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1.a. Motivation/Overview

Concentration: a function which depends smoothly on its
variables is essentially constant, as long as the number of the
variables is large enough.

• (Gaussian concentration) Let G = (G1, . . . ,Gn) be a random
vector with independent standard normal entries. If
f : (Rn, ‖ · ‖2)→ R is 1-Lipschitz, then for any t > 0

P
(∣∣f (G)− E[f (G)]

∣∣ > t
)
6 C exp(−ct2).

• (Bounded differences inequality) Let X = (X1, . . . ,Xn) be a
random vector with independent entries which take values in a
Polish space X . Let f : X n → R be measurable, and for every
i ∈ [n] let ci > 0 be such that |f (x)− f (y)| 6 ci if x ,y ∈ X n

differ only in the i-th coordinate. Then for any t > 0

P
(∣∣f (X )− E[f (X )]

∣∣ > t
)
6 C exp

( −ct2

c2
1 + · · ·+ c2

n

)
.



1.b. Motivation/Overview

It is easy to see that this phenomenon is no longer valid if we
drop the smoothness assumption. Nevertheless:

• (D, Kanellopoulos, Tyros–2016) For every p > 1 and every
0 < ε 6 1, there exists a constant c > 0 with the following
property. If n > 2/c is an integer, X = (X1, . . . ,Xn) is a random
vector with independent entries which take values in a
measurable space X , and f : X n → R is a measurable function
with E[f (X )] = 0 and ‖f (X )‖Lp = 1, then there exists an interval
I of [n] with |I| > cn such that

P
(∣∣E[f (X ) | FI ]

∣∣ 6 ε
)
> 1− ε

where E[f (X ) | FI ] denotes the conditional expectation of f (X )
with respect to the σ-algebra FI := σ({Xi : i ∈ I}).



1.c. Motivation/Overview

• Roughly speaking, this result asserts that if a function of
several variables is sufficiently integrable, then, by integrating
out some coordinates, it becomes essentially constant.

• It was motivated by—and it has found several applications
in—problems in combinatorics. Most notably, it was used to
give a new proof of the density Hales–Jewett theorem.



2. Main goal

• In a nutshell, our main goal is to extend the previous
concentration estimate to functions of random vectors with not
necessarily independent entries.

•We will focus on high-dimensional random arrays whose
distribution is invariant under certain symmetries. The
motivation to study functions of symmetric random arrays is
related to an important combinatorial conjecture of Bergelson.



3. Random arrays

Definition (Random arrays, and their subarrays)
Let d be a positive integer, and let I be a set with |I| > d . A
d-dimensional random array on I is a stochastic process
X = 〈Xs : s ∈

( I
d

)
〉 indexed by the set

( I
d

)
of all d-element

subsets of I. If J is a subset of I with |J| > d , then the subarray
of X determined by J is the d-dimensional random array
X J := 〈Xs : s ∈

(J
d

)
〉; moreover, by FJ we shall denote the

σ-algebra σ({Xs : s ∈
(J

d

)
}) generated by X J .

One-dimensional random arrays are just random vectors;
two-dimensional random arrays are essentially the same as
random symmetric matrices, and their subarrays correspond to
principal submatrices. More generally, higher-dimensional
random arrays correspond to random symmetric tensors.



4.a. Notions of symmetry

Random arrays with a sufficiently symmetric distribution are a
classical object of study in probability: de Finetti,
Diaconis/Freedman, Aldous, Hoover, Kallenberg,
Fremlin/Talagrand, Austin/Tao,. . .

• A d-dimensional random array X = 〈Xs : s ∈
( I

d

)
〉 on I is

called exchangeable if for every (finite) permutation π of I, the
random arrays X and Xπ := 〈Xπ(s) : s ∈

( I
d

)
〉 have the same

distribution.

• A d-dimensional random array X on I is called spreadable if
for every pair J,K of finite subsets of I with |J| = |K | > d , the
subarrays X J and X K have the same distribution.

exhangeability ⇒ spreadability



4.b. Notions of symmetry

Definition (Approximate spreadability)
Let X be a d-dimensional random array on a (possibly infinite)
set I, and let η > 0. We say that X is η-spreadable provided
that for every pair J,K of finite subsets of I with |J| = |K | > d
we have

ρTV(PJ ,PK ) 6 η

where PJ and PK denote the laws of the random subarrays X J
and X K respectively, and ρTV stands for the total variation
distance.



4.c. Notions of symmetry

The following result—whose proof is a fairly straightforward
application of Ramsey’s theorem—shows that finite-valued,
approximately spreadable random arrays are ubiquitous.

Fact
For every triple m,n,d of positive integers with n > d, and
every η > 0, there exists an integer N > n with the following
property. If X is a set with |X | = m and X is an X -valued,
d-dimensional random array on a set I with |I| > N, then there
exists a subset J of I with |J| = n such that the random array
X J is η-spreadable.



5.a. A basic example

Example
Let n > d be positive integers, let ξ1, . . . , ξn be i.i.d. random
variables, and define a d-dimensional random array
X = 〈Xs : s ∈

([n]
d

)
〉 on [n] by setting

Xs :=
∏
i∈s

ξi .

• The random array X is always exchangeable and dissociated,
that is, for every pair J,K of disjoint subsets of [n] with
|J|, |K | > d , the subarrays X J and X K are independent. (But of
course, the entries of X are not independent.)

• Concentration estimates for linear (and, more generally,
smooth) functions of random arrays of this form, have been
studied by several authors (Latala, Adamczak/Wolff,
Götze/Sambale/Sinulis, Vershynin).



