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The space of all bounded linear operators T : H — H on a Hilbert
space H is denoted B(#H). It is complete under the norm

Tl = sup{[Imxl - x € ba(H)}

(b1(X) the closed unit ball of a normed space X) and is an algebra
under composition. Moreover, because it acts on a Hilbert space, it has
additional structure: an involution T — T* defined via

(T"'x,y) = (x,Ty) foralix,y € H.

This satisfies
T*1|| = ||T||? the C* property.
|
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These fundamental properties of B(H) (norm-completeness, involution,
C* property) motivate the definition of an abstract C*-algebra.
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Definition
(a) A Banach algebra A is a complex algebra equipped with a
complete norm which is sub-multiplicative:

llab|| < ||l [|p]| foral a,b € A.

(b) An involution is a map on A such that

(a+ Ab)* = a* + \b*, (ab)* = b*a*, a** = afordlla,b € Aand
A e C.

(¢) A C*-algebra A is a Banach algebra equipped with an involution
a — a* satisfying the C*-condiition

la*all = ||all? forall a € A.
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If A has a unit 1 then necessarily 1* = 1 and ||1]| = 1.

If Ais a C*-algebra let
A=A C

(a,z)(b,w) =: (ab+ wa + zb, zw)
(a,2)" =: (a",2)
|(a,z)|| =: sup{||jab+ zb|| : b € by A}

Thus the norm of A™ is defined by identifying each (a, z) € A™ with
the operator L,y : A — A : b — ab + zb acting on the Banach
space A.
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C? with norm
GG =[x+ Iyl

is not a C*-algebra.
[a*all = [I(0, (L, DI =110, 1) =2

lal® =101, 1)]* = 4
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A morphism ¢ : A — B between C*-algebras is a linear map that
preserves products and the involution.
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o C, the set of complex numbers.

@ C(K), the set of all continuous functions f : K — C, where K sa

compact Hausdorff space. With pointwise operations, f*(1) = ()
and the sup norm, C(K) is an abelian, unital algebra.

° CO(X ) where X is a locally compact Hausdorff space. This consists
of all functions f : X — C which are continuous and ‘vanish at
infinity”: given € > 0 there is a compact K¢ . C X such that
|f(x)| < e forall x ¢ K .. With the same operations and norm as
above, this is an abelian C*-algebra.
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@ M,(C), the set of all n X n matrices with complex entries. With
matrix operations, A* = conjugate transpose, and
|All = sup{||Ax||, : x € £2(n), ||x||, = 1}. this is a non-abelian,
unital algebra.

e B(H) is a non-abelian, unital C*-algebra.

o C(H) ={A € B(H) : A(b1(H)) compactin H}: the compact
operators. This is a closed selfadjoint subalgebra of B(#), hence a
C*-algebra.
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If X is an index set and .4 is a C*-algebra, the Banach space (>°(X, A)
of all bounded functions a : X — A (with norm

lallo = sup{|la(x)|| 4 : x € X}) becomes a C*-algebra with
pointwise product and involution.

Its subspace cp(X, . A) consisting of all a : X — A such that

lim |la(x)|| 4 = Ois a C*-algebra. (for each € > 0 there is a finite
X—r00

subset X. C Xst.x ¢ X. = [la(x)]| 4 < &.
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If X is a locally compact Hausdorff space then Cy(X, A) is the
*-subalgebra of £>°(X, .A) consisting of continuous bounded functions.
It is closed, hence a C*-algebra. (This is denoted C(X,.A) when X is
compact.)

The C*-algebra Co(X, .A) consists of those f € Cp(X,.A) which ‘vanish
at infinity”, i.e. such that the function t — ||f(t)]| 4 is in Co(X).
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Consider subsets of the Cartesian product H A, of a family of
C*-algebras:

(@) The direct sum A; @ - - - @ A, of C*-algebras is a C*-algebra under
pointwise operations and involution and the norm

(e - -5 an)ll = max{flan][ ;... [[anl[}-

(i) Let {.A;} be a family of C*-algebras. Their direct product or

¢>°-direct sum €D o Aj is the subset of the Cartesian product [ [ A;
consisting of all (a;) € [[.A; such that i — [|ai| 4, is bounded. It is a
C*-algebra under pointwise operations and involution and the norm

(@)l = sup{llaill 4, : 1€ 1}
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(i) The direct sum or co-direct sum P, A of a family {A;} of
C*-algebras is the closed selfadjoint subalgebra of their direct product
consisting of all (a;) € [ [ A; such that i — [|ai| 4, vanishes at infinity.
In case A; = A for all i, the direct product is just £°°(1, .A) and the
direct sum is co(X, A).
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If Ais a C*-algebra and n € N, the space M,(.A) of all matrices [aj]
with entries a; € A becomes a *-algebra with product [a;][b;] = [¢]
where ¢; = ), axby and involution [g;]* = [d;] where dj = af.

