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Cheeger constant

Let µ be a Borel probability measure on Rn. For every Borel subset A of Rn, the
Minkowski content of A with respect to µ is defined as

µ+(A) = lim inf
t→0+

µ(At)− µ(A)

t

where At = {x : d(X ,A) < t}.
The isoperimetric ratio of A is defined as follows:

χµ(A) :=
µ+(A)

min{µ(A), 1− µ(A)} .

Then, we define the Cheeger constant χµ of µ setting

χµ := inf{χµ(A) : A Borel ⊂ Rn}.
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Poincaré constant and Cheeger constant

We say that a Borel probability measure µ on Rn satisfies the Poincaré inequality
with constant ϑ > 0 if

Varµ(f ) 6 ϑ2

∫
|∇f |2 dµ,

for all smooth functions f on Rn, where

Varµ(g) = Eµ(g 2)− (Eµ(g))2

is the variance of g with respect to µ.

The Poincaré constant ϑµ of µ is the smallest constant ϑ > 0 for which the Poincaré
inequality is satisfied for all f .

Theorem (Maz’ya, Cheeger)

Let µ be a Borel probability measure. Then, its Poincaré constant ϑµ satisfies

ϑµ 6
2

χµ
.
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Poincaré constant and Cheeger constant

A Borel probability measure µ on Rn is called log-concave if for all compact subsets
A,B of Rn and all 0 < λ < 1 we have

µ((1− λ)A + λB) > µ(A)1−λµ(B)λ.

Theorem (Buser, Ledoux)

Let µ be a log-concave probability measure on Rn. Then, its Poincaré constant ϑµ
satisfies

1

2
ϑµ 6

1

χµ
6 c ϑµ.
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Isotropic measures

We say that a Borel probability measure µ on Rn is isotropic if
bar(µ) =

∫
Rn xdµ(x) = 0 and µ satisfies the isotropic condition∫

Rn

〈x , θ〉2 dµ(x) = 1, θ ∈ Sn−1.

Similarly, we shall say that a log-concave function f : Rn → [0,∞) with barycenter
bar(f ) = 0 is isotropic if

∫
f (x)dx = 1 and the measure dµ(x) = f (x)dx is isotropic.

A convex body K of volume 1 in Rn with barycenter at the origin is called isotropic if∫
K

〈x , θ〉2 dx = L2
K

for some constant LK > 0 (the isotropic constant of K) and all θ ∈ Sn−1.

One can check that K is isotropic if and only if the function fK := Ln
K1 1

LK
K is an

isotropic log-concave function.
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Isotropic constant

Let f be a log-concave function with finite, positive integral. The covariance matrix
Cov(f ) is the matrix with entries

[Cov(f )]ij :=

∫
Rn xixj f (x) dx∫

Rn f (x) dx
−
∫
Rn xi f (x) dx∫
Rn f (x) dx

∫
Rn xj f (x) dx∫
Rn f (x) dx

.

If f is the density of a measure µ we denote this matrix also by Cov(µ).

The isotropic constant of f is defined by

Lf :=

(
supx∈Rn f (x)∫

Rn f (x)dx

) 1
n

[detCov(f )]
1
2n .

(and given a log-concave measure µ with density fµ we let Lµ := Lfµ).

It is easy to check that the isotropic constant Lµ is an affine invariant.
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Isotropic measures

Recall that a Borel probability measure µ on Rn is isotropic if
bar(µ) =

∫
Rn xdµ(x) = 0 and µ satisfies the isotropic condition∫

Rn

〈x , θ〉2 dµ(x) = 1, θ ∈ Sn−1.

This implies that Eµ(‖x‖22) = n.

We also have Cov(µ) = In is the identity and Lµ = ‖fµ‖1/n∞ where fµ is the density of
µ.

We define Ln = sup{Lµ : µ is an isotropic log-concave probability measure on Rn}.
The isotropic constant conjecture asks whether Ln 6 C for an absolute constant
C > 0.
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KLS-conjecture and isotropic constant

KLS-Conjecture

For every isotropic log-concave probability measure µ on Rn one has χµ > c, where
c > 0 is an absolute constant.

