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Framework
Main Idea: Encode Structures via Operator Algebras{

S: set of generators
and relations

}
 

{
Subalgebras of B(H)

}
Rigidity

{
S1 ∼ S2

}
!


C∗S1
∼ C∗S2

, AS1 ∼AS2{
strong Morita equivalence/isomorphisms

}


Question: S1 ∼ S2
??⇐⇒ C∗S1

' C∗S2

Example: Let G1,G2 be free abelian discrete groups, i.e. Gi = Zdi . Then:

C∗(G1) ' C∗(G2) iff C0(Ĝ1) 'C0(Ĝ2), iff Ĝ1 ' Ĝ2, iff d1 = d2, iff G1 ' G2.
But in general, we require more elements than just ∗-isomorphism.

1. Hoare-Parry 1960’s: C*-crossed products do not classify Z-actions up to conjugacy.

2. Semigroup algebras: C∗(S) ' C∗(Z+) for any positive cone S⊆Z.

3. Work on graphs by Eilers-Restorff-Ruiz-Sørensen: moves plus K-theory.
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Framework

Positive answers: S1 ∼ S2⇐⇒AS1 'AS2

It started in 1960’s by Arveson. Some examples:

1. Aperiodic C*-correspondences: Muhly-Solel (2000).

2. Graphs: Katsoulis-Kribs (2004), Solel (2004).

3. Dynamical systems: Arveson (1967), Arveson-Josephson (1969), Peters (1984),
Hadwin-Hoover (1988), Davidson-Katsoulis (20082); Davidson-K. (2012); K.-Katsoulis
(2012); Katsoulis-Ramsey (2021).
Cornelissen-Marcolli use results of Davidson-Katsoulis to settle questions in Number
Theory.

4. Topological graphs: Davidson-Roydor (2009).

5. Analytic varieties: Shalit-Solel (2009), Davidson-Ramsey-Shalit (2011), Hartz (2015).

6. Stochastic matrices: Dor-On and Markiewisz (2014).

7. Weighted shifts: Dor-On (2015).

8. Triangular limit algebras: Katsoulis-Ramsey (2015).

9. Subproduct systems: K.-Shalit (2015).

10. Subvarieties of the nc ball: Salomon-Shalit-Shamovich (2018).
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Framework

Structural differences

C*-algebras = topological objects vs. Nsa = analytical objects.

Strategy for rigidity of nsa

Let AS1 and AS2 be nsa’s related to structures S1 and S2.

1. Suppose AS1 and AS2 are generated by analytic polynomials.

2. Obtain rotations in the automorphism groups.

3. Rotate isomorphisms to vacuum preserving isomorphisms.

4. Apply a Schwarz-type Lemma.

5. Analyze the Fourier co-efficients to get information on the S1 and S2.
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Rotating to vacuum preserving homomorphisms
“Theorem” of rotating homomorphisms (Davidson–Ramsey–Shalit 2011)

Let ρ : A1→A2 be an isomorphism.

1. Suppose that Aut(A1) and Aut(A2) contain rotations.

2. Suppose that ρ∗ : M2→M1 maps a disc onto a disc.

Then we can rotate ρ to a vacuum preserving isomorphism.

Proof

•0

•η

•η ′
•0

•ζ

•ζ ′

M2 M1
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Part I. Semigroup Operator Algebras
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Semigroup algebras

Definition
A positive cone S of Zd

+ is a unital subsemigroup such that: (i) S∩ (−S) = (0); and (ii) for
every g ∈Zd there exist s, t ∈ S such that g = s− t.

Definition
The Fock representation V : S→B(`2(S)) is given by

Vs : `2(S)→ `2(S) : et 7→ es+t .

We define the nonselfadjoint semigroup algebra by A (S) := alg{Vs | s ∈ S}.

Example

The prototypical example is the unilateral shift in `2(Z+) given by Ven = en+1. Recall that
the Toeplitz C*-algebra is defined as

T := C∗(V ) = span{VnV ∗m | n,m ∈Z+}.
The nonselfadjoint semigroup algebra A (Z+) is a representation of the disc algebra A(D).
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Semigroup C*-algebras

Question

Is it true that C∗(S1) ' C∗(S2) implies S1 ' S2?

Answer: No!
Let S⊆Z+ be a semigroup such that S∩ (−S) = {0} and S−S = Z.
Then gcd(S) = 1 and there exists an N0 ∈ S such that if n≥ N0 then n ∈ S.
Let N0 be the minimal.
Let γ : Z+→ S be a bijective map that respects the total order, i.e., γ is the linear enumeration
on S.
It thus satisfies

γ(k+m) = k+ γ(m) for all k ∈Z+;γ(m) ≥ N0;

and so
k+m = γ

−1(k+ γ(m)) for all k ∈Z+;γ(m) ≥ N0.