Define a norm on M, (.A) satisfying the C*-condition.
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Suppose A is Co(X). Identify M,(Co(X)) with Co(X, Mp). i.e. My-valued
continuous functions on X vanishing at infinity: each matrix

[f]] € Ma(Co(X)) defines a function F : X — M, : x — [f;(x)] which is
continuous with respect to the norm on M,,. Conversely, if F : X — M, is
continuous, then its entries f; given by f;(x) = (F(x)e;, &) forman n x n
matrix of continuous functions.

Define

111 = IFllee = sup{lIFC) Iy, : x € X}

This satisfies the C*-condition, because the norm on M, satisfies the
C*-condition.
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Suppose A is B(H) for some Hilbert space H. Identify M,(B(H)) with
B(H"): Given a matrix [ay] of bounded operators a; on H, we define
an operator A on H" by

& Z,- aé;
Al :

én Zj .anjfj

Conversely any A € B(H") defines an n x n matrix of operators aj on
H by (€, 1) 4, = (A&, Mi)4n. Where & € H" is the vector having & at
the j-th entry and zeroes elsewhere (and 7); is defined analogously).

M. Anoussis C* -algebras



C* -algebras

C*-algebras

Hence one defines the norm ||[q;]|| of [a;] € M.(B(H)) to be the
norm ||Al|| of the corresponding operator on H".

o] ] - lecta)

This applies also if A is a C*-subalgebra of B(H).

Forn=2:
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Definition
A unital C*-algebra and GL(.A) the group of invertible elements of A.
The spectrum of an element a € A is

ola)=ca(a)={AeC: N1 —-a¢ GL(A)}.
If A is non-unital, the spectrum of a € A is defined by

o(a) = o4~(a).

In this case, necessarily 0 € o(a).
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o A= M,(C)and a € A, then o(A) is the set of eigenvalues of A.
e A=C([0,1]) and f € A, then:

f — A1 invertible < f(x) — A1(x) # 0, Vx

< f(x) — A1 #0,Vx & X # f(x), Vx.

= o(f) = {f(x) : x € [0,1]}

M. Anoussis C* -algebras



The spectrum

The spectrum

Proposition

The spectrum o(a) is @ compact nonempty subset of C.

0 o(a) is bounded: In a unital C*-algebra, if ||x|| < 1 then since
STIXM < ST Ix]|". the series > x™ converges absolutely, and so
converges to an element y such that (1 — x)y = y(1 — x) = 1 and

(1 —x) € GL(A).
If a € Aand A € C satisfies |A| > ||a|| then:

121 <1=1- 2 is invertibl
- — — 1s 1mveruple
A A

= A1 — a is invertible = \ ¢ o(a)

and the spectrum is bounded by ||all.
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(i) o(a) is closed: GL(.A) is open. If [[1 — x|| < 1then x € GL(A). Let
a € GL(A). Thus 1 is an interior point of GL(.A). The map x — ax is a
homeomorphism of GL(.A) (with inverse y — a~'y) and sends 1 1o a,
hence a € GL(.A) is an interior point of GL(.A).
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(i) o(a) is nonempty: This is proved by contradiction: one shows that
for each ¢ in the Banach space dual of A, the function

f: A — ¢((A\1 — a)™') is analytic on its domain C \ o(a) and

lim| 500 F(A) = 0: 50 if (@) were empty, this function would be
analytic on C and vanishing at infinity, hence would be zero by

Liouville’s theorem; hence ¢(a™') = f(0) = O for all ¢, which is absurd
by Hahn-Banach.
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The map x — x ™ is continuous (hence a homeomorphism) on GL(.A).

Let a,b € GL(A). Then
[ b”H =|[o7 (b= a)a”"||
_H b1 _ g —1 . ) —1+a—1 —1H
<|[jp™" =o' Hb—oll la™ |+ [la™ [P llo = al
hence
la = (0 = lo—all [a7'[) < [l | llo - al.
It follows that

lim Hb _1H =0. O
b—a
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The spectral radius of a € A is defined to be

p(a) = sup{|A| : A € o(a)}.

It satisfies p(a) < ||a||, but equality may fail. In fact, it can be shown
that
pla) = lim [lo"] "
n

This is the Gelfand-Beurling formula.
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Ifa = a* then p(a) = sup{|A| : A € o(a)} = ||al.

proof
llall? = ||e?|| and inductively ||a||?” = ||a®’|| for all n. Thus, by the
Gelfand - Beurling formula, p(a) = lim ||a®’ 2" = lal. O

M. Anoussis C* -algebras



The spectrum

The spectrum

A morphism 7 : A — B is contractive (i.e. |r(a)| < ||al| forall

ac A).

proof If x,y € Aand xy = 1= m(x)n(y) = 1.

a — Al invertible implies 7(a) — A1 invertible and hence,
o(m(a) C o(a) and hence p(m(a)) < p(a).