χn := inf{χµ : µ is an isotropic log-concave probability measure on Rn} > c.

Theorem (Eldan-Klartag)

Ln 6 C/χn.

In other words, the KLS-conjecture is stronger than the isotropic constant
conjecture, and any lower bound for χn provides an upper bound for Ln.
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KLS-conjecture: bounds for χn

Theorem (Lee-Vempala)

If µ is a log-concave probability measure on Rn with covariance matrix A then

χµ >
c(

tr(A2)
)1/4

where c > 0 is an absolute constant.

If we make the additional assumption that µ is isotropic then we obtain the lower
bound

χµ > c/ 4
√
n.

Theorem (announced by Y. Chen, 30/11/2020)

If µ is a log-concave probability measure on Rn then, for any integer ` > 1,

χµ >
1

(c`(log n + 1))`/2n4/`
√
%(µ)

where %(µ) is the spectral norm of Cov(µ).
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KLS-conjecture: bounds for χn

Choosing ` =
√

log n
log log n

we get:

Theorem (announced by Y. Chen, 30/11/2020)

If µ is a log-concave probability measure on Rn then, for any integer ` > 1,

χµ >
1

n
c
√

log log n
log n

√
%(µ)

where %(µ) is the spectral norm of Cov(µ).

Since log log n
log n

→ 0, this implies that for any ε > 0 and any isotropic log-concave
probability measure µ on Rn we have

χµ > c/nε.

Therefore, χn > c/nε and Ln 6 Cnε by the theorem of Eldan and Klartag.
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The first main step

It is a result of E. Milman.

Iµ(t) = inf{µ+(A) : A Borel, µ(A) = t}.

Note that

χµ := inf
0<t<1

Iµ(t)

min{t, 1− t} = inf
0<t61/2

min{Iµ(t), Iµ(1− t)}
t

.

Theorem (E. Milman)

Let µ be a log-concave probability measure on Rn. Then, the isoperimetric profile Iµ of µ
is concave on (0, 1), and for every t ∈ (0, 1) we have Iµ(t) = Iµ(1− t). As a consequence,

χµ = inf
0<t61/2

Iµ(t)

t
= 2Iµ(1/2).

This means that we can calculate the Cheeger constant of a log-concave probability
measure µ by looking only at Borel sets A with µ(A) = 1/2.
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Eldan’s stochastic localization

Let µ be a log-concave probability measure on Rn and let A := Cov(µ).

We consider the stochastic differential equation

dut = A
−1/2
t dWt + A−1atdt, u0 = 0

dBt = A−1dt, B0 = 0

where Wt is the Wiener process, and the density ft , the mean at and the covariance
matrix At of the probability measure µt are defined by

ft(x) =
e−〈ut ,x〉−

1
2
〈x,Btx〉f (x)∫

Rn e
−〈ut ,y〉− 1

2
〈y,Bty〉f (y)dy

, at = Eµt (x), At = Eµt ((x − at)⊗ (x − at)).

Eldan: “In some sense, the above is just the continuous version of the following
iterative process: at every time step, normalize the measure to be isotropic, and
multiply it by a linear function, equal to 1 at the origin, whose gradient has a
random direction.”
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A rough description of what it is

We fix a subset E of the original space with measure one half according to the
original log-concave distribution (it suffices to consider such subsets to bound the
Cheeger constant).

Stochastic localization can be viewed as the continuous time version of a discrete
process, where at each step, we pick a random direction and multiply the current
density with a linear function along the chosen direction.

Over time, the density can be viewed as a Gaussian density multiplied by a
log-concave function, with the Gaussian gradually reducing in variance.

When the Gaussian becomes sufficiently small in variance, then the overall
distribution has good Cheeger constant, determined by the inverse of the Gaussian
standard deviation.

An important property of the infinitesimal change at each step is balance: the
expected measure of any subset is the same as the original measure. Note that the
measure of a set E is a random quantity that deviates from its original value of 1

2

over time.

