M. Anoussis

October 2020

2 The spectrum

3 Gelfand theory for commutative C*-algebras

The space of all bounded linear operators $T:\mathcal{H}\to\mathcal{H}$ on a Hilbert space \mathcal{H} is denoted $\mathcal{B}(\mathcal{H})$. It is complete under the norm

$$||T|| = \sup\{||Tx|| : x \in \mathbf{b}_1(\mathcal{H})\}$$

($b_1(\mathcal{X})$ the closed unit ball of a normed space \mathcal{X}) and is an algebra under composition. Moreover, because it acts on a Hilbert space, it has additional structure; an *involution* $T \to T^*$ defined via

$$\langle T^*x,y\rangle=\langle x,Ty\rangle$$
 for all $x,y\in\mathcal{H}$.

This satisfies

$$||T^*T|| = ||T||^2$$
 the C^* property.

These fundamental properties of $\mathcal{B}(\mathcal{H})$ (norm-completeness, involution, C^* property) motivate the definition of an abstract C^* -algebra.

Definition

(a) A Banach algebra $\mathcal A$ is a complex algebra equipped with a complete norm which is sub-multiplicative:

$$||ab|| \le ||a|| \, ||b||$$
 for all $a, b \in A$.

- **(b)** An involution is a map on $\mathcal A$ such that $(a+\lambda b)^*=a^*+\bar\lambda b^*,\ (ab)^*=b^*a^*,\ a^{**}=a$ for all $a,b\in\mathcal A$ and $\lambda\in\mathbb C$.
- (c) A C^* -algebra $\mathcal A$ is a Banach algebra equipped with an involution $a \to a^*$ satisfying the C^* -condition

$$\|a^*a\| = \|a\|^2$$
 for all $a \in \mathcal{A}$.

If $\mathcal A$ has a unit 1 then necessarily $\mathbf 1^*=\mathbf 1$ and $\|\mathbf 1\|=1$.

Definition

If ${\mathcal A}$ is a C*-algebra let

$$\mathcal{A}^{\sim} =: \mathcal{A} \oplus \mathbb{C}$$
$$(a,z)(b,w) =: (ab + wa + zb, zw)$$
$$(a,z)^* =: (a^*, \overline{z})$$
$$\|(a,z)\| =: \sup\{\|ab + zb\| : b \in b_1 \mathcal{A}\}$$

Thus the norm of \mathcal{A}^{\sim} is defined by identifying each $(a,z) \in \mathcal{A}^{\sim}$ with the operator $L_{(a,z)}: \mathcal{A} \to \mathcal{A}: b \to ab+zb$ acting on the Banach space \mathcal{A} .

 \mathbb{C}^2 with norm

$$||(x,y)|| = |x| + |y|$$

is not a C^* -algebra.

$$\|a^*a\| = \|(1,1)(1,1)\| = \|(1,1)\| = 2$$

$$\|a\|^2 = \|(1,1)\|^2 = 4$$

A morphism $\phi:\mathcal{A}\to\mathcal{B}$ between C*-algebras is a linear map that preserves products and the involution.

- ullet C, the set of complex numbers.
- C(K), the set of all continuous functions $f:K\to\mathbb{C}$, where K is a compact Hausdorff space. With pointwise operations, $f^*(t)=\overline{f(t)}$ and the sup norm, C(K) is an abelian, unital algebra.
- $C_0(X)$, where X is a locally compact Hausdorff space. This consists of all functions $f:X\to\mathbb{C}$ which are continuous and 'vanish at infinity': given $\varepsilon>0$ there is a compact $K_{f,\varepsilon}\subseteq X$ such that $|f(x)|<\varepsilon$ for all $x\notin K_{f,\varepsilon}$. With the same operations and norm as above, this is an abelian C*-algebra.

