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The space of all bounded linear operators T : H → H on a Hilbert

spaceH is denoted B(H). It is complete under the norm

‖T‖ = sup{‖Tx‖ : x ∈ b1(H)}

( b1(X ) the closed unit ball of a normed space X ) and is an algebra

under composition. Moreover, because it acts on a Hilbert space, it has

additional structure: an involution T → T∗ defined via

〈T∗x, y〉 = 〈x, Ty〉 for all x, y ∈ H.

This satisfies

‖T∗T‖ = ‖T‖2
the C

∗
property.
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These fundamental properties of B(H) (norm-completeness, involution,

C∗ property) motivate the definition of an abstract C*-algebra.
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Definition

(a) A Banach algebra A is a complex algebra equipped with a

complete norm which is sub-multiplicative:

‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A.

(b) An involution is a map on A such that

(a + λb)∗ = a∗ + λ̄b∗, (ab)∗ = b∗a∗, a∗∗ = a for all a, b ∈ A and

λ ∈ C.

(c) A C∗-algebra A is a Banach algebra equipped with an involution

a → a∗ satisfying the C∗-condition

‖a∗a‖ = ‖a‖2
for all a ∈ A.
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If A has a unit 1 then necessarily 1∗ = 1 and ‖1‖ = 1.

Definition

If A is a C*-algebra let

A∼ =: A⊕ C

(a, z)(b,w) =: (ab + wa + zb, zw)

(a, z)∗ =: (a
∗, z̄)

‖(a, z)‖ =: sup{‖ab + zb‖ : b ∈ b1A}

Thus the norm of A∼ is defined by identifying each (a, z) ∈ A∼ with

the operator L(a,z) : A → A : b→ ab + zb acting on the Banach

space A.
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C2 with norm

‖(x, y)‖ = |x|+ |y|

is not a C∗-algebra.

‖a∗a‖ = ‖(1, 1)(1, 1)‖ = ‖(1, 1)‖ = 2

‖a‖2 = ‖(1, 1)‖2 = 4
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A morphism φ : A → B between C*-algebras is a linear map that

preserves products and the involution.
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C, the set of complex numbers.

C(K ), the set of all continuous functions f : K → C, where K is a

compact Hausdorff space. With pointwise operations, f∗(t) = f(t)
and the sup norm, C(K ) is an abelian, unital algebra.

C0(X), where X is a locally compact Hausdorff space. This consists

of all functions f : X → C which are continuous and ‘vanish at

infinity’: given ε > 0 there is a compact Kf ,ε ⊆ X such that

|f(x)| < ε for all x /∈ Kf ,ε. With the same operations and norm as

above, this is an abelian C*-algebra.
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Mn(C), the set of all n× n matrices with complex entries. With

matrix operations, A∗ = conjugate transpose, and

‖A‖ = sup{‖Ax‖
2

: x ∈ `2(n), ‖x‖
2

= 1}, this is a non-abelian,

unital algebra.

B(H) is a non-abelian, unital C*-algebra.

K(H) = {A ∈ B(H) : A(b1(H)) compact inH}: the compact

operators. This is a closed selfadjoint subalgebra of B(H), hence a

C*-algebra.
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If X is an index set and A is a C*-algebra, the Banach space `∞(X ,A)
of all bounded functions a : X → A (with norm

‖a‖∞ = sup{‖a(x)‖A : x ∈ X}) becomes a C*-algebra with

pointwise product and involution.

Its subspace c0(X ,A) consisting of all a : X → A such that

lim
x→∞

‖a(x)‖A = 0 is a C*-algebra. (for each ε > 0 there is a finite

subset Xε ⊆ X s.t. x /∈ Xε ⇒ ‖a(x)‖A < ε).
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If X is a locally compact Hausdorff space then Cb(X ,A) is the

*-subalgebra of `∞(X ,A) consisting of continuous bounded functions.

It is closed, hence a C*-algebra. (This is denoted C(X ,A) when X is

compact.)