By replacing k with γ(k) ∈N we moreover have

γ
−1(γ(k)+ γ(m)) = γ(k)+m for all k ∈Z+;m≥ γ

−1(N0).
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Semigroup C*-algebras

Answer cc’ed.
Let U : `2(Z+)→ `2(S) by Uen = eγ(n).

Set V be the usual unilateral shift, and Ts be the shift operators that generat C∗(S).
The properties of γ then imply

UTγ(k)U
∗ = Vγ(k)Vγ−1(N0)V

∗
γ−1(N0)

+ ∑
m/∈γ−1(N0)+Z+

Vγ−1(γ(k)+γ(m))V
∗
m pm,

for the projections pm on em.
Likewise we have that

U∗VkU = Tk+N0 T ∗N0
+ ∑

γ(m)/∈N0+S
Tγ(s+m)T

∗
γ(m)pγ(m).

By construction the set (N0 + S)c∩S is finite (thus the sums are finite).
It suffices to show that the pm projections are in T , and that the pγ(m) projections are in C∗(S),
and then adU induces the required ∗-isomorphism between C∗(S) and T .
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Semigroup C*-algebras

Answer cc’ed.
On one hand we have

pm := PCem = VmV ∗m−Vm+1V ∗m+1 ∈T .

It remains to show that the projections pγ(m) are in C∗(S). We have that S \{0}= 〈s0
1, . . . ,s0

k0
〉

is finitely generated and so

p0 =
k0

∏
j=1

(I−Ts0
j
T ∗s0

j
) ∈ C∗(S).

Now consider the first non-zero element γ(1) in S. Then S \ {0,γ(1)} is a subsemigroup of
Z+ and contains all natural numbers after a finite step. Hence it is finitely generated, say
S\{0,γ(1)}= 〈sγ(1)

1 , . . . ,sγ(1)
k1
〉, and so

p0 + pγ(1) =
k1

∏
j=1

(I−T
sγ(1)

j
T ∗

sγ(1)
j

) ∈ C∗(S)

and thus pγ(1) ∈ C∗(S). Inductively pγ(m) ∈ C∗(S) for every m.
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Positive cones
Question

Is it true that S1 ' S2 if and only if A (S1) 'A (S2)?

Definition
A positive cone S is a subsemigroup of a discrete abelian group G such that S∩ (−S) = {0}
and S−S = G .

Proposition

Let S⊆ G be a positive cone. Then there is an isometric map A (S)→ C∗(G );Vs 7→Us.

Proof
Since polynomials in A (S) have a unique expression the map Vs 7→Us admits a unique linear
extension. Identify `2(S) with the obvious subspace inside `2(G ) and get:

‖∑
s∈F

λsVs‖= ‖P̀ 2(S)

(
∑
s∈F

λsUs

)
|`2(S)‖ ≤ ‖∑

s∈S
λsUs‖.

For the reverse inequality fix ε > 0. Let ξ = ∑
n
i=1 kiegi in the unit ball of `2(G ) such that

‖∑
s∈F

λsUs‖− ε ≤ ‖∑
s∈F

λsUsξ‖`2(G ).
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The one-variable case

Proof cont’d.
Since S is a positive cone we have that there are si, ti ∈ S such that gi = si− ti for all i = 1, . . . ,n.
Set t := ∑

n
i=1 ti ∈ S so that t + gi ⊂ S for all i = 1, . . . ,n. Then the vector

ξ
′ :=Utξ =

n

∑
i=1

kiet+gi ∈
(
`2(S)

)
1

.

Therefore we obtain

‖∑
s∈F

λsUs‖− ε ≤ ‖Ut ∑
s∈F

λsUsξ‖`2(G ) = ‖∑
s∈F

λsUsUtξ‖`2(G )

= ‖∑
s∈F

λsUsξ
′‖`2(G ) = ‖∑

s∈F
λsVsξ

′‖`2(S) ≤ ‖∑
s∈F

λsVs‖.

As ε > 0 was arbitrary we have equality of the norms.

Corollary

If S1 ⊆ S2 ⊆ G are positive cones then there is an isometric embedding

A (S1) ↪→A (S2);V S1
s 7→V S2

s .
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The one-variable case

Numerical semigroup

1. A positive cone of Z is called numerical semigroup (S⊆Z+ and S∩ (−S) = {0}).
2. An S⊆Z+ is a numerical semigroup iff there is an n ∈ S such that m ∈ S for all m > n.

Proposition

Let S be a numerical semigroup. Then the inclusion A (S) ↪→ A (Z+) induces a homeomor-
phism

ι
∗ : D→MS : ζ 7→ evζ |A (S).