- $M_n(\mathbb{C})$, the set of all $n \times n$ matrices with complex entries. With matrix operations, $A^* = \text{conjugate transpose}$, and $\|A\| = \sup\{\|Ax\|_2 : x \in \ell^2(n), \|x\|_2 = 1\}$, this is a non-abelian, unital algebra.
- $\mathcal{B}(\mathcal{H})$ is a non-abelian, unital C*-algebra.
- $\mathcal{K}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) : \overline{A(b_1(\mathcal{H}))} \text{ compact in } \mathcal{H}\}$: the compact operators. This is a closed selfadjoint subalgebra of $\mathcal{B}(\mathcal{H})$, hence a C*-algebra.

If X is an index set and \mathcal{A} is a C*-algebra, the Banach space $\ell^\infty(X,\mathcal{A})$ of all bounded functions $a:X\to\mathcal{A}$ (with norm $\|a\|_\infty=\sup\{\|a(x)\|_\mathcal{A}:x\in X\}$) becomes a C*-algebra with pointwise product and involution. Its subspace $c_0(X,\mathcal{A})$ consisting of all $a:X\to\mathcal{A}$ such that $\lim_{x\to\infty}\|a(x)\|_\mathcal{A}=0$ is a C*-algebra. (for each $\varepsilon>0$ there is a finite subset $X_\varepsilon\subseteq X$ s.t. $x\notin X_\varepsilon\Rightarrow\|a(x)\|_\mathcal{A}<\varepsilon$).

If X is a locally compact Hausdorff space then $C_b(X,\mathcal{A})$ is the *-subalgebra of $\ell^\infty(X,\mathcal{A})$ consisting of continuous bounded functions. It is closed, hence a C*-algebra. (This is denoted $C(X,\mathcal{A})$ when X is compact.)

The C*-algebra $C_0(X, \mathcal{A})$ consists of those $f \in C_b(X, \mathcal{A})$ which `vanish at infinity', i.e. such that the function $t \to ||f(t)||_{\mathcal{A}}$ is in $C_0(X)$.

Consider subsets of the Cartesian product $\prod A_i$ of a family of C*-algebras:

(i) The direct sum $\mathcal{A}_1\oplus\cdots\oplus\mathcal{A}_n$ of C*-algebras is a C*-algebra under pointwise operations and involution and the norm

$$\|(a_1,\ldots,a_n)\|=\max\{\|a_1\|,\ldots,\|a_n\|\}.$$

(ii) Let $\{\mathcal{A}_i\}$ be a family of C*-algebras. Their direct product or ℓ^{∞} -direct sum $\bigoplus_{\ell^{\infty}} \mathcal{A}_i$ is the subset of the Cartesian product $\prod \mathcal{A}_i$ consisting of all $(a_i) \in \prod \mathcal{A}_i$ such that $i \to \|a_i\|_{\mathcal{A}_i}$ is bounded. It is a C*-algebra under pointwise operations and involution and the norm

$$||(a_i)|| = \sup\{||a_i||_{A_i} : i \in I\}$$

(iii) The direct sum or c_0 -direct sum $\bigoplus_{c_0} \mathcal{A}_i$ of a family $\{\mathcal{A}_i\}$ of C*-algebras is the closed selfadjoint subalgebra of their direct product consisting of all $(a_i) \in \prod \mathcal{A}_i$ such that $i \to \|a_i\|_{\mathcal{A}_i}$ vanishes at infinity. In case $\mathcal{A}_i = \mathcal{A}$ for all i, the direct product is just $\ell^\infty(I,\mathcal{A})$ and the direct sum is $c_0(X,\mathcal{A})$.

If \mathcal{A} is a C*-algebra and $n \in \mathbb{N}$, the space $M_n(\mathcal{A})$ of all matrices $[a_{ij}]$ with entries $a_{ij} \in \mathcal{A}$ becomes a *-algebra with product $[a_{ij}][b_{ij}] = [c_{ij}]$ where $c_{ij} = \sum_k a_{ik} b_{kj}$ and involution $[a_{ij}]^* = [d_{ij}]$ where $d_{ij} = a_{ji}^*$.