5.b. A basic example

• The previous example can be easily generalized. Specifically,
let n > d be positive integers, let ξ1, . . . , ξn be i.i.d. random
variables, let h : Rd → R be a Borel function, and define a
d-dimensional random array X = 〈Xs : s ∈

([n]
d

)
〉 on [n] by

setting for every s = {i1 < · · · < id} ∈
([n]

d

)
Xs := h(ξi1 , . . . , ξid ).

• These random arrays are spreadable and dissociated.

• As we shall see, the distribution of an arbitrary finite,
finite-valued, approximately spreadable, random array is a
mixture of distributions of random arrays of this form.



6.a. The main problem (in more detail)

Problem
Let n > d be positive integers, let X be a d-dimensional random
array on [n] whose entries take values in a measurable space
X , let f : X ([n]d ) → R be a measurable function, and assume that
E[f (X )] = 0 and ‖f (X )‖Lp = 1 for some p > 1. Under what
condition on X can we find a large subset I of [n] such that the
random variable E[f (X ) | FI ] is concentrated around its mean?

(Recall that FI denotes the σ-algebra generated by X I .)



6.b. The main problem (in more detail)

Two comments are in order here.

• The condition we are referring to should be fairly concrete, in
the sense that even its negation provides useful information on
the random array X .

• Secondly, note that we demand that the random variable f (X )
becomes concentrated after conditioning it on a subarray of X .
This is a fairly natural requirement in this context, and it is
essential for combinatorial applications.



7.a. The main result (two-dimensional, boolean case)

Theorem (D, Tyros, Valettas–2020)
Let 1 < p 6 2, let 0 < ε 6 1, let k > 2 be an integer, and set

C = C(p, ε, k) := exp
( 34
ε8(p − 1)2 · k

2
)
.

Also let n > C be an integer, let X = 〈Xs : s ∈
([n]

2

)
〉 be a

{0,1}-valued, (1/C)-spreadable, two-dimensional random
array on [n], and assume that

(∗)
∣∣E[X{1,3}X{1,4}X{2,3}X{2,4}]−

− E[X{1,3}]E[X{1,4}]E[X{2,3}]E[X{2,4}]
∣∣ 6 1

C
.



7.b. The main result (two-dimensional, boolean case)

Theorem (cont’d)

Then for every function f : {0,1}([n]2 ) → R with E[f (X )] = 0 and
‖f (X )‖Lp = 1 there exists an interval I of [n] with |I| = k and
such that

P
(∣∣E[f (X ) | FI ]

∣∣ 6 ε
)
> 1− ε.



8.a. The box independence condition

Condition (∗) together with the (1/C)-spreadability of X imply
that for every i , j , k , ` ∈ [n] with i < j < k < ` we have

(∗)′
∣∣E[X{i,k}X{i,`}X{j,k}X{j,`}]−

− E[X{i,k}]E[X{i,`}]E[X{j,k}]E[X{j,`}]
∣∣ 6 6

C
.

i

j

k

`

X{i,k} X{i,`}

X{j,k} X{j,`}



8.b. The box independence condition

• Though not obvious at first sight, as the parameter C gets
bigger, condition (∗)′ forces the random variables
X{i,k},X{i,`},X{j,k},X{j,`} to behave independently. (It also
implies that the correlation matrix of X is close to the identity.)

•We also note that (∗)′ is, essentially, an optimal condition.
Specifically, for every integer n > 4 there exist:
— a boolean, exchangeable, two-dimensional random array X

on [n], and

— a translated multilinear polynomial f : R(
[n]
2 ) → R of degree

4 with E[f (X )] = 0 and ‖f (X )‖L∞ 6 1,
such that the correlation matrix of X is the identity and the
random variable f (X ) is not conditionally concentrated. (And, of
course, X does not satisfy condition (∗)′.)



9. Higher-dimensional extensions

• Analogous concentration estimates hold true for
d-dimensional, finite-valued, approximately spreadable,
random arrays for any positive integer d .

• In the higher-dimensional case, we can find an interval I of [n]
of size

|I| ≈ d
√

log n.

• As expected, the higher-dimensional version of the “box
independence condition” is also optimal.



10.a. Ideas of the proof

The proof proceeds in two steps.

Step 1. It is based on an energy increment strategy, and it uses
estimates for martingale difference sequences in Lp spaces. It
applies to random arrays with arbitrary distributions (in
particular, not necessarily approximately spreadable), and it
shows that the conditional concentration of f (X ) is equivalent to
an approximate form of the dissociativity of X .

The main advantage of this step is that it enables us to forget
about the function f and focus exclusively on the random
array X .



10.b. Ideas of the proof

Step 2. We show that the “box independence condition”
propagates and forces all, not too large, subarrays of X to
behave independently.

This is analogous to the phenomenon, discovered in the theory
of quasi-random graphs (Thomason, Chung/Graham/Wilson,
Rödl, Gowers,. . . ), that a graph G which contains (roughly) the
expected number of 4-cycles must also contain the expected
number of any other, not too large, graph H.

In fact, this is more than an analogy; this step easily yields the
aforementioned property of quasi-random graphs. We shall
discuss further the relation between the “box independence
condition” and quasi-randomness of graphs and hypergraphs
next week.



10.c. Ideas of the proof

The proof of the second step proceeds by induction on the
dimension d . The argument is based on repeated averaging
and an appropriate version of the weak law of large numbers in
order to gradually upgrade the box independence condition.
The combinatorial heart of the matter lies in the selection of this
averaging. (Looks like playing bricks for kids.)



Thanks for listening!