The C*-algebra C0(X ,A) consists of those f ∈ Cb(X ,A) which ‘vanish

at infinity’, i.e. such that the function t → ‖f(t)‖A is in C0(X).
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Consider subsets of the Cartesian product
∏
Ai of a family of

C*-algebras:

(i) The direct sum A1 ⊕ · · · ⊕ An of C*-algebras is a C*-algebra under

pointwise operations and involution and the norm

‖(a1, . . . , an)‖ = max{‖a1‖ , . . . , ‖an‖}.

(ii) Let {Ai} be a family of C*-algebras. Their direct product or

`∞-direct sum
⊕

`∞ Ai is the subset of the Cartesian product
∏
Ai

consisting of all (ai) ∈
∏
Ai such that i → ‖ai‖Ai

is bounded. It is a

C*-algebra under pointwise operations and involution and the norm

‖(ai)‖ = sup{‖ai‖Ai
: i ∈ I}

.
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(iii) The direct sum or c0-direct sum
⊕

c0
Ai of a family {Ai} of

C*-algebras is the closed selfadjoint subalgebra of their direct product

consisting of all (ai) ∈
∏
Ai such that i → ‖ai‖Ai

vanishes at infinity.

In case Ai = A for all i, the direct product is just `∞(I,A) and the

direct sum is c0(X ,A).
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If A is a C*-algebra and n ∈ N, the space Mn(A) of all matrices [aij ]
with entries aij ∈ A becomes a *-algebra with product [aij ][bij ] = [cij ]
where cij =

∑
k

aikbkj and involution [aij ]
∗ = [dij ] where dij = a∗ji .

Define a norm on Mn(A) satisfying the C*-condition.
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Suppose A is C0(X). Identify Mn(C0(X)) with C0(X ,Mn), i.e. Mn-valued

continuous functions on X vanishing at infinity: each matrix

[fij ] ∈ Mn(C0(X)) defines a function F : X → Mn : x → [fij(x)] which is

continuous with respect to the norm on Mn. Conversely, if F : X → Mn is

continuous, then its entries fij given by fij(x) = 〈F(x)ej , ei〉 form an n× n

matrix of continuous functions.

Define

‖[fij ]‖ = ‖F‖∞ = sup{‖F(x)‖
Mn

: x ∈ X}.

This satisfies the C*-condition, because the norm on Mn satisfies the

C*-condition.
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Suppose A is B(H) for some Hilbert spaceH. Identify Mn(B(H)) with

B(Hn): Given a matrix [aij ] of bounded operators aij onH, we define

an operator A onHn by

A

ξ1

...

ξn

 =


∑

j
a1jξj

...∑
j
anjξj


Conversely any A ∈ B(Hn) defines an n× n matrix of operators aij on

H by 〈aijξ, η〉H = 〈Aξj , ηi〉Hn , where ξj ∈ Hn is the vector having ξ at

the j-th entry and zeroes elsewhere (and ηi is defined analogously).
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Hence one defines the norm ‖[aij ]‖ of [aij ] ∈ Mn(B(H)) to be the

norm ‖A‖ of the corresponding operator onHn.

For n = 2: [
A B

C D

] [
ξ
η

]
=

[
Aξ + Bη
Cξ + Dη

]
This applies also if A is a C∗-subalgebra of B(H).
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Definition

A unital C*-algebra and GL(A) the group of invertible elements of A.

The spectrum of an element a ∈ A is

σ(a) = σA(a) = {λ ∈ C : λ1− a /∈ GL(A)}.

If A is non-unital, the spectrum of a ∈ A is defined by

σ(a) = σA∼(a).

In this case, necessarily 0 ∈ σ(a).
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Examples

A = Mn(C) and a ∈ A, then σ(A) is the set of eigenvalues of A.

A = C([0, 1]) and f ∈ A, then:

f − λ1 invertible⇔ f(x)− λ1(x) 6= 0,∀x

⇔ f(x)− λ1 6= 0, ∀x ⇔ λ 6= f(x),∀x.

⇒ σ(f) = {f(x) : x ∈ [0, 1]}

M. Anoussis C
∗-algebras



C
∗-algebras

The spectrum
Gelfand theory for commutative C*-algebras

The spectrum

Proposition

The spectrum σ(a) is a compact nonempty subset of C.

