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Proximality and strong proximality

Let G be a topological group. A G-flow is a compact Hausdorff space X
with a continuous action G ~ X. Get affine G-flow G ~ Prob(X).

1. A G-flow X is proximal if Gy X # () for all finitely supported
w € Prob(X).

2. A G-flow X is strongly proximal if Gyn X # () for all u € Prob(X).
Note: we have identified X with 9 Prob(X).

A G-flow X is minimal if Gx = X for all x € X.

There is a unique universal minimal proximal flow 0,G and a unique
universal minimal strongly proximal flow 05, G. For every minimal proximal
flow X there is a surjective G-map J,G — X. Similarly for 05, G.

Statements about specific flows translate to statements about universal
flows. E.g. G has a free proximal flow iff 0,G is free.



Strong proximality

Let ' < G be a lattice in a locally compact group G. Then G ~ T is
minimal and strongly proximal. Typically I' # 05, G.

Let G be a non-elementary hyperbolic group (e.g. G = F, for n > 2). The
hyperbolic boundary G is minimal and strongly proximal. It is also
topologically free (i.e. for g € G \ {e}, Fix(g) has empty interior). Also,
0G # 04 G.

The group G is non-amenable iff 0s, G is non-trivial.

For a minimal G-flow X, choose an irreducible affine G-subflow
K C Prob(X). Then 0K is a strongly proximal G-flow and 0K is trivial iff
K is trivial iff there is an invariant measure in Prob(X).



Strong proximality

For locally compact G with P < G amenable and co-compact,

0ssG = G/Q for closed Q > P.

For G connected semi-simple real Lie group with finite center and no
compact factors,

9G = G/P for G=KAN, P=AN.

For non-amenable discrete G, 05, G is non-trivial and extremally
disconnected (Stone space!). Hence non-metrizable.



Strong proximality

For discrete G, the reduced C*-algebra C} G is simple iff G has a
topologically free strongly proximal flow.

Say H < G is confined if

1¢ {gHg1:g€ G} C2°.
Equivalent to existence of finite F C G \ {e} such that

gHg *NF#) forall gegG.

The reduced C*-algebra C% G is simple iff G has no amenable confined
subgroups.



Proximality

A group G is strongly amenable if every minimal proximal flow is trivial.

Note: Equivalent to 0,G being trivial. Strongly amenable implies
amenable.

Discrete groups with no non-trivial ICC quotient (i.e. FC-hypercentral) are
strongly amenable.

Suffices to show G ~ X is faithful, minimal and proximal implies G is ICC.

Suppose otherwise G € G \ {e} has a finite conjugacy class. The

centralizer Cg(g) has finite index, so Cg(g) ~ X is also minimal and
proximal.

For x € X, there is h; € Cg(g) with lim h;x = lim h;gx = x. Then
gx = lim gh;x = lim h;gx = x, contradicting faithfulness.



Proximality

Problem: Characterize strongly amenable groups. Note that strongly
amenable implies amenable (as name suggests).

The group G is strongly amenable if and only if it has no non-trivial ICC
quotient.

Sketch of proof: Equivalent to constructing minimal proximal flow for
ICC G. Construction is “probabilistic.” For each n, construct a dense open

family of %—minimal and % -proximal subshifts of 2¢. Then take
intersection.

The von Neumann algebra LG is a factor iff 9, G is free.

Key point: If 0,G is non-trivial then it is free. This is not true for Js,G.
(Reminiscent of the fact that LG has a unique trace iff LG is a factor, but
C; G can have a unique trace without being simple.)



Injectivity

A G-C*-algebra B is G-injective if for every inclusion of G-C*-algebras
A C B and equivariant ucp map ¢ : A — C, there is an equivariant
extension ¢ : B — C.

The C*-algebra C(0sG) is G-injective.

The C*-algebra C(9,G) is G-injective.

By results of Hamana and Gleason, d5,G and 0,G are extremally

disconnected. The algebras C(0s,G) and C(9,G) are generated by their
Boolean algebras of projections.

Affinely “G-projective” flows correspond to translation invariant Boolean
subalgebras of subsets of G.

Goal: Identify these Boolean algebras, thereby giving “concrete”
descriptions of 9,G and 0s,G.



Higher order syndeticity

A subset A C G is completely syndetic if for every n there is finite
F C G such that FA" = G".

Note: Syndetic is the case n = 1.

