1 and S_2 .

- **1.** Suppose \mathscr{A}_{S_1} and \mathscr{A}_{S_2} are generated by analytic polynomials.
- 2. Obtain rotations in the automorphism groups.
- **3.** Rotate isomorphisms to vacuum preserving isomorphisms.
- **4.** Apply a Schwarz-type Lemma.
- **5.** Analyze the Fourier co-efficients to get information on the S_1 and S_2 .

Rotating to vacuum preserving homomorphisms

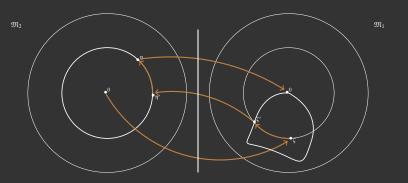
"Theorem" of rotating homomorphisms (Davidson-Ramsey-Shalit 2011)

Let $\rho : \mathscr{A}_1 \to \mathscr{A}_2$ be an isomorphism.

- **1.** Suppose that $Aut(\mathscr{A}_1)$ and $Aut(\mathscr{A}_2)$ contain rotations.
- 2. Suppose that $\rho^* \colon \mathfrak{M}_2 \to \mathfrak{M}_1$ maps a disc onto a disc.

Then we can rotate ρ to a vacuum preserving isomorphism.

Proof



Part I. Semigroup Operator Algebras

References

[1] Cortiñas G, Haesemeyer C, Walker ME, Weibel C. The K-theory of toric varieties in positive characteristic. Journal of Topology 7 (2014), no. 1, 247–286.

[2] Cuntz J, Echterhoff S, Li X, Yu G. K-Theory for Group C*-Algebras and Semigroup C*-Algebras. Oberwolfach Seminars, 47, Birkhäuser/Springer, Cham, 2017.

[3] Kakariadis ETA, Katsoulis EG, Li X. Operator algebras of higher rank numerical semigroups. Proceedings of the American Mathematical Society **148** (2020), no. 10, 4423-4433.

[4] Range RM. Holomorphic functions and integral representations in several complex variables. Springer-Verlag New York, 1986.

Semigroup algebras

Definition

A *positive cone S* of \mathbb{Z}^d_+ is a unital subsemigroup such that: (i) $S \cap (-S) = (0)$; and (ii) for every $g \in \mathbb{Z}^d$ there exist $s, t \in S$ such that g = s - t.

Definition

The Fock representation $V: S \to \mathscr{B}(\ell^2(S))$ is given by

$$V_s: \ell^2(S) \to \ell^2(S): e_t \mapsto e_{s+t}.$$

We define the *nonselfadjoint semigroup algebra* by $\mathscr{A}(S) := \overline{\operatorname{alg}}\{V_s \mid s \in S\}$.

Example

The prototypical example is the unilateral shift in $\ell^2(\mathbb{Z}_+)$ given by $Ve_n = e_{n+1}$. Recall that the Toeplitz C*-algebra is defined as

$$\mathscr{T} := \mathbf{C}^*(V) = \overline{\operatorname{span}}\{V_n V_m^* \mid n, m \in \mathbb{Z}_+\}.$$

The nonselfadjoint semigroup algebra $\mathscr{A}(\mathbb{Z}_+)$ is a representation of the disc algebra $\mathbb{A}(\mathbb{D})$.

Semigroup C*-algebras

Question

Is it true that $C^*(S_1) \simeq C^*(S_2)$ implies $S_1 \simeq S_2$?

Answer: No!

Let $S \subseteq \mathbb{Z}_+$ be a semigroup such that $S \cap (-S) = \{0\}$ and $S - S = \mathbb{Z}$.

Then gcd(S) = 1 and there exists an $N_0 \in S$ such that if $n \ge N_0$ then $n \in S$.

Let N_0 be the minimal.

Let $\gamma: \mathbb{Z}_+ \to S$ be a bijective map that respects the total order, i.e., γ is the linear enumeration on *S*.

It thus satisfies

$$\gamma(k+m) = k + \gamma(m)$$
 for all $k \in \mathbb{Z}_+$; $\gamma(m) \ge N_0$;

and so

$$k+m = \gamma^{-1}(k+\gamma(m))$$
 for all $k \in \mathbb{Z}_+$; $\gamma(m) \ge N_0$.

By replacing *k* with $\gamma(k) \in \mathbb{N}$ we moreover have

$$\gamma^{-1}(\gamma(k) + \gamma(m)) = \gamma(k) + m$$
 for all $k \in \mathbb{Z}_+; m \ge \gamma^{-1}(N_0)$

Semigroup C*-algebras

Answer cc'ed.