Proof
The map ι∗ is well defined. For S⊆Z+ there is an n > 0 such that n,n+ 1 ∈ S.
1. Injective: If evζ (Vn) = 0 = evζ ′ (Vn) then ζ n = (ζ ′)n = 0. If evζ (Vn) 6= 0 then

ζ =
evζ (Vn+1)
evζ (Vn)

=
evζ ′ (Vn+1)

evζ ′ (Vn)
= ζ ′.

2. Onto: If χ(Vn) = 0 then χ = ev0. If χ(Vn) 6= 0 then χ = evζ |A (S) for ζ = χ(Vn+1)/χ(Vn).
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Semigroup algebras

Proposition

Let S⊂Zd
+ be a positive cone in Zd . Then any algebraic epimorphism ρ : A →A (S) for any

Banach algebra A is automatically continuous.

Proof
By the closed graph theorem ρ is continuous if and only if

S(ρ) := {b ∈B | ∃(an) ⊂A such that an→ 0 and ρ(an)→ b}= (0).
Due to a result of Sinclair, for any sequence (bn) in A (S) there exists an N ∈N such that

b1 · · ·bNS(ρ) = b1 · · ·bnS(ρ) for all n≥ N.

By applying for all bi =Vs which is an isometry we get that S(ρ) = (Vs)nS(ρ) for all n ∈N.
However the Fourier transform yields

⋂
n∈N (Vs)nI = (0) for any ideal I ⊂A (S).

Remarks
1. The map A (S) 3Vs 7→Us ∈ C∗(Zd) extends to a ucis repn.

2. C∗(Zd) is the C*-envelope of A (S).

3. We have that s ∈ S if and only if there exists an f ∈A (S) such that f (s)(0) 6= 0.
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The one-variable case
Theorem (K.-Katsoulis-Li 2020)

Let S1,S2 ⊂Z+ be numerical semigroups. Then:

S1 = S2 if and only if A (S1) 'A (S2) by an algebraic isomorphism.

Proof
Let ρ : A (S1)→A (S2) be an algebraic isomorphism.

1. The algebraic isomorphism ρ is continuous.

2. We have that s ∈ Si iff there exists an f ∈A (Si) such that f (s)(0) 6= 0.

3. By disc-trick the homeomoprhism ρ∗ is vacuum preserving.

4. By explicit construction it has the form ρ∗(ζ ) = f (ζ )/g(ζ ) for f = ρ(Vn+1) and
g = ρ(Vn) with n,n+ 1 ∈ S2, whenever g(ζ ) 6= 0.

5. By Riemann’s Theorem and Open Mapping Theorem ρ∗ is a biholomorphism of D

fixing zero.

6. By Schwarz Lemma we have ρ∗(ζ ) = eiθ ζ ; wlog ρ∗ = id.

7. For s ∈ S1 and h = ρ(Vs) we get that
ζ s = evζ (Vs) = ρ∗(evζ )(Vs) = evζ (ρ(Vs)) = h(ζ ) for all ζ ∈D.

Thus Vs = h = ρ(Vs).

8. Thus s ∈ S2, and symmetry finishes the proof.
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The multivariable case
Definition
A positive cone S of a group G is called a higher rank numerical semigroup if

Ssn := {g ∈ G | ng ∈ S eventually for n ∈N} 'Zd
+.

Proposition

Let S ⊂ Zd
+ be a positive cone of Zd . Let ι∗ : D

d →MS be the continuous map induced by
the embedding A (S) ↪→A (Zd

+). Then the following are equivalent:

1. Ssn = Zd
+;

2. the intersection of S with any axis is a non-trivial positive cone of Z;

3. ι∗ is injective.

In particular, ι∗ is a homeomorphism when it is injective.

Proof.
[(1)⇔ (2)]: “Immediate”.
[(2)⇒ (3)]: As before for each direction independently.
[(3)⇒ (2)]: If Z+ · e1 ∩S = (0), then we would have that ev(λ ,0,...,0) |A (S) = ev(0,0,...,0) |A (S)
for any λ 6= 0, which contradicts injectivity.
– Surjectivity as before from item (2).

16 / 31



The multivariable case

Theorem (K.-Katsoulis-Li 2020)

Let S1 ⊂ G1 and S2 ⊂ G2 be higher-rank numerical semigroups. Then S1 ' S2 if and only if
A (S1) 'A (S2) by an algebraic isomorphism.

Proof
Wlog assume that S1 ⊂Zd1 and S2 ⊂Zd2 .
Now move in a similar way by using that:

1. thin sets (thin sets are the zero sets of holomorphic functions, and there is an analogue of
Riemann’s Theorem for locally bounded functions);

2. S1 ' S2 if and only if d1 = d2 and S1 = S2 up to a permutation of the coordinates; and

3. Aut(Dd) ' (×d
i=1 Aut(D))oSd .

Corollary

An algebraic isomorphism between higher rank numerical semigroups algebras is vacuum pre-
serving if and only if it is the composition of a permutation of co-ordinates by a rotation.

End of Part I.
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