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Poincaré inequality and concentration

Let (X , d , µ) be a metric probability space. The concentration function of X is
defined on (0,∞) by

αµ(t) := sup{1− µ(At) : µ(A) > 1/2}

where the supremum runs over all sets A in the Borel σ-algebra B(X ) with
µ(A) > 1/2, and where At = {x : d(x ,A) < t} is the t-extension of A.

We say that µ has exponential concentration on (X , d) if there exist constants
C , c > 0 such that, for every t > 0,

αµ(t) 6 Ce−ct .

Recall that a function f : (X , d)→ R is called Lipschitz if there exists σ > 0 such
that |f (x)− f (y)| 6 σd(x , y) for all x , y ∈ X , and the smallest such constant σ is
denoted by ‖f ‖Lip.

We say that f is locally Lipschitz if for every x ∈ X there exists a neighborhood Ux

of x such that f |Ux is Lipschitz. For every locally Lipschitz function f we define (in
the continuous case)

|∇f |(x) = lim sup
y→x

|f (x)− f (y)|
d(x , y)

.
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Poincaré inequality and concentration

We say that µ satisfies a Poincaré inequality with constant θ if

Varµ(f ) 6 θ2
∫
|∇f |2dµ

for every locally Lipschitz function f : X → R, where

Varµ(f ) = Eµ (f − Eµ(f ))2 = Eµ(f 2)− (Eµ(f ))2.

Theorem (Gromov-Milman)

Let (X , d , µ) be a metric probability space. If µ satisfies a Poincaré inequality with
constant θ, then µ has exponential concentration. More precisely,

αµ(t) 6 exp
(
− t

3θ

)
.

We present an argument that uses the notion of the expansion coefficient of µ.

This is defined for every ε > 0 as follows:

Expµ(ε) = sup{s > 1 : µ(Bε) > sµ(B) for all B ∈ B(X ) with µ(Bε) 6 1/2}.
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Poincaré inequality and concentration

Theorem

Assume that for some ε > 0 we have Expµ(ε) > s > 1. Then, for every t > 0 we have

αµ(t) 6 s
2
s−t/ε.

Let A ⊆ X with µ(A) > 1
2

and let t > 0. There exists k > 0 such that
kε 6 t < (k + 1)ε. Setting B0 = X \ A and Bj = X \ Ajε, for every 1 6 j 6 k we
check that (Bj)ε ⊆ Bj−1 ⊆ X \ A.

Applying the definition of the expansion coefficient to Bj (as µ(Bj) 6 1/2) and the
assumption that Expµ(ε) > s we get

µ(Bj) = µ(X \ Ajε) 6
1

s
µ(X \ A(j−1)ε) =

1

s
µ(Bj−1),

for all 1 6 j 6 k.

Then, we have

µ(X \ At) 6 µ(X \ Akε) 6
1

s
µ(X \ A(k−1)ε) 6

1

s2
µ(X \ A(k−2)ε)

6 · · · 6 1

sk
µ(X \ A) 6

1

2
s−k 6

1

2
s−( t

ε
−1)

where the last inequality follows from t < (k + 1)ε.
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Poincaré inequality and concentration

Theorem (Gromov-Milman)

Let (X , d , µ) be a metric probability space. If µ satisfies a Poincaré inequality with
constant θ, then µ has exponential concentration. More precisely,
αµ(t) 6 exp

(
− t/(3θ)

)
.

For the proof of the Gromov-Milman theorem we shall show that if µ satisfies a
Poincaré inequality with constant θ then Expµ(

√
2θ) > 2.

Let
√

2θ = ε > 0 and consider B ⊆ X such that A = X \ Bε satisfies µ(A) > 1/2.
We set a = µ(A), b = µ(B). Note that d(A,B) > ε.

Define f : X → R by f (x) = 1
a
− 1

ε

(
1
a

+ 1
b

)
min{ε, d(x ,A)}.

Then, f (x) = 1/a on A, f (x) = −1/b on B and

|∇f |(x) 6
1

ε

(
1

a
+

1

b

)
for all x ∈ X , while |∇f |(x) = 0 on a set of measure a + b.