Let $U: \ell^2(\mathbb{Z}_+) \to \ell^2(S)$ by $Ue_n = e_{\gamma(n)}$.

Set *V* be the usual unilateral shift, and T_s be the shift operators that generat $C^*(S)$. The properties of γ then imply

$$UT_{\gamma(k)}U^* = V_{\gamma(k)}V_{\gamma^{-1}(N_0)}V_{\gamma^{-1}(N_0)}^* + \sum_{m \notin \gamma^{-1}(N_0) + \mathbb{Z}_+}V_{\gamma^{-1}(\gamma(k) + \gamma(m))}V_m^*p_m,$$

for the projections p_m on e_m .

Likewise we have that

$$U^*V_kU = T_{k+N_0}T_{N_0}^* + \sum_{\gamma(m)\notin N_0+S}T_{\gamma(s+m)}T_{\gamma(m)}^*p_{\gamma(m)}.$$

By construction the set $(N_0 + S)^c \cap S$ is finite (thus the sums are finite).

It suffices to show that the p_m projections are in \mathscr{T} , and that the $p_{\gamma(m)}$ projections are in $C^*(S)$, and then ad_U induces the required *-isomorphism between $C^*(S)$ and \mathscr{T} .

Semigroup C*-algebras

Answer cc'ed.

On one hand we have

$$p_m := P_{\mathbb{C}e_m} = V_m V_m^* - V_{m+1} V_{m+1}^* \in \mathscr{T}.$$

It remains to show that the projections $p_{\gamma(m)}$ are in $C^*(S)$. We have that $S \setminus \{0\} = \langle s_1^0, \dots, s_{k_0}^0 \rangle$ is finitely generated and so

$$p_0 = \prod_{j=1}^{k_0} (I - T_{s_j^0} T_{s_j^0}^*) \in \mathbf{C}^*(S).$$

Now consider the first non-zero element $\gamma(1)$ in *S*. Then $S \setminus \{0, \gamma(1)\}$ is a subsemigroup of \mathbb{Z}_+ and contains all natural numbers after a finite step. Hence it is finitely generated, say $S \setminus \{0, \gamma(1)\} = \langle s_1^{\gamma(1)}, \dots, s_{k_1}^{\gamma(1)} \rangle$, and so

$$p_0 + p_{\gamma(1)} = \prod_{j=1}^{k_1} (I - T_{s_j^{\gamma(1)}} T_{s_j^{\gamma(1)}}^*) \in \mathbf{C}^*(S)$$

and thus $p_{\gamma(1)} \in C^*(S)$. Inductively $p_{\gamma(m)} \in C^*(S)$ for every *m*.

Positive cones

Question

Is it true that $S_1 \simeq S_2$ if and only if $\mathscr{A}(S_1) \simeq \mathscr{A}(S_2)$?

Definition

A positive cone *S* is a subsemigroup of a discrete abelian group \mathscr{G} such that $S \cap (-S) = \{0\}$ and $S - S = \mathscr{G}$.

Proposition

Let $S \subseteq \mathscr{G}$ be a positive cone. Then there is an isometric map $\mathscr{A}(S) \to \mathbb{C}^*(\mathscr{G}); V_s \mapsto U_s$.

Proof

Since polynomials in $\mathscr{A}(S)$ have a unique expression the map $V_s \mapsto U_s$ admits a unique linear extension. Identify $\ell^2(S)$ with the obvious subspace inside $\ell^2(\mathscr{G})$ and get:

$$\|\sum_{s\in F}\lambda_s V_s\|=\|P_{\ell^2(S)}\bigg(\sum_{s\in F}\lambda_s U_s\bigg)|_{\ell^2(S)}\|\leq \|\sum_{s\in S}\lambda_s U_s\|.$$

For the reverse inequality fix $\varepsilon > 0$. Let $\xi = \sum_{i=1}^{n} k_i e_{g_i}$ in the unit ball of $\ell^2(\mathscr{G})$ such that

$$\|\sum_{s\in F}\lambda_s U_s\|-arepsilon\leq\|\sum_{s\in F}\lambda_s U_sm{\xi}\|_{\ell^2(\mathscr{G})}.$$

The one-variable case

Proof cont'd.