Define a norm on $M_n(A)$ satisfying the C*-condition.

Suppose \mathcal{A} is $C_0(X)$. Identify $M_n(C_0(X))$ with $C_0(X,M_n)$, i.e. M_n -valued continuous functions on X vanishing at infinity: each matrix $[f_{ij}] \in M_n(C_0(X))$ defines a function $F: X \to M_n: x \to [f_{ij}(x)]$ which is continuous with respect to the norm on M_n . Conversely, if $F: X \to M_n$ is continuous, then its entries f_{ij} given by $f_{ij}(x) = \langle F(x)e_j, e_i \rangle$ form an $n \times n$ matrix of continuous functions.

Define

$$||[f_{ij}]|| = ||F||_{\infty} = \sup\{||F(x)||_{M_n} : x \in X\}.$$

This satisfies the C*-condition, because the norm on M_n satisfies the C*-condition.

Suppose \mathcal{A} is $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . Identify $M_n(\mathcal{B}(\mathcal{H}))$ with $\mathcal{B}(\mathcal{H}^n)$: Given a matrix $[a_{ij}]$ of bounded operators a_{ij} on \mathcal{H} , we define an operator A on \mathcal{H}^n by

$$A\begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} = \begin{bmatrix} \sum_j a_{1j} \xi_j \\ \vdots \\ \sum_j a_{nj} \xi_j \end{bmatrix}$$

Conversely any $A \in \mathcal{B}(\mathcal{H}^n)$ defines an $n \times n$ matrix of operators a_{ij} on \mathcal{H} by $\langle a_{ij} \xi, \eta \rangle_{\mathcal{H}} = \langle A \xi_j, \eta_i \rangle_{\mathcal{H}^n}$, where $\xi_j \in \mathcal{H}^n$ is the vector having ξ at the *j*-th entry and zeroes elsewhere (and η_i is defined analogously).

Hence one defines the norm $||[a_{ij}]||$ of $[a_{ij}] \in M_n(\mathcal{B}(\mathcal{H}))$ to be the norm ||A|| of the corresponding operator on \mathcal{H}^n .

For n=2:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} A\xi + B\eta \\ C\xi + D\eta \end{bmatrix}$$

This applies also if A is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$.

Definition

 $\mathcal A$ unital C*-algebra and $GL(\mathcal A)$ the group of invertible elements of $\mathcal A$. The spectrum of an element $a\in\mathcal A$ is

$$\sigma(a) = \sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \notin GL(\mathcal{A})\}.$$

If ${\mathcal A}$ is non-unital, the spectrum of $a\in {\mathcal A}$ is defined by

$$\sigma(a) = \sigma_{\mathcal{A}^{\sim}}(a).$$

In this case, necessarily $0 \in \sigma(a)$.

Examples

- $\mathcal{A} = M_n(\mathbb{C})$ and $a \in \mathcal{A}$, then $\sigma(A)$ is the set of eigenvalues of A.
- $\mathcal{A} = C([0,1])$ and $f \in \mathcal{A}$, then:

$$f - \lambda \mathbf{1}$$
 invertible $\Leftrightarrow f(x) - \lambda \mathbf{1}(x) \neq 0, \forall x$

$$\Leftrightarrow f(x) - \lambda 1 \neq 0, \forall x \Leftrightarrow \lambda \neq f(x), \forall x.$$

$$\Rightarrow \sigma(f) = \{f(x) : x \in [0, 1]\}$$

Proposition

The spectrum $\sigma(a)$ is a compact nonempty subset of $\mathbb C$.

(i) $\sigma(a)$ is bounded: In a unital C*-algebra, if ||x|| < 1 then since $\sum ||x^n|| \le \sum ||x||^n$, the series $\sum x^n$ converges absolutely, and so converges to an element y such that (1-x)y = y(1-x) = 1 and $(1-x) \in GL(\mathcal{A})$.

