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Classical Choquet Theory
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K is a compact convex subset of a locally convex space.
∂K is the set of extreme points of K .
A(K ) is the space of affine functions on K .
S(A(K )) = {f : A(K )→ C : 1 = f (1) = ‖f ‖} states.

Hahn-Banach extension of f ∈ S(A(K )) to C(K ) is given by a
probability measure µ on K (a representing measure for f .) s.t.

f (a) =

∫
K
a dµ for all a ∈ A(K ).

Theorem (Choquet-Bishop-de Leeuw)

Every f ∈ S(A(K )) has representing measure µ supported on ∂K .

Technical point. If K not metrizable, ∂K may not be Borel.
One deals with this by asserting that µ is a Borel measure on K
s.t.

∫
f dµ = 0 if f is a Baire function and f |∂K = 0.
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Example

1 ∈ A = A∗ ⊂ C(X ) function system that separates points
(so C∗(A) = C(X )). Let

K = S(A) = {f : A→ C : f ≥ 0, f (1) = 1} state space.

Theorem ( Kadison (1951))

Given function system A and K = S(A), then A is affinely
isometrically order isomorphic to A(K ).
The map A→ S(A) is a contravariant equivalence of categories
from (Function systems with unital order homomorphisms) to
(Compact convex sets with continuous affine maps).

There are many applications of Choquet theory in various areas of
analysis: approximation theory, ergodic theory, group
representations, direct integral theory for C*-algebras, etc.
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Noncommutative Convexity
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Let E be an operator space.
For any cardinal n, let Mn(E ) denote the n × n arrays of elements
of E such that all finite subarrays are uniformly bounded.
Let κ be the minimum cardinality of a dense subset of E .

K =
∐

1≤n≤κ
Kn, Kn ⊂ Mn(E ).

K is nc convex if it is closed under direct sums and compressions:

x ∈ Kn, y ∈ Km =⇒ x ⊕ y ∈ Kn+m

x ∈ Kn, α ∈Mnm isometry, =⇒ α∗xα ∈ Km.

Equivalently,

xi ∈ Ki , αi ∈Mni ,n,
∑
i

α∗i αi = 1n =⇒
∑

α∗i xiαi ∈ K .

If E is a dual space with predual E∗, say that K is compact if each
Kn is compact in the weak-∗ topology.

Essential point: we need the infinite cardinals!
K is determined by

∐
n<∞ Kn but need higher levels. This is

important when considering nc functions, and extreme points.
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An important nc convex set is

M =
∐

1≤n≤κ
Mn where Mn = B(Hn).

θ : K → ∆ is nc affine if

1 θ(Kn) ⊂ ∆n (graded)

2 θ(
∑
⊕xi ) =

∑
⊕θ(xi ) (respects direct sums)

3 θ(α∗xα) = α∗θ(x)α for α isometry. (respects compressions)

Definition

A(K ) is the set of continuous nc affine functions θ : K →M.
BA(K ) is the set of bounded nc affine functions.
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Example

1 ∈ A = A∗ ⊂ B(H) operator system.

K = S(A) =
∐

1≤n≤κ
UCP(A,B(Hn))

where dimHn = n. κ is a cardinal large enough for all cyclic
representations of C∗(A).

Theorem (Webster-Winkler 1999)

A ' A(S(A)) via a→ â, â(x) = x(a). The map from A to S(A) is
a contravariant equivalence of categories from (Operator systems
with unital complete order homomorphisms) to (Compact nc
convex sets with continuous nc affine maps).
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Noncommutative Functions
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An nc function: f : K →M is graded, respects ⊕, U-equivariant:

1 f (Kn) ⊂Mn

2 f (
∑
⊕xi ) =

∑
⊕f (xi )

3 f (uxu∗) = uf (x)u∗ for x ∈ Kn, u ∈Mn unitary.

The set B(K ) of all bounded nc functions is a C*-algebra.
Let C(K ) := C∗(A(K )) be the ‘continuous’ nc functions.

Theorem (Takesaki-Bichteler 1969)

C*-algebra C , then C ' C(Rep(C ,H)) and C ∗∗ ' B(Rep(C ,H)).
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If A is an operator system, Kirchberg-Wassermann defined
C∗max(A) as the universal C*-algebra s.t. every u.c.p. map x ∈ K
extends to a ∗-repn. δx of C∗max(A).

It has the universal property that if j : A→ B = C ∗(jA) is a
u.c.p.complete isometry (order iso), then there is a (unique)
∗-homomorphism π : C∗max(A)→ B s.t. π|A = j .

Theorem

C∗max(A) ' C(K ) and C∗max(A)∗∗ ' B(K ) and A(K )∗∗ ' BA(K ).
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Noncommutative Convexity Again
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Each x ∈ Kn determines the ‘point evaluation’ δx in Rep(C (K )),
and δx |A(K) = x . Conversely every repn. of C (K ) has this form.