Since *S* is a positive cone we have that there are $s_i, t_i \in S$ such that $g_i = s_i - t_i$ for all i = 1, ..., n. Set $t := \sum_{i=1}^{n} t_i \in S$ so that $t + g_i \subset S$ for all i = 1, ..., n. Then the vector

$$\xi' := U_t \xi = \sum_{i=1}^n k_i e_{t+g_i} \in \left(\ell^2(S)\right)_1.$$

Therefore we obtain

$$\begin{split} \|\sum_{s\in F}\lambda_s U_s\| - \varepsilon &\leq \|U_t\sum_{s\in F}\lambda_s U_s\xi\|_{\ell^2(\mathscr{G})} = \|\sum_{s\in F}\lambda_s U_s U_t\xi\|_{\ell^2(\mathscr{G})} \\ &= \|\sum_{s\in F}\lambda_s U_s\xi'\|_{\ell^2(\mathscr{G})} = \|\sum_{s\in F}\lambda_s V_s\xi'\|_{\ell^2(S)} \leq \|\sum_{s\in F}\lambda_s V_s\|. \end{split}$$

As $\varepsilon > 0$ was arbitrary we have equality of the norms.

Corollary

If $S_1 \subseteq S_2 \subseteq \mathscr{G}$ are positive cones then there is an isometric embedding

$$\mathscr{A}(S_1) \hookrightarrow \mathscr{A}(S_2); V_s^{S_1} \mapsto V_s^{S_2}.$$

The one-variable case

Numerical semigroup

1. A positive cone of \mathbb{Z} is called *numerical semigroup* ($S \subseteq \mathbb{Z}_+$ and $S \cap (-S) = \{0\}$).

2. An $S \subseteq \mathbb{Z}_+$ is a numerical semigroup iff there is an $n \in S$ such that $m \in S$ for all m > n.

Proposition

Let S be a numerical semigroup. Then the inclusion $\mathscr{A}(S) \hookrightarrow \mathscr{A}(\mathbb{Z}_+)$ induces a homeomorphism

$$\iota^* \colon \overline{\mathbb{D}} \to \mathfrak{M}_S : \zeta \mapsto \operatorname{ev}_{\zeta}|_{\mathscr{A}(S)}.$$

Proof

The map t^* is well defined. For $S \subseteq \mathbb{Z}_+$ there is an n > 0 such that $n, n + 1 \in S$. 1. Injective: If $ev_{\zeta}(V_n) = 0 = ev_{\zeta'}(V_n)$ then $\zeta^n = (\zeta')^n = 0$. If $ev_{\zeta}(V_n) \neq 0$ then

$$\zeta = \frac{\operatorname{ev}_{\zeta}(V_{n+1})}{\operatorname{ev}_{\zeta}(V_n)} = \frac{\operatorname{ev}_{\zeta'}(V_{n+1})}{\operatorname{ev}_{\zeta'}(V_n)} = \zeta'.$$

2. Onto: If $\chi(V_n) = 0$ then $\chi = ev_0$. If $\chi(V_n) \neq 0$ then $\chi = ev_{\zeta}|_{\mathscr{A}(S)}$ for $\zeta = \chi(V_{n+1})/\chi(V_n)$.

Semigroup algebras

Proposition

Let $S \subset \mathbb{Z}^d_+$ be a positive cone in \mathbb{Z}^d . Then any algebraic epimorphism $\rho \colon \mathscr{A} \to \mathscr{A}(S)$ for any Banach algebra \mathscr{A} is automatically continuous.

Proof

By the closed graph theorem ρ is continuous if and only if

 $\mathfrak{S}(\boldsymbol{\rho}) := \{ b \in \mathscr{B} \mid \exists (a_n) \subset \mathscr{A} \text{ such that } a_n \to 0 \text{ and } \boldsymbol{\rho}(a_n) \to b \} = (0).$

Due to a result of Sinclair, for any sequence (b_n) in $\mathscr{A}(S)$ there exists an $N \in \mathbb{N}$ such that

$$\overline{b_1 \cdots b_N \mathfrak{S}(\rho)} = \overline{b_1 \cdots b_n \mathfrak{S}(\rho)} \text{ for all } n \ge N.$$

By applying for all $b_i = V_s$ which is an isometry we get that $\mathfrak{S}(\rho) = \overline{(V_s)^n}\mathfrak{S}(\rho)$ for all $n \in \mathbb{N}$. However the Fourier transform yields $\bigcap_{n \in \mathbb{N}} \overline{(V_s)^n} \mathscr{I} = (0)$ for any ideal $\mathscr{I} \subset \mathscr{A}(S)$.

Remarks

- 1. The map $\mathscr{A}(S) \ni V_s \mapsto U_s \in C^*(\mathbb{Z}^d)$ extends to a ucis repn.
- 2. $C^*(\mathbb{Z}^d)$ is the C*-envelope of $\mathscr{A}(S)$.
- 3. We have that $s \in S$ if and only if there exists an $f \in \mathscr{A}(S)$ such that $f^{(s)}(0) \neq 0$.