If $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$ satisfies $|\lambda| > ||a||$ then:

$$\|\frac{\sigma}{\lambda}\| < 1 \Rightarrow 1 - \frac{\sigma}{\lambda}$$
 is invertible

$$\Rightarrow \lambda \mathbf{1} - a$$
 is invertible $\Rightarrow \lambda \notin \sigma(a)$

and the spectrum is bounded by ||a||.

(ii) $\sigma(a)$ is closed: $GL(\mathcal{A})$ is open. If $||\mathbf{1} - x|| < 1$ then $x \in GL(\mathcal{A})$. Let $a \in GL(\mathcal{A})$. Thus $\mathbf{1}$ is an interior point of $GL(\mathcal{A})$. The map $x \to ax$ is a homeomorphism of $GL(\mathcal{A})$ (with inverse $y \to a^{-1}y$) and sends $\mathbf{1}$ to a, hence $a \in GL(\mathcal{A})$ is an interior point of $GL(\mathcal{A})$.

(iii) $\sigma(a)$ is nonempty: This is proved by contradiction: one shows that for each ϕ in the Banach space dual of \mathcal{A} , the function $f:\lambda\to\phi((\lambda\mathbf{1}-a)^{-1})$ is analytic on its domain $\mathbb{C}\setminus\sigma(a)$ and $\lim_{|\lambda|\to\infty}f(\lambda)=0$; so if $\sigma(a)$ were empty, this function would be analytic on \mathbb{C} and vanishing at infinity, hence would be zero by Liouville's theorem; hence $\phi(a^{-1})=f(0)=0$ for all ϕ , which is absurd by Hahn-Banach.

Lemma

The map $x \to x^{-1}$ is continuous (hence a homeomorphism) on GL(A).

Let $a, b \in GL(A)$. Then

$$||a^{-1} - b^{-1}|| = ||b^{-1}(b - a)a^{-1}||$$

$$= ||(b^{-1} - a^{-1})(b - a)a^{-1} + a^{-1}(b - a)a^{-1}||$$

$$\leq ||b^{-1} - a^{-1}|| ||b - a|| ||a^{-1}|| + ||a^{-1}||^{2} ||b - a||$$

hence

$$\|a^{-1} - b^{-1}\| (1 - \|b - a\| \|a^{-1}\|) \le \|a^{-1}\|^2 \|b - a\|.$$

It follows that

$$\lim_{b \to a} ||b^{-1} - a^{-1}|| = 0.$$

The spectral radius of $a \in \mathcal{A}$ is defined to be

$$\rho(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\}.$$

It satisfies $\rho(a) \leq \|a\|$, but equality may fail. In fact, it can be shown that

$$\rho(a) = \lim_{n} \|a^n\|^{1/n}$$

This is the Gelfand-Beurling formula.

Lemma

If
$$a = a^*$$
 then $\rho(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\} = \|a\|$.

proof

$$\|a\|^2 = \|a^2\|$$
 and inductively $\|a\|^{2^n} = \|a^{2^n}\|$ for all n . Thus, by the Gelfand - Beurling formula, $\rho(a) = \lim_{n \to \infty} \|a^{2^n}\|^{2^{-n}} = \|a\|$.

Theorem

A morphism $\pi:\mathcal{A}\to\mathcal{B}$ is contractive (i.e. $\|\pi(a)\|\leq \|a\|$ for all $a\in\mathcal{A}$).

proof If
$$x, y \in \mathcal{A}$$
 and $xy = 1 \Rightarrow \pi(x)\pi(y) = 1$.

 $a-\lambda 1$ invertible implies $\pi(a)-\lambda 1$ invertible and hence, $\sigma(\pi(a)\subseteq\sigma(a)$ and hence $\rho(\pi(a))\leq\rho(a)$.

$$\|\pi(a)\|^2 = \|\pi(a)^*\pi(a)\|$$

= $\|\pi(a^*a)\| = \rho(\pi(a^*a)) \le \rho(a^*a) = \|a^*a\| = \|a\|^2$

An element $a \in \mathcal{A}$ is said to be normal if $a^*a = aa^*$, selfadjoint if $a = a^*$ and unitary if (\mathcal{A} is unital and) $u^*u = \mathbf{1} = uu^*$.

