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1. Random arrays

Definition (Random arrays, and their subarrays)
Let d be a positive integer, and let I be a set with |I| > d .

A d-dimensional random array on I is a stochastic process
X = 〈Xs : s ∈

( I
d

)
〉 indexed by the set

( I
d

)
of all d-element

subsets of I.

If J is a subset of I with |J| > d , then the subarray of X
determined by J is the d-dimensional random array
X J := 〈Xs : s ∈

(J
d

)
〉.



2.a. Notions of symmetry

• A d-dimensional random array X = 〈Xs : s ∈
( I

d

)
〉 on I is

called exchangeable if for every (finite) permutation π of I, the
random arrays X and Xπ := 〈Xπ(s) : s ∈

( I
d

)
〉 have the same

distribution.

• A d-dimensional random array X on I is called spreadable if
for every pair J,K of finite subsets of I with |J| = |K | > d , the
subarrays X J and X K have the same distribution.

exhangeability ⇒ spreadability



2.b. Notions of symmetry

Definition (Approximate spreadability)
Let X be a d-dimensional random array on a (possibly infinite)
set I, and let η > 0. We say that X is η-spreadable provided
that for every pair J,K of finite subsets of I with |J| = |K | > d
we have

ρTV(PJ ,PK ) 6 η

where PJ and PK denote the laws of the random subarrays X J
and X K respectively, and ρTV stands for the total variation
distance.



2.c. Notions of symmetry

Fact
For every triple m,n,d of positive integers with n > d, and
every η > 0, there exists an integer N > n with the following
property. If X is a set with |X | = m and X is an X -valued,
d-dimensional random array on a set I with |I| > N, then there
exists a subset J of I with |J| = n such that the random array
X J is η-spreadable.



3. Main goal

• Our main goal is to describe the structure of finite,
finite-valued, approximately spreadable, high-dimensional
random arrays.

•We will also discuss the relation between the structure
theorems and the concentration results presented the previous
week.



4. Infinite random arrays

The infinitary branch of the theory was developed in a series of
foundational papers by Aldous (1981), Hoover (1979) and
Kallenberg (1992), with important earlier contributions by
Fremlin and Talagrand (1985).



5.a. Aldous–Hoover–Kallenberg theorem:
two-dimensional case

Let X be a Polish space, and let X = 〈Xs : s ∈
(N

2

)
〉 be an

X -valued, spreadable, two-dimensional random array on N.
Then there exists a Borel function f : [0,1]4 → X with the
following property.

Define an X -valued, spreadable, two-dimensional random array
X f = 〈X f

s : s ∈
(N

2

)
〉 by setting for every s = {i < j} ∈

(N
2

)
,

X f
s := f (ξ∅, ξi , ξj , ξ{i,j})

where ξ∅, (ξi)i∈N, (ξs)s∈(N2) are i.i.d. Unif[0,1].

Then we have
X d

= X f .

(If X is exchangeable, then f is “middle-symmetric”, that is,
f (x , y , z,w) = f (x , z, y ,w).)



5.b. Aldous–Hoover–Kallenberg theorem:
three-dimensional case

Let X be a Polish space, and let X = 〈Xs : s ∈
(N

3

)
〉 be an

X -valued, spreadable, three-dimensional random array on N.
Then there exists a Borel function f : [0,1]8 → X with the
following property.

Define an X -valued, spreadable, three-dimensional random
array X f = 〈X f

s : s ∈
(N

3

)
〉 by setting for every

s = {i < j < k} ∈
(N

3

)
,

X f
s := f (ξ∅, ξi , ξj , ξk , ξ{i,j}, ξ{i,k}, ξ{j,k}, ξ{i,j,k})

where ξ∅, (ξi)i∈N, (ξt )t∈(N2), (ξs)s∈(N3) are i.i.d. Unif[0,1].

Then we have X d
= X f .



5.c. Aldous–Hoover–Kallenberg theorem:
general case

In general, a d-dimensional spreadable random arrays is
represented by a Borel function of 2d variables. (It is known
that the use of 2d variables is necessary, even for finite-valued
random arrays.)



6.a. The Fremlin–Talagrand decomposition

• Let X be a finite set with |X | > 2, and let d be a positive
integer.

• Let (Ω,Σ, µ) be a probability space, and let Ωd be equipped
with the product measure. We say that a collection
H = 〈ha : a ∈ X〉 of [0,1]-valued random variables on Ωd is an
X -partition of unity if 1Ωd =

∑
a∈X ha almost surely.