The one-variable case

Theorem (K.-Katsoulis-Li 2020)

Let $S_1, S_2 \subset \mathbb{Z}_+$ be numerical semigroups. Then: $S_1 = S_2$ if and only if $\mathscr{A}(S_1) \simeq \mathscr{A}(S_2)$ by an algebraic isomorphism.

Proof

Let $\rho : \mathscr{A}(S_1) \to \mathscr{A}(S_2)$ be an algebraic isomorphism.

- **1.** The algebraic isomorphism ρ is continuous.
- 2. We have that $s \in S_i$ iff there exists an $f \in \mathscr{A}(S_i)$ such that $f^{(s)}(0) \neq 0$.
- 3. By disc-trick the homeomoprhism ρ^* is vacuum preserving.
- 4. By explicit construction it has the form $\rho^*(\zeta) = f(\zeta)/g(\zeta)$ for $f = \rho(V_{n+1})$ and $g = \rho(V_n)$ with $n, n+1 \in S_2$, whenever $g(\zeta) \neq 0$.
- 5. By Riemann's Theorem and Open Mapping Theorem ρ^* is a biholomorphism of \mathbb{D} fixing zero.
- 6. By Schwarz Lemma we have $\rho^*(\zeta) = e^{i\theta}\zeta$; wlog $\rho^* = id$.
- 7. For $s \in S_1$ and $h = \rho(V_s)$ we get that $\zeta^s = \operatorname{ev}_{\zeta}(V_s) = \rho^*(\operatorname{ev}_{\zeta})(V_s) = \operatorname{ev}_{\zeta}(\rho(V_s)) = h(\zeta)$ for all $\zeta \in \mathbb{D}$. Thus $V_s = h = \rho(V_s)$.
- 8. Thus $s \in S_2$, and symmetry finishes the proof.

The multivariable case

Definition

A positive cone S of a group \mathscr{G} is called a *higher rank numerical semigroup* if

 $S_{\rm sn} := \{g \in \mathscr{G} \mid ng \in S \text{ eventually for } n \in \mathbb{N}\} \simeq \mathbb{Z}_+^d.$

Proposition

Let $S \subset \mathbb{Z}_+^d$ be a positive cone of \mathbb{Z}^d . Let $\iota^* \colon \overline{\mathbb{D}}^d \to \mathfrak{M}_S$ be the continuous map induced by the embedding $\mathscr{A}(S) \hookrightarrow \mathscr{A}(\mathbb{Z}_+^d)$. Then the following are equivalent:

- **1.** $S_{sn} = \mathbb{Z}^d_+;$
- 2. the intersection of *S* with any axis is a non-trivial positive cone of \mathbb{Z} ;
- 3. ι^* is injective.

In particular, ι^* is a homeomorphism when it is injective.

Proof.

 $[(1) \Leftrightarrow (2)]$: "Immediate".

[(2) \Rightarrow (3)]: As before for each direction independently.

 $[(3) \Rightarrow (2)]$: If $\mathbb{Z}_+ \cdot e_1 \cap S = (0)$, then we would have that $ev_{(\lambda,0,\dots,0)}|_{\mathscr{A}(S)} = ev_{(0,0,\dots,0)}|_{\mathscr{A}(S)}$ for any $\lambda \neq 0$, which contradicts injectivity.

- Surjectivity as before from item (2).

The multivariable case

Theorem (K.-Katsoulis-Li 2020)

Let $S_1 \subset G_1$ and $S_2 \subset G_2$ be higher-rank numerical semigroups. Then $S_1 \simeq S_2$ if and only if $\mathscr{A}(S_1) \simeq \mathscr{A}(S_2)$ by an algebraic isomorphism.

Proof

Wlog assume that $S_1 \subset \mathbb{Z}^{d_1}$ and $S_2 \subset \mathbb{Z}^{d_2}$.

Now move in a similar way by using that:

- 1. thin sets (thin sets are the zero sets of holomorphic functions, and there is an analogue of Riemann's Theorem for locally bounded functions);
- S₁ ≃ S₂ if and only if d₁ = d₂ and S₁ = S₂ up to a permutation of the coordinates; and
 Aut(D^d) ≃ (×^d_{i=1} Aut(D)) ⋊ S_d.

Corollary

An algebraic isomorphism between higher rank numerical semigroups algebras is vacuum preserving if and only if it is the composition of a permutation of co-ordinates by a rotation.

End of Part I.