A subset A C G is strongly completely syndetic if for every ¢ > 0 there
is finite F C G such that for every finite multiset K C G,

< |meA|>1
e K| <

Note: Says there is finite F C G such that FA" = G" for every n.

The universal minimal (strongly) proximal flow is isomorphic to the
spectrum of any invariant Boolean algebra of (strongly) completely
syndetic subsets of G.



Characterizations of complete syndeticity

Let X be a proximal flow. For open U C X and x € X, the return set
U, ={g € G : gx € U} is completely syndetic.

The following are equivalent for A C G:

1. The set A is completely syndetic, i.e. for each n, there is finite F C G
such that FA" = G".

2. For every n and every mean m on G” that is invariant under left
translation by G, m(A") >0

3. The closur A C BG contains a closed right ideal of 5G.

Similar characterizations hold for strongly completely syndetic subsets.



Examples of completely syndetic subsets

A subset A C Z is syndetic if and only if it has “bounded gaps,” meaning
there is k € N such that for all a € Z,

{a,a+1,...,a+k}NA#D.

A subset A C Z is completely syndetic if and only if for every n, A" has
“bounded diagonal gaps,” meaning there is k € N such that for any
(a1,...,an) € Z",

{(a1,---5an),(a1+1,...;a,+1),.... (a1 + k,...,a, + k) } N A" £ (.

Fact: The group Z does not contain disjoint completely syndetic subsets.



Example 1 (the integers)

200 @ O @ O @ O @ e O @ O @ O @
190 o o o o o oo 0O 0 0 0 0 OO0 O
180 @ 0 @ 0 @ O @ e O @ O @ O ®@ 0O @
170 o o o o o o ©O 0O 0 0 00 O0O0OO OO OO0
16 0o @ 0o @ 0 @ © ® O ® O @ O ® O ® O @
150 o o o o o O 0O 0O0OOO OO OO O O
140 e o @ © ® O @0 ®0 @0 ®O0 e O e
130 0 o o © 00000O0OOOOOGOGO O
120 e o @0 e 0e@e0e0e©0e0 8O0 e
110 o o 0O 0O 0O 0O OOO OGO OO OO OOOO O 0 0
100 e @ O ® O ® O ® O © O © O ®© O ® O @
9 o ©00O0O0OOOOOOOOOOOO0O0 0
8 © 0@ 0®©0®©0e0e0e0 80 e o0 e
7 00000000O0OOOOOOOOOO0 O
6 0O ® 0 @0 ®0®0e®O0eO0eO0 e0 8O0 e
5 00000O0O0OOOOOOOOOOOOO0 O
4 0 @0 @000 ©0 @0 e0 600 e 0 e
3 00000000O0O0OOOOOOOGOO O
2 0000 0@©0@©0e0e0e0 e0 o0 e
1 000000000O0OOOOOOOOO O
123 45 6 7 8 91011121314151617181920

FIGURE 1. The subgroup 2Z C Z is syndetic but not 2-
syndetic since there are arbitrarily long diagonal segments
in Z x Z that do not intersect 2Z x 27Z.



Example 2 (the integers)

20 ¢ O @ O @ e O @ © 0O @0 0@ 00 0 o
19 ¢ O ¢ e 0O e e 0O 00000060 0000
180 0 0 0 0 00000 O0OO0OOOO OGO OGO O O O
17 @ O @ @ O @ @ O © @ O © © O ® @ O @ @
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120 00 000 00O0O0DO0O0O0OO0O0O0O0O0O0 O
11 e O @ ®0C® ©0® 0 0®© 00900060 0
10 e e 0O e e 0O @8 o006 00008060060 e
9 000000O0O0OCOOOOOOO0O0O0 0 O
8 ®© 0000000000000 060 0000
7 ® e 00 00000006060 006080060 e
6 00 000O0O0OOOOOOOOOOOO0 O O
5 ® ®© 0 e e 0@ 0000000600000
4 © 000 00 @ 0 0® 0609000006060 0
3000000000O0O0OOOO®OOGOOO
2 ®© ® 0@ 0© 0@ 900900 ® 0609000600
1 ®©0 0600000600060 006000 00
123 45 6 7 8 91011121314151617181920

FIGURE 2. The subset Z \ 3Z C Z is 2-syndetic but
not 3-syndetic since for k € N, every element in the set
{(1,2,3),(2,3,4), (4,5,6), ..., (1+,2+k,3+k)} has an
entry that is a multiple of 3, implying that the set does
not intersect A%.