•With every X -partition of unity H we associate an X -valued,
spreadable, d-dimensional random array XH = 〈XH

s : s ∈
(N

d

)
〉

on N whose distribution satisfies the following: for every
nonempty finite subset F of

(N
d

)
and every collection (as)s∈F of

elements of X , we have

(∗) P
( ⋂

s∈F
[XH

s = as]
)

=

∫ ∏
s∈F

has (ωs) dµ(ω)

where µ stands for the product measure on ΩN and ωs denotes
the restriction of ω on the coordinates determined by s.



6.b. The Fremlin–Talagrand decomposition

• These distributions were considered by Fremlin and
Talagrand who showed that if “d = 2” and “X = {0,1}”, then
they are precisely the extreme points of the compact convex set
of all distributions of boolean, spreadable, two-dimensional
random arrays on N.

• This fact together with Choquet’s representation theorem
yield that the distribution of an arbitrary boolean, spreadable,
two-dimensional random array on N is a mixture of distributions
of the form (∗).



6.c. The Fremlin–Talagrand decomposition

• Instead of mixtures we will consider finite convex
combinations. Specifically, let J be a nonempty finite index set,
let λ = 〈λj : j ∈ J〉 be convex coefficients, and let
H = 〈Hj : j ∈ J〉 be X -partitions of unity.

• Given these data, we define an X -valued, spreadable,
d-dimensional random array Xλ,H = 〈Xλ,H

s : s ∈
(N

d

)
〉 on N

whose distribution satisfies

(∗)′ P
( ⋂

s∈F
[Xλ,H

s = as]
)

=
∑
j∈J

λj

∫ ∏
s∈F

has
j (ωs) dµj(ω)

for every nonempty finite subset F of
(N

d

)
and every collection

(as)s∈F of elements of X .



7.a. The main results — Part I

Theorem (D, Tyros, Valettas–2020; distributional
decomposition)
Let d ,m, k be positive integers with m > 2 and k > d, let
0 < ε 6 1, and set

C = C(d ,m, k , ε) := exp(2d)
(28 m7kd

ε2

)
where for every positive integer ` by exp(`)(·) we denote the `-th
iterated exponential.

Also let n > C be an integer, let X be a set with |X | = m, and
let X = 〈Xs : s ∈

([n]
d

)
〉 be an X -valued, (1/C)-spreadable,

d-dimensional random array on [n].



7.b. The main results — Part I

Theorem (distributional decomposition; cont’d)
Then there exist
• two nonempty finite sets J and Ω with |J|, |Ω| 6 C,
• convex coefficients λ = 〈λj : j ∈ J〉, and
• for every j ∈ J a probability measure µj on the set Ω and

an X -partition of unity Hj = 〈ha
j : a ∈ X〉 defined on Ωd

such that, setting H := 〈Hj : j ∈ J〉 and letting Xλ,H be as in
(∗)′, the following holds. If L is a subset of [n] with |L| = k, and
PL and QL denote the laws of the subarrays of Xand Xλ,H
determined by L respectively, then we have

ρTV(PL,QL) 6 ε.



7.c. The main results — Part II

Theorem (D, Tyros, Valettas–2020)
Let the parameters d ,m, k , ε and the constant C be as in the
previous theorem. Also let n, X , X be as in the previous
theorem.

Then there exists a Borel measurable function f : [0,1]d+1 → X
with the following property. Let X f = 〈X f

s : s ∈
(N

d

)
〉 be the

X -valued, spreadable,d-dimensional random array on N
defined by setting for every s = {i1 < · · · < id} ∈

(N
d

)
,

X f
s = f (ζ, ξi1 , . . . , ξid )

where (ζ, ξ1, . . . ) are i.i.d. Unif[0,1].

Then, for every subset L of [n] with |L| = k, denoting by PL and
QL the laws of the subarrays of X and X f determined by L
respectively, we have ρTV(PL,QL) 6 ε.



7.d. The main results — Part II

• Of course, the previous result is akin to the
Aldous–Hoover–Kallenberg representation theorem. The main
difference is that the number of variables which are needed in
order to represent the random array X is d + 1, while the
corresponding number of variables required by the
Aldous–Hoover–Kallenberg theorem is 2d .

• This particular information is a genuinely finitary
phenomenon, and it is important for the results related to
concentration which we will discuss shortly.



7.e. The main results — Part III

For finite, spreadable, high-dimensional random arrays with
square integrable entries we have a physical decomposition
which is in the spirit of the classical Hoeffding/Efron–Stein
decomposition.

It is less informative than the previous results, but this is offset
by the fact that it applies to a fairly large class of distributions
(including bounded, gaussian, subgaussian, etc.).