Consequently, ∫
|∇f |2dµ 6

1

ε2

(
1

a
+

1

b

)2

(1− a− b).
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Poincaré inequality and concentration

On the other hand, if m = Eµ(f ) we have

Varµ(f ) >
∫
A

(f −m)2dµ+

∫
B

(f −m)2dµ > a

(
1

a
−m

)2

+b

(
− 1

b
−m

)2

>
1

a
+

1

b
.

From the Poincaré inequality we get(
1

a
+

1

b

)
6
θ2

ε2

(
1

a
+

1

b

)2

(1− a− b),

and hence ε2

θ2
6 a+b

ab
(1− a− b) 6 1−a−b

ab
= 1−a

ab
− 1

a
.

Solving for b we have

b 6
1− a

a
· 1

1
a

+ ε2

θ2

=
1− a

1 + aε2

θ2

6
1− a

1 + ε2

2θ2

.

Having chosen ε =
√

2θ, this implies

µ(B) 6
1

2
µ(Bε),

as claimed. Since B was arbitrary, we conclude that Expµ(
√

2θ) > 2.

Then,

αµ(t) 6 exp
(
− ln 2√

2θ
t
)
6 exp

(
− t

3θ

)
.
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Cheeger constant

Let µ be a Borel probability measure on Rn. For every Borel subset A of Rn, the
Minkowski content of A with respect to µ is defined as

µ+(A) = lim inf
t→0+

µ(At)− µ(A)

t
.

The isoperimetric ratio of A is defined as follows:

χµ(A) :=
µ+(A)

min{µ(A), 1− µ(A)} .

Then, we define the Cheeger constant χµ of µ setting

χµ := inf{χµ(A) : A Borel ⊂ Rn}.
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Cheeger constant

Theorem (Rothaus, Cheeger, Maz’ya)

Let µ be a Borel probability measure on Rn with Cheeger constant χµ. Let α1 be the
largest constant with the following property: for every integrable, locally Lipschitz
function f : Rn → R,

α1

∫
Rn

|f (x)− Eµ(f )| dµ(x) 6
∫
Rn

|∇f (x)| dµ(x).

Then, α1 6 χµ 6 2α1.

First we show that χµ 6 2α1.

Let f : Rn → R be an integrable, locally Lipschitz function. We may assume that f
is bounded from below and hence, by adding a suitable constant, that f > 0.

The co-area formula shows that∫
Rn

|∇f (x)| dµ(x) >
∫ ∞
0

µ+({x : f (x) > s}) ds

> χµ

∫ ∞
0

min{µ(A(s)), 1− µ(A(s))} ds,

where A(s) = {f > s}.
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Cheeger constant

Setting A(s) = {f > s} we saw that∫
Rn

|∇f (x)| dµ(x) > χµ

∫ ∞
0

min{µ(A(s)), 1− µ(A(s))} ds.

Using the fact that ‖1B − Eµ(1B)‖1 = 2µ(B)(1− µ(B)) for every Borel subset B of
Rn, and the simple identity Eµ(f (g − Eµ(g))) = Eµ(g(f − Eµ(f ))), we may write∫

Rn

|∇f (x)| dµ(x) > χµ

∫ ∞
0

µ(A(s))(1− µ(A(s))) ds

=
χµ
2

∫ ∞
0

‖1A(s) − Eµ(1A(s))‖1 ds

>
χµ
2

sup

{∫ ∞
0

∫
Rn

(1A(s) − Eµ(1A(s)))g dµ ds : ‖g‖∞ 6 1

}
=
χµ
2

sup

{∫ ∞
0

∫
Rn

1A(s)(g − Eµ(g)) dµ ds : ‖g‖∞ 6 1

}
=
χµ
2

sup

{∫
Rn

f (g − Eµ(g)) dµ : ‖g‖∞ 6 1

}
=
χµ
2

sup

{∫
Rn

g(f − Eµ(f )) dµ : ‖g‖∞ 6 1

}
=
χµ
2
‖f − Eµ(f )‖1.