Proposition

(i)
$$a = a^* \Longrightarrow \sigma(a) \subseteq \mathbb{R}$$

(ii)
$$a = b^*b \Longrightarrow \sigma(a) \subseteq \mathbb{R}^+$$

(iii)
$$u^*u = 1 = uu^* \Longrightarrow \sigma(u) \subseteq \mathbb{T}$$
.

Gelfand theory for commutative C*-algebras

Theorem

(Gelfand-Naimark 1) Every commutative C*-algebra $\mathcal A$ is isometrically *-isomorphic to $C_0(\hat{\mathcal A})$ where $\hat{\mathcal A}$ is the set of nonzero morphisms $\phi:\mathcal A\to\mathbb C$ which, equipped with the topology of pointwise convergence, is a locally compact Hausdorff space. For each $a\in\mathcal A$ the function $\hat{a}:\hat{\mathcal A}\to\mathbb C:\phi\to\phi(a)$ is in $C_0(\hat{\mathcal A})$. The Gelfand transform:

$$\mathcal{A}
ightarrow \mathcal{C}_0(\hat{\mathcal{A}}): a
ightarrow \hat{a}$$

is an isometric *-isomorphism. The space $\hat{\mathcal{A}}$ is compact if and only if \mathcal{A} is unital.

${\cal A}$ unital.

• $\hat{\mathcal{A}}$ is the set of all nonzero multiplicative linear forms (characters) $\phi: \mathcal{A} \to \mathbb{C}$. $\phi(\mathbf{1})^2 = \phi(\mathbf{1}) \Rightarrow \phi(\mathbf{1}) = 1$ (for if $\phi(\mathbf{1}) = 0$ then $\phi(a) = \phi(a\mathbf{1}) = 0$ for all a, a contradiction). Each $\phi \in \hat{\mathcal{A}}$ satisfies $\|\phi\| \leq 1$ and $\|\phi\| = \phi(\mathbf{1}) = 1$. The topology on $\hat{\mathcal{A}}$ is pointwise convergence: $\phi_i \to \phi$ iff $\phi_i(a) \to \phi(a)$ for all $a \in \mathcal{A}$.

• The inequality $|\phi(a)| \leq ||a||$ shows that $\hat{\mathcal{A}}$ is contained in the space $\Pi_{a \in \mathcal{A}} \mathbb{D}_a$, the Cartesian product of the compact spaces $\mathbb{D}_a = \{z \in \mathbb{C} : |z| \leq ||a||\}$; and the product topology is the topology of pointwise convergence.

 $\hat{\mathcal{A}}$ is closed in this product: if $\phi_i \to \psi$ pointwise, then it is clear that ψ is linear and multiplicative, because each ϕ_i is linear and multiplicative, and $\psi \neq 0$ because $\psi(\mathbf{1}) = \lim_i \phi_i(\mathbf{1}) = 1$; thus $\psi \in \widehat{\mathcal{A}}$.

ullet The Gelfand map $\mathcal G$: $a o \hat a$. For each $a\in \mathcal A$ the function

$$\hat{\mathbf{a}}:\hat{\mathcal{A}}
ightarrow\mathbb{C}$$
 where $\hat{\mathbf{a}}(\phi)=\phi(\mathbf{a}),\;(\phi\in\hat{\mathcal{A}})$

is continuous by the definition of the topology on $\hat{\mathcal{A}}.$ This gives a well defined map

$$\mathcal{G}:\mathcal{A}
ightarrow\mathcal{C}(\hat{\mathcal{A}}):a
ightarrow\hat{a}$$
 .

