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Proximality and strong proximality
Let G be a topological group. A G -flow is a compact Hausdorff space X
with a continuous action G y X . Get affine G -flow G y Prob(X ).

Definition

1. A G -flow X is proximal if Gµ ∩ X 6= ∅ for all finitely supported
µ ∈ Prob(X ).

2. A G -flow X is strongly proximal if Gµ ∩ X 6= ∅ for all µ ∈ Prob(X ).

Note: we have identified X with ∂ Prob(X ).

A G -flow X is minimal if Gx = X for all x ∈ X .

Theorem (Furstenberg 1973, Glasner 1976)

There is a unique universal minimal proximal flow ∂pG and a unique
universal minimal strongly proximal flow ∂spG . For every minimal proximal
flow X there is a surjective G -map ∂pG → X . Similarly for ∂spG .

Statements about specific flows translate to statements about universal
flows. E.g. G has a free proximal flow iff ∂pG is free.



Strong proximality

Example

Let Γ ≤ G be a lattice in a locally compact group G . Then G y Γ is
minimal and strongly proximal. Typically Γ 6= ∂spG .

Example

Let G be a non-elementary hyperbolic group (e.g. G = Fn for n ≥ 2). The
hyperbolic boundary ∂G is minimal and strongly proximal. It is also
topologically free (i.e. for g ∈ G \ {e}, Fix(g) has empty interior). Also,
∂G 6= ∂spG .

Theorem (Furstenberg 1973)

The group G is non-amenable iff ∂spG is non-trivial.

Proof.
For a minimal G -flow X , choose an irreducible affine G -subflow
K ⊆ Prob(X ). Then ∂K is a strongly proximal G -flow and ∂K is trivial iff
K is trivial iff there is an invariant measure in Prob(X ).



Strong proximality

Example (Connected groups)

For locally compact G with P ≤ G amenable and co-compact,

∂spG = G/Q for closed Q ≥ P.

For G connected semi-simple real Lie group with finite center and no
compact factors,

∂spG = G/P for G = KAN, P = AN.

Example (Discrete groups)

For non-amenable discrete G , ∂spG is non-trivial and extremally
disconnected (Stone space!). Hence non-metrizable.



Strong proximality

Theorem (K-Kalantar 2017)

For discrete G, the reduced C*-algebra C∗λG is simple iff G has a
topologically free strongly proximal flow.

Say H ≤ G is confined if

1 /∈ {gHg−1 : g ∈ G} ⊆ 2G .

Equivalent to existence of finite F ⊆ G \ {e} such that

gHg−1 ∩ F 6= ∅ for all g ∈ G .

Theorem (K 2018)

The reduced C*-algebra C∗λG is simple iff G has no amenable confined
subgroups.



Proximality

Definition (Glasner 1976)

A group G is strongly amenable if every minimal proximal flow is trivial.

Note: Equivalent to ∂pG being trivial. Strongly amenable implies
amenable.

Proposition

Discrete groups with no non-trivial ICC quotient (i.e. FC-hypercentral) are
strongly amenable.

Proof.
Suffices to show G y X is faithful, minimal and proximal implies G is ICC.

Suppose otherwise G ∈ G \ {e} has a finite conjugacy class. The
centralizer CG (g) has finite index, so CG (g) y X is also minimal and
proximal.

For x ∈ X , there is hi ∈ CG (g) with lim hix = lim higx = x . Then
gx = lim ghix = lim higx = x , contradicting faithfulness.



Proximality

Problem: Characterize strongly amenable groups. Note that strongly
amenable implies amenable (as name suggests).

Theorem (Frisch-Tamuz-Vahidi Ferdowsi 2019)

The group G is strongly amenable if and only if it has no non-trivial ICC
quotient.

Sketch of proof: Equivalent to constructing minimal proximal flow for
ICC G . Construction is “probabilistic.” For each n, construct a dense open
family of 1

n -minimal and 1
n -proximal subshifts of 2G . Then take

intersection.

Theorem (Glasner-Tsankov-Weiss-Zucker 2019)

The von Neumann algebra LG is a factor iff ∂pG is free.

Key point: If ∂pG is non-trivial then it is free. This is not true for ∂spG .
(Reminiscent of the fact that LG has a unique trace iff LG is a factor, but
C∗λG can have a unique trace without being simple.)



Injectivity
A G -C*-algebra B is G -injective if for every inclusion of G -C*-algebras
A ⊆ B and equivariant ucp map φ : A→ C , there is an equivariant
extension φ̃ : B → C .

Theorem (Kalantar-K 2017)

The C*-algebra C (∂spG ) is G -injective.

Theorem (K-Raum-Salomon 2020)

The C*-algebra C (∂pG ) is G -injective.

By results of Hamana and Gleason, ∂spG and ∂pG are extremally
disconnected. The algebras C (∂spG ) and C (∂pG ) are generated by their
Boolean algebras of projections.

Correspondence

Affinely “G -projective” flows correspond to translation invariant Boolean
subalgebras of subsets of G .

Goal: Identify these Boolean algebras, thereby giving “concrete”
descriptions of ∂pG and ∂spG .



Higher order syndeticity

Definition
A subset A ⊆ G is completely syndetic if for every n there is finite
F ⊆ G such that FAn = G n.

Note: Syndetic is the case n = 1.

