Introduction to C* Algebras III - Tensor products

Aristides Katavolos

October 30, 2020

Definition of the algebraic tensor product

The algebraic tensor product of two linear spaces is a linear space with the property that it linearises bilinear maps to all linear spaces:

 $bil(E_1\times E_2,F)\simeq \mathcal{L}(E_1\odot E_2,F)$

Proposition

Given two K-linear spaces E_1 and E_2 , there exists a linear space $E_1 \odot E_2$ equipped with a bilinear map $\otimes : E_1 \times E_2 \rightarrow E_1 \odot E_2$ having the 'universal property':

For every K-linear space F and every bilinear map $b: E_1 \times E_2 \to F$ there is a unique linear map $B: E_1 \odot E_2 \to F$ satisfying $B(x \otimes y) = b(x, y)$ for every $x \in E_1, y \in E_2$.

The linear space $E_1 \odot E_2$ is unique up to linear isomorphisms (see below).

Definition

The Algebraic tensor product of E_1 and E_2 is $(E_1 \odot E_2, \otimes)$.

Universal property of $(E_1 \odot E_2, \otimes)$

For every K-linear space F and every bilinear map $b: E_1 \times E_2 \to F$ there is a unique linear map $B: E_1 \odot E_2 \to F$ satisfying $B(x \otimes y) = b(x, y)$ for every $x \in E_1, y \in E_2$: Thus if $\otimes : E_1 \times E_2 \to E_1 \odot E_2 : (x, y) \to x \otimes y$, the diagram

commutes.

$$bil(E_1\times E_2,F)\simeq \mathcal{L}(E_1\odot E_2,F)\,.$$

Uniqueness of $(E_1 \odot E_2, \otimes)$

Let G_1, G_2 be two K-linear spaces and $\pi_i : E_1 \times E_2 \to G_i \ (i = 1, 2)$ bilinear maps. Assume that: for every linear space F and bilinear map $b : E_1 \times E_2 \to F$, there are unique linear maps $B_i : G_i \to F \ (i = 1, 2)$ so that $B_i \circ \pi_i = b \ (i = 1, 2)$.

Then \exists a linear isomorphism $\phi: G_1 \to G_2$ such that $\phi \circ \pi_1 = \pi_2$:

Tensor products of linear spaces

If E_1, E_2 are K-linear spaces, can consider $E_i \hookrightarrow \mathbb{K}^{X_i}$ where X_i is a set (e.g. an algebraic basis, or an o.n. basis, of E_i). Define

$$\xi \otimes \eta: X_1 \times X_2 \to \mathbb{K}: (s,t) \to \xi(s)\eta(t).$$

A Realisation of the algebraic tensor product

 $E_1 \odot E_2 \simeq \operatorname{span}\{\xi \otimes \eta: \xi \in E_1, \eta \in E_2\} \subseteq \mathbb{K}^{X_1 \times X_2}.$

 $\begin{array}{l} \operatorname{Remark}\;(x_1+x_2)\otimes y=x_1\otimes y+x_2\otimes y,\\ x\otimes (y_1+y_2)=x\otimes y_1+x\otimes y_2, (\lambda x)\otimes y=\lambda (x\otimes y)=x\otimes (\lambda y)\ .\\ \operatorname{Remark}\; \operatorname{If}\;\{x_i:i\in I\}\subseteq E_1 \text{ and }\{y_j:j\in J\}\subseteq E_2 \text{ are linearly}\\ \operatorname{independent, then so is}\;\{x_i\otimes y_j:(i,j)\in I\times J\}\subseteq E_1\odot E_2.\\ \operatorname{Remark}\; \mathbb{K}\odot E\simeq E:\lambda\otimes x\mapsto \lambda x \text{ and}\\ \mathbb{K}^n\odot E\simeq E^n:e_i\otimes x\mapsto (0\ldots,0,x,0\ldots,0). \text{ Also}\\ M_n(\mathbb{K})\odot E\simeq M_n(E):e_{ij}\otimes x\mapsto [x_{kl}] \text{ with } x_{ij}=x \text{ and the rest=0}. \end{array}$

Another realisation: Finite rank operators

Notation: for $x \in H$ (Hilbert) let $x^* \in H^*$ be $x^* : z \to \langle z, x \rangle$. Every $u = \sum_i x_i^* \otimes y_i \in H^* \odot K$ (here $x^* : H \ni z \to \langle z, x \rangle \in \mathbb{C}$) defines a map

$$\tilde{u}: H \to K: z \mapsto \sum_i \left< z, x_i \right> y_i := \sum_i y_i x_i^*(z).$$

Conversely every *bounded finite rank* operator $T: H \to K$ is of the form $T = \tilde{u}$ where $u \in H^* \odot K$. The map $u \to \tilde{u}$ is a linear space isomorphism.

Conclusion: $H^* \odot K \simeq \mathcal{BF}(H, K)$.

Also, (for H = K) if $\omega_{y,x} : \mathcal{B}(H) \to \mathbb{C} : T \mapsto \langle Ty, x \rangle$ and $\mathcal{B}_{\sim}(H)$ is their span, then $H^* \odot H \simeq \mathcal{B}_{\sim}(H)$, via the mapping $\sum_i x_i^* \otimes y_i \mapsto \sum_i \omega_{y_i,x_i}$ Note that if $u = x^* \otimes y \in H^* \odot H$ then $\omega_{y,x}(T) = \operatorname{Tr}(T\tilde{u})$ for all $T \in \mathcal{B}(H)$.