Example 3 (the integers)

200 0O @ O @ @ @ O ® @ @ e e 0O o o 0 o
190 0 @ O @ @ @ O @ @ @ ® e O ® @ o o
180 0O @ O @ @ @ O @ o @ ® ®e O ® @ o o
170 0 @ O @ @ @ O @ o @ e e O o 0 0 o
16 o o o o o 0o oo 00 o0 0O 0 0 0 0 0 O
150 0 € 0 e @ @ 00 0 @ e e 000 0 0
140 0O @ O e @ @ O © @ @ ® e O 0 0 0 o
130 0 @ O @ @ @ O @ o @ e e O 0 0o 0 o
120 0 @ 0O @ @ @ O @ o @ e e O 0 0 0 o
1100 @0 @ e 00 0 0o o000 00
100 0 @ O @ @ @ O @ @ @ e e 0O ® o 0 o
9 00e®@0ee e 00 00 © e 000 00
8 00 0000O0OO0COO OO ©o0o0o0o0o0oO0
7000600006000 e 000 00
6 00 06000000 0 e e 0000 0
5000060600060 e e e e 000 00
4 000000000O0O0O 0o 00000 O
300006000060 e e e e 00 0 00
2 00000000O0O0OO 0o 00000 O
1 00000000O0O0OO o000 o0oO0O
123456 7 8 91011121314151617181920

FIGURE 3. The complement of the set of powers of 2 in
Z is completely syndetic, and in particular is 2-syndetic.



Example

Consider the free group F» = (a, b). For w € [y, let
B, ={g € G: g = wg’ in reduced form}.
Can show by hand that B, and By, are strongly completely syndetic.

Alternatively, B, is the return set B, = U,~ where U is the set of infinite
reduced words beginning with a in the hyperbolic boundary JF,.



Characterization of (strong) amenability

A discrete group G is not strongly amenable if and only if there is a proper
normal subgroup H < G such that for every finite subset F C G \ H, there
is a completely syndetic subset A C G satisfying FAN A = ().

A discrete group G is not amenable if and only if there is a subset A C G
such that both A and A€ are strongly completely syndetic.

Note: Does not seem easy to derive from existing criteria (e.g. Fglner
condition, paradoxicality, etc).

Upshot: Measures the difference between strong amenability and
amenability.



“Coloring” criterion for strong amenability

For finite F C G, an F-coloring of G is a pair (K, k) consisting of finite
colors K C G and k : 2§ — K such that

Fk(g1,82){g1, 8} Nk(hy, ha){h1,ho} =0 forall gi,82,h1,h €G.

Here 2§ denotes the the subsets of G of size 2.

The group G is not strongly amenable if and only if for every finite F C G,
G has an F-coloring.

Observation: Proof of FTV can be translated to give a construction of
F-colorings.



Symmetric higher order syndeticity

A subset A C G is symmetrically (completely, strongly completely)
syndetic if for any finite subsets Fi, F, C G, the set

(Nher AA) N (Neher, RAS)

is either (completely, strongly completely) syndetic or empty.

A subset A C G is symmetrically (completely, strongly completely)
syndetic iff it generates a non-trivial Boolean algebra of (completely,
strongly completely) syndetic subsets.

A subset A C G is symmetrically (completely, strongly completely)
syndetic iff for every pair of finite subsets F; C A and F, C A, the set

(Nherfi PAY N (Nperf; TA°)

is (completely, strongly completely) syndetic.



Second characterization of (strong)
amenability

A discrete group G is not strongly amenable if and only if it contains a
symetrically completely syndetic subset.

A discrete group G is not amenable if and only if it contains a symetrically
strongly completely syndetic subset.



Dense Orbit Sets

A subset A C G is a dense orbit set if Ax is dense in X for every minimal
flow X and every point x € X .

Characterize dense orbit sets.

A subset A C G is a dense orbit set iff A° does not contain a
symmetrically syndetic subset.



Problem

Let G be a discrete non-trivial ICC group (e.g. So). Give a direct proof
using the factoriality of LG that G is not strongly amenable.

Frisch, Hartman, Tamuz and Vahidi Ferdowi showed in 2019 that discrete

G is Choquet-Deny (i.e. has no non-trivial Poisson boundary) iff G has a
non-trivial |CC quotient.

Is there a direct proof that G is Choquet-Deny iff G is strongly amenable?



Thanks!