8.a. Ideas of the proof

Both proofs proceed by induction on d . We actually prove a
slightly stronger result which encompasses the previous
theorems and it is more amenable to an inductive scheme.
There are two basic steps in the proof.

Step 1. We approximate, in distribution, any finite-valued,
approximately spreadable random array by a random array of
“lower-complexity”. A similar approximation is used in the proof
of the Aldous–Hoover theorem. However, our argument is
technically different since we work with approximately
spreadable, instead of exchangeable, random arrays.

The notion of “complexity” which appears in this context is
related to the notion of “complexity” which appears in
hypergraph regularity (that is, in the development of the
regularity method for uniform hypergraphs). The relation was
first pointed out by Austin/Tao.



8.b. Ideas of the proof

Example (two-dimensional, boolean case)
We find a “large” subset L of [n], and a collection 〈Ai : i ∈ L〉 of
σ-algebras with the following property.

Define Y L = 〈Ys : s ∈
(L

2

)
〉 by setting for every s = {i < j} ∈

(L
2

)
,

Ys := E[Xs | Ai ∨ Aj ].

Then we have X L
d≈ Y L.



8.c. Ideas of the proof

Example (three-dimensional, boolean case)

We find a “large” subset L of [n], and a collection 〈At : t ∈
(L

2

)
〉

of σ-algebras with the following property.

Define Y L = 〈Ys : s ∈
(L

3

)
〉 by setting for every

s = {i < j < k} ∈
(L

3

)
,

Ys := E[Xs | A{i,j} ∨ A{i,k} ∨ A{j,k}].

Then we have X L
d≈ Y L.



8.d. Ideas of the proof

Step 2. We show that the laws of finite subarrays of the form (∗)
can be approximated, with arbitrary accuracy, by the laws of
subarrays of distributions of the form (∗) which are generated
by genuine partitions instead of partitions of unity.

More precisely, given an X -partition of unity H = 〈ha : a ∈ X〉
on a finite probability space (Ω, µ), a positive integer κ and
ε > 0, we find a finite probability space (Y , λ) and a partition
E = 〈Ea : a ∈ X〉 of Y d such that∣∣∣ ∫ ∏

s∈F
has (ωs) dµ(ω)−

∫ ∏
s∈F

1Eas (ys) dλ(y)
∣∣∣ 6 ε

for every nonempty subset F of
(N

d

)
with |F| 6 κ and every

collection (as)s∈F of elements of X .



8.e. Ideas of the proof

The proof of this step is based on a random selection of
uniform hypergraphs and basic properties of the box norms
introduced by Gowers.

(Recall that if d > 2 is an integer and (Ω,Σ, µ) is a probability
space, then for every h : Ωd → R we define its box norm ‖h‖�
by setting

‖h‖� :=
(∫ ∏

ε∈{0,1}d

h(ωε) dµ(ω)
)1/2d

where µ denotes the product measure on Ω2d and, for every
ω = (ω0

1, ω
1
1, . . . , ω

0
d , ω

1
d ) ∈ Ω2d and every

ε = (ε1, . . . , εd ) ∈ {0,1}d we have ωε := (ωε11 , . . . , ω
εd
d ) ∈ Ωd .)



9.a. Connection with concentration

Box independence condition: if X = 〈Xs : s ∈
([n]

2

)
〉, then for

every i , j , k , ` ∈ [n] with i < j < k < ` we have∣∣E[X{i,k}X{i,`}X{j,k}X{j,`}]−

− E[X{i,k}]E[X{i,`}]E[X{j,k}]E[X{j,`}]
∣∣ 6 6

C
.

i

j

k

`

X{i,k} X{i,`}

X{j,k} X{j,`}



9.b. Connection with concentration

On the other hand, from the representation theorem, for every
integer k > 4 and every ε > 0 there exist
• two nonempty finite sets J,Ω,
• convex coefficients λ = 〈λj : j ∈ J〉, and
• for every j ∈ J a probability measure µj on Ω, and a

function hj : Ω× Ω→ [0,1]

such that for every nonempty subset F of
([n]

2

)
with |F| 6 4,∣∣∣E[ ∏

s∈F
Xs

]
−
∑
j∈J

λj

∫ ∏
s∈F

hj(ωs) dµj(ω)
∣∣∣ 6 ε.



9.c. Connection with concentration

Set δ := E[X{1,2}]. Then the following are equivalent.

• X satisfies the box independence condition.

• For “almost every” j ∈ J we have
(i) E[hj ] ≈ δ, and
(ii) hj is box uniform, that is,

∥∥hj − E[hj ]
∥∥
� ≈ 0.

(Here, ‖ · ‖� denotes the corresponding box norm.)



Thanks again for listening!