()| = [l (a) m(a)]

= |[n(a"a)|l = p(n(a"a)) < p(a*a) = |la"al| = ||a|®
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An element a € A is said to be normal if a*a = aa®, selfadjoint if
a = a* and unitary if (A is unital and) u*u = 1 = wu*.

Proposition

Ma=a" = o(a) CR
(i) a = b*b = o(a) CRT
(i) *u=1=uw* = o(u) CT.
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Gelfand theory for commmutative C*-algebras

Theorem

(Gelfand-Naimark 1) Every commutative C*-algebra A is isometrically
*isomorphic to Co(A) where A is the set of nonzero morphisms
¢ : A — C which, equipped with the topology of pointwise
convergence, is a locally compact Hausdorff space. For each a € A
the function & : A — C : ¢ — ¢(a) isin Co(A). The Gelfand
fransform:

A— Co(A): a—a

is an isometric *-isomorphism. The space /Al is compact if and only if A is
unital.
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commutative C*-algebras

A unital.

-] .,2{ is the set of all nonzero multiplicative linear forms ( characters)
¢p: A—C.
#(1)2 = ¢(1) = ¢(1) = 1 (forif #(1) = 0 then
¢(a) = ¢(al) = 0 for all a, a contradiction).
Each ¢ € A satisfies ||¢]| < 1and ||¢|| = ¢(1) = 1. The topology
on A is pointwise convergence: ¢; — ¢ iff ¢(a) — ¢(a) for all
ac A
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e The inequality |¢(a)| < ||a|| shows that A is contained in the
space [Ny 4D,, the Cartesian product of the compact spaces
Dy = {z € C: |z| < ||a||}: and the product topology is the
topology of pointwise convergence.

A'is closed in this product: if ¢; — 1 pointwise, then it is clear that
1) is linear and multiplicative, because each ¢; is linear and
multiplicative, and 1) # 0 because ¥(1) = lim; ¢;(1) = 1; thus

P € A
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@ The Gelfand map G : a — a. For each a € A the function
a: A= C where &(¢) = d(a), (¢ € A)

is continuous by the definition of the topology on /Al This gives a
well defined map

G:A—-Cc(Ad):a—a.

If a,b € A, since each ¢ € A'is linear, multiplicative and
*-preserving, we have

(a+b)(¢) = d(a+b) = ¢(a) + ¢(b) = a(¢) + B(9)
(ab)(8) = ¢(ab) = ¢(a)(b) = &(¢)B(9)

—

(a)(¢) = ¢(a*) = ¢(a) = &(¢)
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therefore

G(a+b) = G(a)+G(b), G(ab) =G(a)g(b) and G(a") = (G(a))"

a(¢) = ¢(a) = [[a(d)|| < ¢l llall = llall < [lall

It can be seen that G is isometric.
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o The Gelfand map is onto C(A). Consider the range G(A): it is a
*subalgebra of C(.A), because G is a *-homomorphism. It
contains the constants, because G(1) = 1. It separates the points
of A, because if ORVNS A are different, they must differ at some

aec A, so

G(a)(¢) = é(a) # ¥(a) = G(a)(¥).

By the Stone -- Weierstrass Theorem, G(.A) must be dense in C(A).
But it is closed, since A is complete and G is isometric. Hence

G(A) = C(A). O
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When A is abelian but non-unital every ¢ € A extends uniquely to a
character ¢™ € A~ by ¢~ (1) = 1, and there is exactly one ¢ € A~
that vanishes on A. Thus A is *-isomorphic the algebra of those
continuous functions on the ‘one-point compactification’ fl U {qboo} of
A which vanish at ¢ this algebra is in fact isomorphic to Co(.A).
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Example

co the space of sequences converging to 0.
on:co— C, pn((ak)) = an. Then & ~ N.

(¢n) converges pointwise to the zero character, since

Iirr1n on((ak)) = Iirr1n a, =0.

Thus, & is not compact.

M. Anoussis C* -algebras



Gelfand theory for commutative C*-algebras

commutative C*-algebras

Example
Consider the unitization ¢ of cg which is the space of convergent
sequences.

Extend ¢, to ¢ by the same formula ¢ ((ak)) = an.

A new nonzero character appears: ¢oo((ax)) = lim(ay).
This is the pointwise limit of the ¢, since

im 67/((01) = lim(an) = dxc((n))

¢ is the one point compactification of N.
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When A is non-abelian there may be no characters. My(C) has no
ideals, hence the only character is the trivial one.
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