The main question then is: what direction to use at each step so that (a) the
measure of E remains bounded and (b) the Gaussian part of the density has small
variance. What happens is that the simplest choice, namely a pure random direction
chosen from the uniform distribution suffices.
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Eldan’s stochastic localization

The discrete time equivalent would be

ft+1(x) = ft(x)(1 +
√
h〈x − at ,w〉)

for a sufficiently small h > 0 and a random Gaussian vector w in Rn.

Using the approximation 1 + y ∼ ey−
1
2
y2 , we see that over time this process

introduces a negative quadratic factor in the exponent, which will be the Gaussian
factor.

As time tends to ∞, the distribution tends to a more and more concentrated
Gaussian and eventually a delta function, at which point any subset has measure
either 0 or 1.

The idea of the proof is to stop at a time that is large enough to have a strong
Gaussian factor in the density, but small enough to ensure that the measure of a set
is not changed by more than a constant.
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Eldan’s stochastic localization

Theorem

If f has compact support and its covariance matrix is invertible then the equation is
well-defined and has a unique solution on the time interval [0,T ] for every T > 0.
Moreover, for any x ∈ Rn, ft(x) is a martingale with

dft(x) = 〈x − at ,A
−1/2dWt〉 ft(x).
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More log-concave than Gaussian

A density h : Rn → R is called more log-concave than Gaussian if h = ϕ · f where ϕ
is a Gaussian density and f is an integrable log-concave function.

Theorem (Cousins-Vempala)

Let µ be a log-concave probability measure on Rn with density proportional to
h(x) = e−〈x,Bx〉f (x), where f : Rn → R+ is an integrable log-concave function. For every
E ⊂ Rn we have that

µ+(E) >
1

2
‖B‖−1/2

2 min{µ(E), µ(E c)}

for every E ⊂ Rn, and hence χµ > 1
2
‖B‖−1/2

2 .
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Bound for χµ via µt

Let µ have compact support and let E be a subset of Rn with µ(E) = 1
2
.

Using the martingale property of µt(E) we see that

µ+(E) = E
(
µ+
t (E)

)
>

1

2
E
(
‖B−1

t ‖
−1/2
2 min{µt(E), µt(E

c)}
)

>
1

2
‖B−1

t ‖
−1/2
2 · 1

4
P
(1

4
6 µt(E) 6

3

4

)
=

1

4
‖B−1

t ‖
−1/2
2 P

(1

4
6 µt(E) 6

3

4

)
min{µ(E), µ(E c)}.

This gives a lower bound for χµ:

χµ >
1

4
‖B−1

t ‖
−1/2
2 inf

E
P
(1

4
6 µt(E) 6

3

4

)
where the infimum is over all E ⊂ Rn with µ(E) = 1

2
.

Note that Bt = tA−1 and hence ‖B−1
t ‖

−1/2
2 =

√
t‖A‖−1/2

2 .
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Two things to do

We need to show that there exists t > 0 such that the Gaussian component
e−〈x,Btx〉 of ft is large enough: this means to have a lower bound for ‖B−1

t ‖
−1/2
2 . We

know that
‖B−1

t ‖
−1/2
2 =

√
t‖A‖−1/2

2 .

We need to study µt(E) in order to give a lower bound for

P
(1

4
6 µt(E) 6

3

4

)
for any E ⊂ Rn with µ(E) = 1

2
.
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Control on µt(E )

Lee-Vempala

For any E ⊂ Rn with µ(E) = 1
2

and any t > 0 we have

P
(

1/4 6 µt(E) 6 3/4
)
>

9

10
− P

(∫ t

0

‖A−1/2AsA
−1/2‖2ds > 1/64

)
.

We define
χ′n = inf

µ
χµ
√
%(µ),

where the infimum is over all log-concave probability measures with compact
support and %(µ) = ‖Cov(µ)‖2.

