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Definition of the algebraic tensor product

The algebraic tensor product of two linear spaces is a linear space with
the property that it linearises bilinear maps to all linear spaces:

bil(Ey x By, F) ~ £(E, ® E,, F)

Proposition

Given two K-linear spaces Iy and E,, there exists a linear space

E, © E, equipped with a bilinear map ® : Fy X E5 — F| © Ey5 having
the ‘universal property’:

For every K-linear space F' and every bilinear map b : E| X E5 — F
there is a unique linear map B : B, © By — F satisfying

B(x®y) =b(x,y) for every x € E|,y € E,.

The linear space E; © E, is unique up to linear isomorphisms (see
below).

Definition
The Aloebraic tensor nroduct of 7. and F- is (F. O F. Q)



Universal property of (F; © Fy, ®)

For every K-linear space F' and every bilinearmap b : £y X By — F
there is a unique linear map B : E; © E, — F satisfying

B(x®y) =b(x,y) forevery xz € E,y € E,:

Thus if ® : By X By — Fy O Ey : (x,y) =  ®vy, the diagram

E,xE, % E,0F,

B

commutes.

bil(Ey x By, F) =~ £(E, © Ey, F).



Uniqueness of (E; © Fy, ®)

Let G, G5 be two K-linear spaces and 7, : By X B, — G, (i =1,2)
bilinear maps. Assume that: for every linear space F' and bilinear map
b: E, x E5 — F, there are unique linear maps B, : G; — F (i=1,2)
so that B;om, =b (i =1,2).

T Ty
Gl <7E1 XE2 *>G2

b
F
Then 3 a linear isomorphism ¢ : G; — G4 such that o1 = 7y:
E, < E,

7N
G, 3 G,



Tensor products of linear spaces

If E,, E, are K-linear spaces, can consider E; < K*Xi where X is a set
(e.g. an algebraic basis, or an o.n. basis, of ;). Define

§@n: Xy x Xy = K (s,1) = £(s)n(t).

A Realisation of the algebraic tensor product

E1®E2 ’zspan{gtg)n:ge ElaUEEQ} C |KX1><X2‘

Remark (21 +24)Qy=12,Qy+2,®Y,

@ (Y1 +42) =2 @Y T2 ®Ys, (A1) @Y = A2 ®Yy) =28 (Ay) -
Remark If {z;:i€ I} C E; and {y;: j € J} C E, are linearly
independent, then so is {z; ®y; : (1,j) € I x J} C E; O Ej.
Remark KOE ~ F: A®x — Az and
K"OE~E":¢,®z s (0...,0,2,0...,0). Also

M, (K)OE~M,(E):e; @z > [z),] with z,; = x and the rest=0.



Another realisation: Finite rank operators

Notation: for z € H (Hilbert) let x* € H* be x* : z — (z,x).
Everyu=) r;®y; € H*OK (herez*: H > z — (2,2) € C)
defines a map

u:H— K: zHsz Zylz

Conversely every bounded finite rank operator T': H — K is of the
form T' = & where u € H*® K. The map u — @ is a linear space
isomorphism.

Conclusion: H*O K ~B%F (H,K).

Also, (for H = K)ifw, , : B(H) = C: T+ (Ty,z) and B_(H) is
their span, then H*® H ~ B_(H), via the mapping

Zﬁvj QY; = Ziwyivwi

Note that if u = 2" ®y € H*© H thenw, ,(T') = Tr(T") for all

T € B(H).



Tensor products of Hilbert spaces

Definition

Let H,, H, be Hilbert spaces. On H; © H, put

(T1®Y1,T2®@Ya), <$17552> <ylay2>

This gives a well-defined scalar product. (Exercise!) We define

H,® Hy := (H, ®H27||‘||hs)
= H, ®; Hy.

If {e;} is an orthonormal basis of H; and { f;} ; an o.n. basis of H,,
then H; ® H, has o.n. basis {e; ® f;} /. ;-

Remark If dim H; < oo and dim H, < oo, then H; © Hy = H| ® H,.
Example L?(u)® L?(v) = L?(w) where 7 is the product measure.

Example C*®@C" = CFOC" = C"*,



Operators on tensor products of Hilbert spaces

If A€ B(H,)and B € B(H,) want to define an operator
ARQB:H, @ Hy — H, ® H,:
First define

A®B:H,0H,—~ H O Hy: Y ,®@y, — »_ Aw,® By,
A @

Check this is well-defined.
Now show that sz Az; ® By,|| < | A]|B| sz z; Q|-

Hence A®B extends to AQB : H, ® H, — H, ® H, with
[A®B|| < | A | B]. (In fact equality)

Thus have embedding
B(H,)©B(H,) - B(H,®H,): AQ B+ AQB.