(i) σ(a) is bounded: In a unital C*-algebra, if ‖x‖ < 1 then since∑
‖xn‖ ≤

∑
‖x‖n

, the series
∑

xn converges absolutely, and so

converges to an element y such that (1− x)y = y(1− x) = 1 and

(1− x) ∈ GL(A).

If a ∈ A and λ ∈ C satisfies |λ| > ‖a‖ then:

‖a

λ
‖ < 1⇒ 1− a

λ
is invertible

⇒ λ1− a is invertible⇒ λ /∈ σ(a)

and the spectrum is bounded by ‖a‖.
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(ii) σ(a) is closed: GL(A) is open. If ‖1− x‖ < 1 then x ∈ GL(A). Let

a ∈ GL(A). Thus 1 is an interior point of GL(A). The map x → ax is a

homeomorphism of GL(A) (with inverse y → a−1y) and sends 1 to a,

hence a ∈ GL(A) is an interior point of GL(A).
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(iii) σ(a) is nonempty: This is proved by contradiction: one shows that

for each φ in the Banach space dual of A, the function

f : λ→ φ((λ1− a)−1) is analytic on its domain C \ σ(a) and

lim|λ|→∞ f(λ) = 0; so if σ(a) were empty, this function would be

analytic on C and vanishing at infinity, hence would be zero by

Liouville’s theorem; hence φ(a−1) = f(0) = 0 for all φ, which is absurd

by Hahn-Banach.
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Lemma

The map x → x−1 is continuous (hence a homeomorphism) on GL(A).

Let a, b ∈ GL(A). Then∥∥a
−1 − b

−1
∥∥ =

∥∥b
−1(b − a)a

−1
∥∥

=
∥∥(b
−1 − a

−1)(b − a)a
−1 + a

−1(b − a)a
−1
∥∥

≤
∥∥b
−1 − a

−1
∥∥ ‖b − a‖

∥∥a
−1
∥∥+

∥∥a
−1
∥∥2 ‖b − a‖

hence ∥∥a
−1 − b

−1
∥∥ (1− ‖b − a‖

∥∥a
−1
∥∥) ≤

∥∥a
−1
∥∥2 ‖b − a‖ .

It follows that

lim
b→a

∥∥b
−1 − a

−1
∥∥ = 0. 2
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The spectral radius of a ∈ A is defined to be

ρ(a) = sup{|λ| : λ ∈ σ(a)}.

It satisfies ρ(a) ≤ ‖a‖, but equality may fail. In fact, it can be shown

that

ρ(a) = lim
n
‖an‖1/n

This is the Gelfand-Beurling formula.
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Lemma

If a = a∗ then ρ(a) = sup{|λ| : λ ∈ σ(a)} = ‖a‖.

proof
‖a‖2 = ‖a2‖ and inductively ‖a‖2n

= ‖a2n‖ for all n. Thus, by the

Gelfand - Beurling formula, ρ(a) = lim
∥∥a2n

∥∥2−n

= ‖a‖.
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Theorem

A morphism π : A → B is contractive (i.e. ‖π(a)‖ ≤ ‖a‖ for all

a ∈ A).

proof If x, y ∈ A and xy = 1⇒ π(x)π(y) = 1.

a − λ1 invertible implies π(a)− λ1 invertible and hence,

σ(π(a) ⊆ σ(a) and hence ρ(π(a)) ≤ ρ(a).

‖π(a)‖2 = ‖π(a)∗π(a)‖

= ‖π(a
∗
a)‖ = ρ(π(a

∗
a)) ≤ ρ(a

∗
a) = ‖a∗a‖ = ‖a‖2
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An element a ∈ A is said to be normal if a∗a = aa∗, selfadjoint if

a = a∗ and unitary if (A is unital and) u∗u = 1 = uu∗.