Definition
A subset A ⊆ G is strongly completely syndetic if for every ε > 0 there
is finite F ⊆ G such that for every finite multiset K ⊆ G ,

sup
f∈F

|fK ∩ A|
|K |

≥ 1− ε.

Note: Says there is finite F ⊆ G such that FAn ≈ G n for every n.

Theorem (KRS 2020)

The universal minimal (strongly) proximal flow is isomorphic to the
spectrum of any invariant Boolean algebra of (strongly) completely
syndetic subsets of G .



Characterizations of complete syndeticity

Proposition (KRS 2020)

Let X be a proximal flow. For open U ⊆ X and x ∈ X , the return set
Ux = {g ∈ G : gx ∈ U} is completely syndetic.

Theorem (KRS 2020)

The following are equivalent for A ⊆ G :

1. The set A is completely syndetic, i.e. for each n, there is finite F ⊆ G
such that FAn = G n.

2. For every n and every mean m on G n that is invariant under left
translation by G , m(An) > 0

3. The closur A ⊆ βG contains a closed right ideal of βG .

Similar characterizations hold for strongly completely syndetic subsets.



Examples of completely syndetic subsets

Example

A subset A ⊆ Z is syndetic if and only if it has “bounded gaps,” meaning
there is k ∈ N such that for all a ∈ Z,

{a, a + 1, . . . , a + k} ∩ A 6= ∅.

Example

A subset A ⊆ Z is completely syndetic if and only if for every n, An has
“bounded diagonal gaps,” meaning there is k ∈ N such that for any
(a1, . . . , an) ∈ Zn,

{(a1, . . . , an), (a1 + 1, . . . , an + 1), . . . , (a1 + k, . . . , an + k)} ∩ An 6= ∅.

Fact: The group Z does not contain disjoint completely syndetic subsets.



Example 1 (the integers)



Example 2 (the integers)



Example 3 (the integers)



Example

Example

Consider the free group F2 = 〈a, b〉. For w ∈ F2, let

Bw = {g ∈ G : g = wg ′ in reduced form}.

Can show by hand that Ba and Bb are strongly completely syndetic.
Alternatively, Ba is the return set Ba = Ua∞ where U is the set of infinite
reduced words beginning with a in the hyperbolic boundary ∂F2.



Characterization of (strong) amenability

Theorem (KRS 2020)

A discrete group G is not strongly amenable if and only if there is a proper
normal subgroup H ≤ G such that for every finite subset F ⊆ G \H, there
is a completely syndetic subset A ⊆ G satisfying FA ∩ A = ∅.

Theorem (KRS 2020)

A discrete group G is not amenable if and only if there is a subset A ⊆ G
such that both A and Ac are strongly completely syndetic.

Note: Does not seem easy to derive from existing criteria (e.g. Følner
condition, paradoxicality, etc).

Upshot: Measures the difference between strong amenability and
amenability.



“Coloring” criterion for strong amenability

For finite F ⊆ G , an F -coloring of G is a pair (K , k) consisting of finite
colors K ⊆ G and k : 2G

2 → K such that

Fk(g1, g2){g1, g2} ∩ k(h1, h2){h1, h2} = ∅ for all g1, g2, h1, h2 ∈ G .

Here 2G
2 denotes the the subsets of G of size 2.

Theorem (KRS 2020)

The group G is not strongly amenable if and only if for every finite F ⊆ G ,
G has an F -coloring.

Observation: Proof of FTV can be translated to give a construction of
F -colorings.



Symmetric higher order syndeticity

Definition
A subset A ⊆ G is symmetrically (completely, strongly completely)
syndetic if for any finite subsets F1,F2 ⊆ G , the set

(∩f1∈F1 f1A) ∩ (∩f2∈F2 f2Ac)

is either (completely, strongly completely) syndetic or empty.

Fact
A subset A ⊆ G is symmetrically (completely, strongly completely)
syndetic iff it generates a non-trivial Boolean algebra of (completely,
strongly completely) syndetic subsets.

Theorem
A subset A ⊆ G is symmetrically (completely, strongly completely)
syndetic iff for every pair of finite subsets F1 ⊆ A and F2 ⊆ Ac , the set

(∩f1∈F1 f −11 A) ∩ (∩f2∈F2 f −12 Ac)

is (completely, strongly completely) syndetic.



Second characterization of (strong)
amenability

Theorem (KRS 2020)

A discrete group G is not strongly amenable if and only if it contains a
symetrically completely syndetic subset.

Theorem (KRS 2020)

A discrete group G is not amenable if and only if it contains a symetrically
strongly completely syndetic subset.



Dense Orbit Sets

Definition
A subset A ⊆ G is a dense orbit set if Ax is dense in X for every minimal
flow X and every point x ∈ X .

Problem (Glasner-Tsankov-Weiss-Zucker)

Characterize dense orbit sets.

Theorem (KRS 2020)

A subset A ⊆ G is a dense orbit set iff Ac does not contain a
symmetrically syndetic subset.



Problem

Problem
Let G be a discrete non-trivial ICC group (e.g. S∞). Give a direct proof
using the factoriality of LG that G is not strongly amenable.

Frisch, Hartman, Tamuz and Vahidi Ferdowi showed in 2019 that discrete
G is Choquet-Deny (i.e. has no non-trivial Poisson boundary) iff G has a
non-trivial ICC quotient.

Problem
Is there a direct proof that G is Choquet-Deny iff G is strongly amenable?



Thanks!