Verify this is 1-1.
(Henceforth identify A ® B with AQB).



Tensor products of *-algebras

If A and B are *-algebras, make A ® B into a *-algebra by
(a®b)(a’®b) :=aa’ ®bb" and (a®b)* :=a* Rb*.
For example if A = M, = M,,(C) then M,, © B ~ M, (B) as follows:

M,(B) > [b;] > e;®b; € M,0B.
'7]’

(In particular, when B is a C* algebra, M,, © B inherits the norm of
M,,(B) and becomes a C*-algebra - but notice that dim M,, < cc.)
Thus if ® : B — C'is a linear map, the map ®,, : M, (B) — M,,(C) is
just

idy, ®P:M,,0B—M,0C:a®b—a®®(b).

Thus the map @ is completely positive if id am, ® @ is positive for all

n € N and is completely bounded if sup,, Hid M, ® <I>H < 00. We write
® € CB(B,C).



Reminder: Stinespring’s dilation theorem

Theorem (Stinespring)

If®: A— B(H) is a completely positive [unital] map from a [unital]
C*-algebra A to B(H), then

®(a) =V*n(a)V forall a € A.

where T is a *-representation of A on the Hilbert space H__ and
V :H — H_is bounded.

When A and ¢ are unital, V' is an isometry and the representation 7 is
called a dilation of ® via the ‘embedding’ V' : H — H .

[The dilation is unique under a minimality condition.]

Remark When H = C this reduces to the GNS construction
(withV:C—H_:1—&p).



Extension theorems

Definition

A (concrete) operator system & is a linear subspace of a unital C*
algebra A which is unital and selfdajoint,i.c. 1l € Sands € § = s* € S.

Theorem (Arveson)

If®: 8 — B(H) is a completely positive unital map defined on an
operator system § C A, then ® has a completely positive extension

Ui A — B(H).

Theorem (Wittstock)

Let M be a subspace of a unital C*-algebra A. If ® : M — B(H) is
completely bounded map, then © has a completely bounded extension
V:A— B(H) with |V, =2,



Factorisation theorem

Theorem (Haagerup, Paulsen, Wittstock)

If®: A— B(H) is a completely bounded map from a unital
C*-algebra A to B(H), then

®(a)=V*n(a)W forall a€ A.

where T is a *-representation of A on the Hilbert space H__ and
VW : H — H, are bounded, with |®| , = [V [|W]..

A—"— B(H,)

id T — VW

o
A

B(H)



Back to tensor products: C*-cross norms

Let A and B be C*-algebras.
A cross-norm on A® B is a norm ||||7 st la® b“w = ||la] ||b].

A C*-cross-norm is a cross norm ||||7 satisfying ||:17y||W < ||:L‘||7 ||y||7 and
the C*-property ”l‘*l‘”’Y = ||:17||i

Do such norms exist?



Minimal tensor norm

Take faithful reps 7 : A — B(H,) and p : B — B(H,) and define
TQp: AOB— B(H®H,):a®bt m(a)®p(b).

This is a faithful rep of the *-algebra, so defines a norm

lz] .. = l(r®p)(x) ||3(H1®H2). Clearly a cross norm.

It is independent of the reps 7, p and is minimal:

Theorem (Takesaki)

IfH||7 is a C*-cross norm on AQ® B, then Hl‘”’y > |z

min’

The completion is denoted A®,,;,, B or AQ B.
The min norm is injective: If A C C'and BC Dthen AQBC CQ®D.

Thus the notion extends to subspaces:



Minimal tensor norm

Definition

Consider two (concrete) operator spaces X C B(H ) and Y C B(X)
for J{, K Hilbert spaces. Their spatial or minimal tensor product is
defined to be the completion of their algebraic tensor product in the
norm of B(H ® X') through the inclusion:

XY CBHRQKX)
ie. X®,,Y =XV
The space X ®,,;, Y is independent of the embeddings X C B(H) and

Y C B(X).



Minimal tensor norm

Proposition

Foranyxz =73 a,8b; € X®Y we have
Mnm}

] = sup{HZma» Du(by)

where the supremum runs over n,m > 1 and all pairs of
v € Ball(CB(X,M,,)) and w € Ball(CB(Y,M,,)).




Maximal tensor norm

If A and B are C* algebras, define a norm on A® B by
fol, = sup{lm(a)|: 7+ *-rep. of 4G B}

This is finite (why?), and is a norm because it dominates || . .
The completion is denoted A®,, .. B

Ifr:A— B(H)andp: B— 25’(5‘[) are *-reps (same H) with
commuting ranges, then the map

> a;®b; Y w(a;)p(b;) : A B— B(H)

extends to a *-rep of A®, ., B onsame H.

max

References [1, Chapter 3], [2, Appendix T].
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