Proposition

(i) a = a∗ =⇒ σ(a) ⊆ R
(ii) a = b∗b =⇒ σ(a) ⊆ R+

(iii) u∗u = 1 = uu∗ =⇒ σ(u) ⊆ T.
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Theorem

[Gelfand-Naimark 1] Every commutative C*-algebra A is isometrically

*-isomorphic to C0(Â) where Â is the set of nonzero morphisms

φ : A → C which, equipped with the topology of pointwise

convergence, is a locally compact Hausdorff space. For each a ∈ A
the function â : Â → C : φ→ φ(a) is in C0(Â). The Gelfand

transform:

A → C0(Â) : a → â

is an isometric *-isomorphism. The space Â is compact if and only if A is

unital.
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A unital.

Â is the set of all nonzero multiplicative linear forms ( characters)

φ : A → C.

φ(1)2 = φ(1)⇒ φ(1) = 1 (for if φ(1) = 0 then

φ(a) = φ(a1) = 0 for all a, a contradiction).

Each φ ∈ Â satisfies ‖φ‖ ≤ 1 and ‖φ‖ = φ(1) = 1. The topology

on Â is pointwise convergence: φi → φ iff φi(a)→ φ(a) for all

a ∈ A.
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The inequality |φ(a)| ≤ ‖a‖ shows that Â is contained in the

space Πa∈ADa , the Cartesian product of the compact spaces

Da = {z ∈ C : |z| ≤ ‖a‖}; and the product topology is the

topology of pointwise convergence.

Â is closed in this product: if φi → ψ pointwise, then it is clear that

ψ is linear and multiplicative, because each φi is linear and

multiplicative, and ψ 6= 0 because ψ(1) = limi φi(1) = 1; thus

ψ ∈ “A.
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The Gelfand map G : a → â. For each a ∈ A the function

â : Â → C where â(φ) = φ(a), (φ ∈ Â)

is continuous by the definition of the topology on Â. This gives a

well defined map

G : A → C(Â) : a → â .

If a, b ∈ A, since each φ ∈ Â is linear, multiplicative and

*-preserving, we have◊�(a + b)(φ) = φ(a + b) = φ(a) + φ(b) = â(φ) + b̂(φ)‘(ab)(φ) = φ(ab) = φ(a)φ(b) = â(φ)b̂(φ)‘(a∗)(φ) = φ(a
∗) = φ(a) = â(φ)
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therefore

G(a+b) = G(a)+G(b), G(ab) = G(a)G(b) and G(a
∗) = (G(a))∗

â(φ) = φ(a)⇒ ‖â(φ)‖ ≤ ‖φ‖ ‖a‖ ⇒ ‖â‖ ≤ ‖a‖

It can be seen that G is isometric.
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The Gelfand map is onto C(Â). Consider the range G(A): it is a

*-subalgebra of C(Â), because G is a *-homomorphism. It

contains the constants, because G(1) = 1. It separates the points

of Â, because if φ, ψ ∈ Â are different, they must differ at some

a ∈ A, so

G(a)(φ) = φ(a) 6= ψ(a) = G(a)(ψ).

By the Stone -- Weierstrass Theorem, G(A) must be dense in C(Â).

But it is closed, since A is complete and G is isometric. Hence

G(A) = C(Â).
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When A is abelian but non-unital every φ ∈ Â extends uniquely to a

character φ∼ ∈ Â∼ by φ∼(1) = 1, and there is exactly one φ∞ ∈ Â∼
that vanishes on A. Thus A is *-isomorphic the algebra of those

continuous functions on the ‘one-point compactification’ Â ∪ {φ∞} of

Â which vanish at φ∞; this algebra is in fact isomorphic to C0(Â).
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Example

c0 the space of sequences converging to 0.

φn : c0 → C, φn((ak)) = an. Then ĉ0 ' N.

(φn) converges pointwise to the zero character, since

lim
n
φn((ak)) = lim

n
an = 0.

Thus, ĉ0 is not compact.
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Example

Consider the unitization c of c0 which is the space of convergent

sequences.

Extend φn to c by the same formula φ∼n ((ak)) = an.

A new nonzero character appears: φ∞((ak)) = lim(ak).

This is the pointwise limit of the φ∼n , since

lim
n
φ∼n ((ak)) = lim

n
(an) = φ∞((an)).

ĉ is the one point compactification of N.
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remark

When A is non-abelian there may be no characters. M2(C) has no

ideals, hence the only character is the trivial one.
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