This shows that χµ 6 2α1.
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Cheeger constant

Recall that α1 is the largest constant so that

α1

∫
Rn

|f (x)− Eµ(f )| dµ(x) 6
∫
Rn

|∇f (x)| dµ(x)

for locally Lipschitz functions. Now, we want to show that α1 6 χµ.
Consider any closed subset A of Rn and for small ε > 0 we define the function

fε(x) = max
{

0, 1− d(x ,Aε2)

ε− ε2
}
.

Then, 0 6 fε 6 1, fε ≡ 1 on Aε2 ⊇ A, f ≡ 0 on {x : d(x ,A) > ε}, and fε −→ 1A as
ε→ 0.
Finally, fε is Lipschitz: we have

|fε(x)− fε(y)| 6 1

ε(1− ε)

∣∣∣d(x ,Aε2)− d(y ,Aε2)
∣∣∣ 6 |x − y |

ε(1− ε)
,

therefore |∇fε(x)| 6 (ε− ε2)−1.
Since ∇fε(x) = 0 on C = {x : d(x ,A) > ε} ∪ {x : d(x ,A) < ε2}, we get∫

Rn

|∇fε(x)| dµ(x) 6
∫
Rn\C
|∇fε(x)| dµ(x)

6
1

1− ε
µ(Aε)− µ(A)

ε
− ε

1− ε
µ(Aε2)− µ(A)

ε2
.
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Cheeger constant

We have assumed that

α1

∫
Rn

|f (x)− Eµ(f )| dµ(x) 6
∫
Rn

|∇f (x)| dµ(x).

Therefore,

α1

∫
Rn

|fε(x)− Eµ(fε)| dµ(x) 6
1

1− ε
µ(Aε)− µ(A)

ε
− ε

1− ε
µ(Aε2)− µ(A)

ε2
.

Letting ε→ 0+ we see that

µ+(A) > α1‖1A − Eµ(1A)‖1 = 2α1µ(A)(1− µ(A)).

This shows that χµ > α1.

Definition

ψµ = 1
χµ

, the reciprocal Cheeger constant.
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Poincaré constant and Cheeger constant

Recall that a Borel probability measure µ on Rn satisfies the Poincaré inequality with
constant ϑ > 0 if

Varµ(f ) 6 ϑ2

∫
|∇f |2 dµ,

for all smooth functions f on Rn, where

Varµ(g) = Eµ(g 2)− (Eµ(g))2

is the variance of g with respect to µ.

The Poincaré constant ϑµ of µ is the smallest constant ϑ > 0 for which the Poincaré
inequality is satisfied for all f .

Theorem (Maz’ya, Cheeger)

Let µ be a Borel probability measure with reciprocal Cheeger constant ψµ. Then its
Poincaré constant ϑµ satisfies

ϑµ 6 2ψµ.
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Poincaré constant and Cheeger constant

By the co-area formula and the definition of the Cheeger constant, for every positive
integrable locally Lipschitz function g we have

χµ

∫ ∞
0

min{µ({g > s}), 1− µ({g > s})} ds 6
∫ ∞
0

µ+({g > s}) ds

6
∫
Rn

|∇g | dµ.

Let f be an integrable locally Lipschitz function and set m = med(f ). Then, we
have µ({f > m}) > 1

2
and µ({f 6 m}) > 1

2
.

We set f + = max{f −m, 0} and f − = −min{f −m, 0}. Then, f −m = f + − f −

and by the definition of m we have

µ({(f +)2 > s}) 6 1

2
and µ({(f −)2 > s}) 6 1

2

for all s > 0.
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Poincaré constant and Cheeger constant

Using

χµ

∫ ∞
0

min{µ({g > s}), 1− µ({g > s})} ds 6
∫
Rn

|∇g | dµ

with g = (f +)2 and g = (f −)2 and applying integration by parts we see that

χµ

∫
Rn

|f −m|2dµ = χµ

∫
Rn

(f +)2dµ+ χµ

∫
Rn

(f −)2dµ

= χµ

∫ ∞
0

µ({(f +)2 > s}) ds + χµ

∫ ∞
0

µ({(f −)2 > s}) ds

6
∫
Rn

|∇((f +)2)| dµ+

∫
Rn

|∇((f −)2)| dµ

=

∫
Rn

(|∇((f +)2)|+ |∇((f −)2)|) dµ.