A representing map for x ∈ Kn is µ ∈ UCP(C(K ),Mn(M)) such
that µ|A(K) = x ; and x is the barycenter of µ.
By Stinespring, µ = α∗δyα for y ∈ Km and isometry α ∈Mmn.
Say (y , α) represents x and y dilates x .

x has unique representing map iff δx is only u.c.p.extension of x .
x is maximal if (y , α) represents x =⇒ y = x ⊕ z .

Proposition

x has a unique representing map iff x is maximal.

Theorem (Dritschel-McCullough 2005)

x ∈ K has a maximal dilation y .
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x is pure if whenever x =
∑
α∗i xiαi , then

α∗i xiαi ∈ Rx , and

αi is a positive scalar multiple of an isometry βi satisfying
β∗i xiβi = x .

x is extreme if whenever x =
∑
α∗i xiαi , then

α∗i xiαi ∈ Rx , and

xi ' x ⊕ yi w.r.t. range of αi .

Theorem

x is extreme iff x is pure and maximal.
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Arveson’s C*-envelope or (C∗min(A), i) of an operator system A
with i : A→ C∗min(A) = C ∗(iA) u.c.p. order iso. has the universal
property that if j : A→ B = C ∗(jA) is a u.c.p.order iso, then there
is a (unique) ∗-homomorphism π : B → C∗min(A) s.t. π|jA = i .

Theorem (DK 2015)

Every pure point in K dilates to an extreme point.
σ =

∑⊕
x∈∂K δx is a complete order iso on A(K ) and

σ(C (K )) = C∗min(A(K )).

Remark

When K = S(A) for an operator system A, then x is pure if and
only if δx is irreducible. Thus x extreme if and only if δx is a
boundary representation for A.
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Theorem (NC Krein-Milman theorem)

K is the closed nc convex hull of ∂K .

Theorem (NC Milman converse)

1 If X ⊂ K closed

2 x ∈ Xn and isometry α ∈Mmn implies that α∗xα ∈ X

3 and ncconv(X ) = K

then X ⊃ ∂K .

Webster-Winkler have a Krein-Milman Theorem for matrix convex
sets. Its weakness is that the notion of extreme point only
considers combinations of elements on the same or lower levels. As
a result, this is a cumbersome notion with many ‘extreme’ points
which are not extreme in our sense. However many (and
sometimes all) of our extreme points live at infinite levels.
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Example

Let K =
∐

n Kn denote the noncommutative complex unit ball, i.e.
the nc convex set of row contractions in Md

n

Kn =
{
α =

[
α1 . . . αd

]
: αi ∈ Mn,

∥∥[α1 . . . αd

]∥∥ ≤ 1
}
.

Then K is a compact nc convex set. The extreme points are
precisely the row unitaries:

(∂K )n = {α ∈ Kn : α∗α = 1d ⊗ 1n and αα∗ = 1n}.

Let On be the Cuntz algebra generated by isometries s1, . . . , sn
such that

∑
si s
∗
i = 1; i.e. [s1 . . . sn] is a row unitary.

The operator system A = span{1, s1, s∗1 , . . . , sn, s∗n} generates On.
A u.c.p. map x is determined by [x(s1), . . . , x(sn)], an arbitrary
row contraction. So S(A) = K . The extreme points arise from the
irreducible representations of On via π →

[
π(s1) . . . π(sn)

]
.
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NC convexity versus matrix convexity

If K =
∐

n Kn is an nc convex set, then the finite part
∐

n∈N Kn is
a matrix convex set. Conversely, a matrix convex set determines a
unique nc convex set. Also an nc affine function is determined by
its restriction to the finite portion. Thus categorically they are
equivalent.

However the finite part need not have any extreme points in our
sense. (e.g. the Cuntz system has none.)

There are many nc functions that are not determined by their finite
part. For example, for the Cuntz system, the characteristic
function of the extreme points vanishes on all finite levels.
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Noncommutative Convex Functions
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Classically, convex functions play a central role.
Note that a scalar function f ∈ C (X ) is convex iff

{(x , t) : x ∈ X , t ≥ f (x)} is convex

and is l.s.c. if this set is closed.

Definition

Say f ∈ C(K )sa is nc convex if its epigraph

Epi(f ) =
∐
{(x , α) : x ∈ K , α ≥ f (x)} ⊂

∐
Kn ×Mn

is nc convex. It is l.s.c. if Epi(f ) is closed.

Equivalently, f is nc convex if

f (α∗xα) ≤ α∗f (x)α for x ∈ K , α isometry.
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Example

Let I = [a, b] ⊂ R.
Let K =

∐
Kn where Kn = {α ∈ Msa

m : σ(α) ⊂ I}.
f ∈ C(K ) are in bijective correspondence with C (I ) by f → f |K1

(usual functional calculus).

f is nc convex if and only if f is operator convex in the classical
sense: for 0 ≤ t ≤ 1, α, β ∈ Kn, n ≥ 1

f (tα + (1− t)β) ≤ tf (α) + (1− t)f (β).

This follows from the Hansen-Pedersen inequality. The proof is
simple and natural in our framework, and holds in general.