At this point, Chen has a new bound:

Theorem (Chen)

Assume that there exist 0 < β 6 1
2

and α > 1 such that χ′k > 1
αkβ

for all k 6 n. Then, if

we set q = d 1
β
e+ 1 and T2 = 1

cqα2(log n)n2β−β/q
we have that

P
(∫ T2

0

‖A−1/2AsA
−1/2‖2ds > 1/64

)
<

1

4
.
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Using the new bound

Theorem (Chen)

Assume that there exist 0 < β 6 1
2

and α > 1 such that χ′k > 1
αkβ

for all k 6 n. Then, if

we set q = d 1
β
e+ 1 and T2 = 1

cqα2(log n)n2β−β/q
we have that

P
(∫ T2

0

‖A−1/2AsA
−1/2‖2ds > 1/64

)
<

1

4
.

Theorem

Assume that there exist 0 < β 6 1
2

and α > 1 such that χ′k > 1
αkβ

for all k 6 n. Then, if

we set q = d 1
β
e+ 1 we have that

χ′n >
1

c
√
qα
√

log nnβ−β/(2q)
.
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Using the new bound

Theorem

Assume that there exist 0 < β 6 1
2

and α > 1 such that χ′k > 1
αkβ

for all k 6 n. Then, if

we set q = d 1
β
e+ 1 we have that

χ′n >
1

c
√
qα
√

log nnβ−β/(2q)
.

Let µ have compact support and let E be a subset of Rn with µ(E) = 1
2
.

Using the martingale property of µt(E) and the fact that Bt = tA−1 we see that

µ+(E) = E
(
µ+
T2

(E)
)
>

1

2
E
(
‖B−1

T2
‖−1/2
2 min{µT2(E), µT2(E c)}

)
>

1

2
‖B−1

T2
‖−1/2
2 · 1

4
P
(1

4
6 µT2(E) 6

3

4

)
>

1

4
‖B−1

T2
‖−1/2
2 · 1

4

=
1

8

√
T2‖A‖−1/2

2 min{µ(E), µ(E c)}.

This gives a lower bound for χµ: χµ > 1
8

√
T2 in the isotropic case, because then

A = In is the identity.
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Recursion

It is now a calculus matter to show:

Theorem (Chen)

There exists an absolute constant c > 0 such that, for any log-concave probability
measure µ with compact support on Rn and any integer ` > 1,

χµ >
1

(c`(log n + 1))`/2n4/`
√
%(µ)

.

We apply the previous result recursively. First we set

α1 = 4 and β1 =
1

2
.

For every ` > 1 we define

α`+1 = 2cα`β
−1/2
` and β`+1 = β` − β2

`/4.

Then, we have
1

`+ 1
6 β` 6

4

`
and α` 6 (4c2`)`/2.
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Recursion

We start with the simplest known lower bound (of Kannan-Lovász and Simonovits):

χ′n >
1

α1nβ1
.

Assuming that

χ′k >
1

α`(log k + 1)`/2kβ`

we get

χ′n >
1

c
√
qα`(log n + 1)`/2

√
log nnβ`−β`/(2q)

>
1

2cα`β
−1/2
` (log n + 1)(`+1)/2nβ`−β

2
`
/4

=
1

α`+1(log n + 1)(`+1)/2nβ`+1
.
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Removing the assumption of compact support

Let µ be an isotropic log-concave probability measure on Rn. Since Eµ(‖x‖22) = n,
from Markov’s inequality we see that

µ({‖x‖2 > 5
√
n}) 6 1

25
.

Consider the measure ν obtained by truncating µ on the ball B := (5
√
n)Bn

2 . For
every E ⊂ Rn with µ(E) = 1

2
we have that

µ+(E) = ν+(E)µ(B) > χν min{ν(E), ν(E c)}µ(B)

= χν min{µ(E ∩ B), µ(B ∩ E c)} > χν min{µ(E)− µ(Bc), µ(E c)− µ(Bc)}

>
1

2
χν min{µ(E), µ(E c)},

because µ(E)− µ(Bc) = µ(E c)− µ(Bc) > 1
2
− 1

25
> 1

4
.

Since %(ν) 6 C (this is simple), having given a lower bound for the Cheeger
constant of log-concave probavility measures with compact support, we have settled
the general case (for isotropic measures, but an analogous general result can be also
deduced).
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