Note that
|∇((f +)2)|+ |∇((f −)2)| 6 2|f −m| |∇f |.

Therefore, applying the Cauchy-Schwarz inequality we see that

χµ

∫
Rn

|f −m|2dµ 6 2

(∫
Rn

|f −m|2dµ
)1/2(∫

Rn

|∇f |2 dµ
)1/2

.
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Poincaré constant and Cheeger constant

We saw that

χµ

∫
Rn

|f −m|2dµ 6 2

(∫
Rn

|f −m|2dµ
)1/2(∫

Rn

|∇f |2 dµ
)1/2

.

This gives
χ2
µ

4

∫
Rn

|f −m|2dµ 6
∫
Rn

|∇f |2 dµ.

Since ∫
Rn

|f − Eµ(f )|2dµ = min
α∈R

∫
Rn

|f − α|2dµ 6
∫
Rn

|f −m|2dµ

and f was arbitrary, we get ϑ2
µ 6 4χ−2

µ = 4ψ2
µ.
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Poincaré constant and Cheeger constant

A Borel probability measure µ on Rn is called log-concave if for all compact subsets
A,B of Rn and all 0 < λ < 1 we have

µ((1− λ)A + λB) > µ(A)1−λµ(B)λ.

Theorem (Buser, Ledoux)

Let µ be a log-concave probability measure on Rn with reciprocal Cheeger constant ψµ.
Then its Poincaré constant ϑµ satisfies

ψµ 6 c ϑµ.
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Isotropic measures

We say that a Borel probability measure µ on Rn is isotropic if
bar(µ) =

∫
Rn xdµ(x) = 0 and µ satisfies the isotropic condition∫

Rn

〈x , θ〉2 dµ(x) = 1, θ ∈ Sn−1.

Similarly, we shall say that a log-concave function f : Rn → [0,∞) with barycenter
bar(f ) = 0 is isotropic if

∫
f (x)dx = 1 and the measure dµ(x) = f (x)dx is isotropic.

A convex body K of volume 1 in Rn with barycenter at the origin is called isotropic if∫
K

〈x , θ〉2 dx = L2
K

for some constant LK > 0 (the isotropic constant of K) and all θ ∈ Sn−1.

One can check that K is isotropic if and only if the function fK := Ln
K1 1

LK
K is an

isotropic log-concave function.

Every non-degenerate absolutely continuous probability measure µ has an isotropic
image ν = µ ◦ S , where S : Rn → Rn is an affine map. Similarly, every log-concave
f : Rn → [0,∞) with 0 <

∫
f <∞ has an isotropic image: there exist an affine

isomorphism S : Rn → Rn and a positive number a such that af ◦ S is isotropic.
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Isotropic constant

Let f be a log-concave function with finite, positive integral. The covariance matrix
Cov(f ) is the matrix with entries

[Cov(f )]ij :=

∫
Rn xixj f (x) dx∫

Rn f (x) dx
−
∫
Rn xi f (x) dx∫
Rn f (x) dx

∫
Rn xj f (x) dx∫
Rn f (x) dx

.

If f is the density of a measure µ we denote this matrix also by Cov(µ). Note that if
f is isotropic then Cov(f ) is the identity matrix.

The isotropic constant of f is defined by

Lf :=

(
supx∈Rn f (x)∫

Rn f (x)dx

) 1
n

[detCov(f )]
1
2n .

(and given a log-concave measure µ with density fµ we let Lµ := Lfµ).

It is easy to check that the isotropic constant Lµ is an affine invariant.
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Conjecture 1: Isotropic constant

One can also prove that if f : Rn → [0,∞) is a log-concave density, then

nL2
f = inf

S∈SLn
y∈Rn

(
sup
x∈Rn

f (x)
)2/n ∫

Rn

|S(x) + y |2f (x) dx .