If $a,b\in\mathcal{A}$, since each $\phi\in\hat{\mathcal{A}}$ is linear, multiplicative and *-preserving, we have

$$\widehat{(a+b)}(\phi) = \phi(a+b) = \phi(a) + \phi(b) = \widehat{a}(\phi) + \widehat{b}(\phi)$$

$$\widehat{(ab)}(\phi) = \phi(ab) = \phi(a)\phi(b) = \widehat{a}(\phi)\widehat{b}(\phi)$$

$$\widehat{(a^*)}(\phi) = \phi(a^*) = \overline{\phi(a)} = \overline{\widehat{a}(\phi)}$$

therefore

$$\mathcal{G}(a+b)=\mathcal{G}(a)+\mathcal{G}(b), \quad \mathcal{G}(ab)=\mathcal{G}(a)\mathcal{G}(b) \quad \text{and} \quad \mathcal{G}(a^*)=(\mathcal{G}(a))^*$$

$$\hat{a}(\phi) = \phi(a) \Rightarrow \|\hat{a}(\phi)\| \le \|\phi\| \|a\| \Rightarrow \|\hat{a}\| \le \|a\|$$

It can be seen that \mathcal{G} is isometric.

• The Gelfand map is onto $C(\hat{\mathcal{A}})$. Consider the range $\mathcal{G}(\mathcal{A})$: it is a *-subalgebra of $C(\hat{\mathcal{A}})$, because \mathcal{G} is a *-homomorphism. It contains the constants, because $\mathcal{G}(\mathbf{1})=\mathbf{1}$. It separates the points of $\hat{\mathcal{A}}$, because if $\phi,\psi\in\hat{\mathcal{A}}$ are different, they must differ at some $a\in\mathcal{A}$, so

$$\mathcal{G}(a)(\phi) = \phi(a) \neq \psi(a) = \mathcal{G}(a)(\psi).$$

By the Stone -- Weierstrass Theorem, $\mathcal{G}(\mathcal{A})$ must be dense in $C(\hat{\mathcal{A}})$. But it is closed, since \mathcal{A} is complete and \mathcal{G} is isometric. Hence $\mathcal{G}(\mathcal{A}) = C(\hat{\mathcal{A}})$.

When \mathcal{A} is abelian but non-unital every $\phi \in \hat{\mathcal{A}}$ extends uniquely to a character $\phi^{\sim} \in \widehat{\mathcal{A}^{\sim}}$ by $\phi^{\sim}(\mathbf{1}) = 1$, and there is exactly one $\phi_{\infty} \in \widehat{\mathcal{A}^{\sim}}$ that vanishes on \mathcal{A} . Thus \mathcal{A} is *-isomorphic the algebra of those continuous functions on the 'one-point compactification' $\hat{\mathcal{A}} \cup \{\phi_{\infty}\}$ of $\hat{\mathcal{A}}$ which vanish at ϕ_{∞} ; this algebra is in fact isomorphic to $C_0(\hat{\mathcal{A}})$.

Example

 c_0 the space of sequences converging to 0.

$$\phi_n: c_0 \to \mathbb{C}$$
, $\phi_n((a_k)) = a_n$. Then $\hat{c_0} \simeq \mathbb{N}$.

 (ϕ_n) converges pointwise to the zero character, since

$$\lim_{n} \phi_{n}((a_{k})) = \lim_{n} a_{n} = 0.$$

Thus, $\hat{c_0}$ is not compact.

Example

Consider the unitization c of c_0 which is the space of convergent sequences.

Extend ϕ_n to c by the same formula $\phi_n^{\sim}((a_k)) = a_n$.

A new nonzero character appears: $\phi_{\infty}((a_k)) = \lim(a_k)$.

This is the pointwise limit of the ϕ_n^\sim , since

$$\lim_{n} \phi_{n}^{\sim}((a_{k})) = \lim_{n} (a_{n}) = \phi_{\infty}((a_{n})).$$

 $\hat{\mathbf{c}}$ is the one point compactification of \mathbb{N} .

remark

When A is non-abelian there may be no characters. $M_2(\mathbb{C})$ has no ideals, hence the only character is the trivial one.