Theorem

If f ∈ C(K ) and f (tα + (1− t)β) ≤ tf (α) + (1− t)f (β) for all
0 ≤ t ≤ 1, α, β ∈ Kn, n ≥ 1, then f is nc convex.
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Classically, if f ∈ C(K ), the convex (lower) envelope is

f̌ (x) = sup{a(x) : a ∈ A(K ), a ≤ f }.

Choquet theory is based crucially on convex functions.

However in the nc situation, one cannot take the supremum of
operators, so we use multivalued functions.

A multivalued s.a. nc function is upward directed:
if F : K →M, then F (x) = F (x) +M+

p for x ∈ Kp.

Note that if f ∈ C(K )sa is nc convex and l.s.c., then Epi(f ) is the
graph of a multivalued nc function.

The nc convex envelope of f ∈ C(K ) is the multivalued function f̄

Graph(f̄ ) = ncconv(Epi(f )).
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In classical Choquet theory, a routine separation theorem shows
that the largest convex function less than f coincides with the
maximum of all affine functions smaller than f . This is not easy at
all in the non-commutative setting. But it is still true.

Theorem

If f ∈Mn(C(K )) and x ∈ Kp,

f (x) =
⋂
m

⋂
a≤1m⊗f

{α ∈ (Mn(Mp))sa : a(x) ≤ 1m ⊗ α}.

Classically, f̌ (x) = infµ∼x µ(f ) and the inf is attained.

Theorem

For f ∈ Mn(C(K ))sa,

f (x) =
⋃

µ:µ|A(K)=x

[µ(f ),∞).
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Noncommutative Orders on UCP maps
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Classical Choquet order: µ ≺c ν if µ(f ) ≤ ν(f ) for all f convex.
Relates measures with same barycenter x . Intuitively µ ≺c ν
means that ν is supported closer to the extreme boundary.

Definition

Nc Choquet order: µ ≺c ν if µ(f ) ≤ ν(f ) for all f ∈ Mn(C(X ))
nc convex matrix valued functions.

Note that µ ≺c ν means that they have the same barycenter. If a
is nc affine, then ±a are nc convex, so that ±µ(a) ≤ ±ν(a).
Hence µ|A(K) = ν|A(K).

Proposition

≺c is a partial order.

If a is s.a. and nc affine, and f is operator convex, then f (a) is nc
convex. There are enough such functions to separate points.
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Definition

Dilation order: µ ≺d ν if

1 (x , α) represents µ; i.e. µ = α∗δxα

2 (y , β) represents ν; i.e. ν = β∗δyβ, and

3 ∃γ s.t. x = γ∗yγ and β = γα; i.e. (y , β) dilates (x , α).

This dilation order comes out of comparison of the Stinespring
dilations of µ and ν, and doesn’t have a classical parallel.

Proposition

If µ has minimal representation (x , α), then µ is maximal in ≺d iff
x has a unique representing map.

The following result is crucial.

Theorem

µ ≺c ν if and only if µ ≺d ν.
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Noncommutative Choquet-Bishop-de Leeuw theorems
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The classical Bishop-de Leeuw was established by showing that x
always has a representing measure which is maximal in the
Bishop-de Leeuw order (now replaced with the Choquet order).

The Baire-Pedersen algebra B(K ) is the monotone sequential
completion of C(K ) in B(K ).
This algebra was studied by Pedersen for arbitrary C*-algebras.
In the case of C (X ), it produces the Baire functions.

Theorem (nc Choquet-Bishop-de Leeuw)

If x ∈ K , then there is a dilation maximal µ representing x .
If f ∈ B(K ) with f |∂K = 0, then µ(f ) = 0.
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In the separable case, Choquet showed (without using Choquet
order!) that there is a bona fide integral representation for x over
the extreme boundary.

Theorem (nc Choquet representation theorem)

If A is separable and x ∈ K , there is an nc probability measure λ
on ∂K that represents x . i.e.

a(x) =

∫
∂K

a dλ for a ∈ A(K ).

Here λ is a measure with values in the cp maps.
The integration theory for cp maps was developed by Fujimoto.
We use the disintegration of representations of C*-algebras into an
integral of irreducibles as presented in Takesaki (which is based on
Choquet theory).
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A new proof of existence of extreme points (boundary reps).

The Dritschel-McCullough result: if x ∈ Kn, an easy Zorn’s lemma
argument yields a maximal u.c.p. map µ : C (K )→Mn with
barycentre x .

DK: every pure point x ∈ Kn has an extreme dilation.

In L = S(C (K )), F = {µ : µ|A(K) = x} is a hereditary nc face; i.e.
if µ ∈ F and µ ≺d ν, then ν ∈ F .
Use Zorn to obtain a minimal herediatry nc face F0.
Show F0 = {µ0}. Hereditary, so µ is maximal.
If (y , β) minimal representation of µ0, then δy is irreducible,
maximal, hence a boundary rep. and y is an extreme dilation of x .
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The end.
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