If f : Rn → [0,∞) is an isotropic log-concave function then

Lf = ‖f ‖1/n∞ > c,

where c > 0 is an absolute constant.

Conjecture 1

For any isotropic log-concave density f : Rn → [0,∞),

‖f ‖1/n∞ 6 C ,

where C > 0 is an absolute constant.

This would imply that a convex body of volume one, in any dimension, has at least
one hyperplane section with volume bounded from below by an absolute constant
(slicing problem).
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Conjecture 1: Isotropic constant

Define
Ln := sup{Lµ : µ is an isotropic log-concave measure on Rn}.

Then, Conjecture 1 states that Ln 6 C for an absolute constant C > 0.

Around 1985-6 (published in 1991), Bourgain introduced this conjecture and
obtained the upper bound Ln 6 c 4

√
n ln n.

In 2006 the estimate was improved by Klartag, who showed that the logarithmic
factor can be omitted.

Theorem (Bourgain/Klartag)

There exists an absolute constant c > 0 such that Ln 6 c 4
√
n for all n > 1.
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KLS-conjecture

Kannan, Lovász and Simonovits conjectured in 1994 that the isoperimetric ratio of
any Borel set A with respect to the uniform measure µK on a convex body K in Rn

(defined by µK (A) = voln(K ∩ A)/voln(K)) should be, up to an absolute constant,
at least as large as the minimal isoperimetric ratio over all half-spaces.

Conjecture

One has

χ(K) > c · inf
H

µ+
K (H)

min{µK (H), µK (Rn \ H)}
for some absolute constant c > 0, where the infimum is over all half-spaces H in Rn.

Their interest in this parameter was related to the study of randomized volume
algorithms.
Since the isoperimetric ratio of a half-space is basically a one-dimensional quantity,
one can obtain an explicit formula for this infimum. Then, one arrives at the
following conjecture:
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KLS-conjecture

Conjecture 2

χ(K) ≈ 1/
√
λ(K)

where λ(K) is the largest eigenvalue of the matrix of inertia Mij :=
∫
K
xixjdx of K .

They actually proved that one always has χ(K) 6 10/
√
λ(K), therefore the

question is about the lower bound.

Theorem (Kannan-Lovász-Simonovits)

For every convex body K in Rn one has

χ(K) >
ln 2

I1(K)
.

Here,

I1(K) :=
1

voln(K)

∫
K

|x − bar(K)| dx .

If K is isotropic this gives χ(K) > c/(
√
nLK ).

In fact, one may find literature on the subject before their work, and there were
known lower bounds for χ(K) of order 1/diam(K).
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KLS-conjecture

Another approach to the KLS-conjecture is due to Bobkov.

Theorem (Bobkov)

Let µ be a log-concave probability measure on Rn. Then we have

χµ >
c

‖f ‖L2(µ)
,

where f (x) = |x − bar(µ)| and c > 0 is an absolute constant.

If µ is isotropic this gives χµ > c/
√
n.
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KLS-conjecture and isotropic constant

Conjecture 2

χ(K) ≈ 1/
√
λ(K)

where λ(K) is the largest eigenvalue of the matrix of inertia Mij :=
∫
K
xixjdx of K .

For an isotropic convex body K this becomes χ(K) ≈ 1/LK .

KLS-Conjecture

For every isotropic log-concave probability measure µ on Rn one has χµ > c, where
c > 0 is an absolute constant.

Theorem (Eldan-Klartag)

Ln 6 Cψn = C/χn.

In other words, the KLS-conjecture is stronger than Conjecture 1 about the isotropic
constant.
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KLS-conjecture: best known bounds

The currently best known results are due to Lee and Vempala and are consequences
of the following theorem:

Theorem (Lee-Vempala)

If µ is a log-concave probability measure on Rn with covariance matrix A then

ψµ 6 c
(
tr(A2)

)1/4
where c > 0 is an absolute constant.

If we make the additional assumption that µ is isotropic then we obtain the upper
bound

ψµ 6 c 4
√
n.

The approach of Lee and Vempala is based on Eldan’s stochastic localization.
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KLS-conjecture: November 30, 2020
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KLS-conjecture: November 30, 2020
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