Definition

Let H_1, H_2 be Hilbert spaces. On $H_1 \odot H_2$ put

$$\left\langle x_1 \otimes y_1, x_2 \otimes y_2 \right\rangle_{hs} = \left\langle x_1, x_2 \right\rangle_{H_1} \cdot \left\langle y_1, y_2 \right\rangle_{H_2}.$$

This gives a well-defined scalar product. (Exercise!) We define

$$\begin{split} H_1 \otimes H_2 &:= \overline{(H_1 \odot H_2, \left\|\cdot\right\|_{hs})} \\ &:= H_1 \otimes_2 H_2 \,. \end{split}$$

If $\{e_i\}_I$ is an orthonormal basis of H_1 and $\{f_j\}_J$ an o.n. basis of H_2 , then $H_1 \otimes H_2$ has o.n. basis $\{e_i \otimes f_j\}_{I \times J}$. Remark If dim $H_1 < \infty$ and dim $H_2 < \infty$, then $H_1 \odot H_2 = H_1 \otimes H_2$. Example $L^2(\mu) \otimes L^2(\nu) = L^2(\pi)$ where π is the product measure. Example $\mathbb{C}^k \otimes \mathbb{C}^n = \mathbb{C}^k \odot \mathbb{C}^n = \mathbb{C}^{nk}$.

Operators on tensor products of Hilbert spaces

If $A \in \mathcal{B}(H_1)$ and $B \in \mathcal{B}(H_2)$ want to define an operator $A \hat{\otimes} B : H_1 \otimes H_2 \rightarrow H_1 \otimes H_2$: First define

$$A\hat{\otimes}B:H_1\odot H_2\rightarrow H_1\odot H_2:\sum_i x_i\otimes y_i\rightarrow \sum_i Ax_i\otimes By_i$$

Check this is well-defined.

Now show that $\left\|\sum_{i} Ax_{i} \otimes By_{i}\right\| \leq \|A\| \|B\| \left\|\sum_{i} x_{i} \otimes y_{i}\right\|$. Hence $A \hat{\otimes} B$ extends to $A \hat{\otimes} B : H_{1} \otimes H_{2} \to H_{1} \otimes H_{2}$ with $\|A \hat{\otimes} B\| \leq \|A\| \|B\|$. (In fact equality) Thus have embedding

$$\mathcal{B}(H_1) \odot \mathcal{B}(H_2) \to \mathcal{B}(H_1 \otimes H_2) : A \otimes B \mapsto A \hat{\otimes} B \,.$$

Verify this is 1-1. (Henceforth identify $A \otimes B$ with $A \hat{\otimes} B$).

Tensor products of *-algebras

If A and B are *-algebras, make $A \odot B$ into a *-algebra by $(a \otimes b)(a' \otimes b') := aa' \otimes bb'$ and $(a \otimes b)^* := a^* \otimes b^*$. For example if $A = M_n = M_n(\mathbb{C})$ then $M_n \odot B \simeq M_n(B)$ as follows:

$$M_n(B) \ni [b_{ij}] \mapsto \sum_{i,j} e_{ij} \otimes b_{ij} \in M_n \odot B \, .$$

(In particular, when B is a C* algebra, $M_n \odot B$ inherits the norm of $M_n(B)$ and becomes a C*-algebra - but notice that $\dim M_n < \infty$.) Thus if $\Phi: B \to C$ is a linear map, the map $\Phi_n: M_n(B) \to M_n(C)$ is just

$$\operatorname{id}_{M_n}\otimes\Phi:M_n\odot B\to M_n\odot C:a\otimes b\to a\otimes\Phi(b)\,.$$

Thus the map Φ is completely positive if $\operatorname{id}_{M_n} \otimes \Phi$ is positive for all $n \in \mathbb{N}$ and is completely bounded if $\sup_n \left\| \operatorname{id}_{M_n} \otimes \Phi \right\| < \infty$. We write $\Phi \in \mathcal{CB}(B, C)$.

Theorem (Stinespring)

If $\Phi : \mathcal{A} \to \mathcal{B}(H)$ is a completely positive [unital] map from a [unital] C^* -algebra \mathcal{A} to $\mathcal{B}(H)$, then

$$\Phi(a) = V^* \pi(a) V \quad \text{for all } a \in \mathcal{A}.$$

where π is a *-representation of \mathcal{A} on the Hilbert space H_{π} and $V: H \to H_{\pi}$ is bounded.

When \mathcal{A} and ϕ are unital, V is an isometry and the representation π is called a dilation of Φ via the 'embedding' $V : H \to H_{\pi}$. [The dilation is unique under a minimality condition.] Remark When $H = \mathbb{C}$ this reduces to the GNS construction (with $V : \mathbb{C} \to H_{\pi} : 1 \to \xi_{\Phi}$).

Definition

A (concrete) operator system S is a linear subspace of a unital C* algebra A which is unital and selfdajoint, i.e. $\mathbf{1} \in S$ and $s \in S \Rightarrow s^* \in S$.

Theorem (Arveson)

If $\Phi : S \to \mathcal{B}(H)$ is a completely positive unital map defined on an operator system $S \subseteq \mathcal{A}$, then Φ has a completely positive extension $\Psi : \mathcal{A} \to \mathcal{B}(H)$.

Theorem (Wittstock)

Let \mathcal{M} *be a subspace of a unital* C^* *-algebra* \mathcal{A} *. If* $\Phi : \mathcal{M} \to \mathcal{B}(H)$ *is completely bounded map, then* Φ *has a completely bounded extension* $\Psi : \mathcal{A} \to \mathcal{B}(H)$ *with* $\|\Psi\|_{cb} = \|\Phi\|_{cb}$.

Theorem (Haagerup, Paulsen, Wittstock)

If $\Phi : \mathcal{A} \to \mathcal{B}(H)$ is a completely bounded map from a unital C^* -algebra \mathcal{A} to $\mathcal{B}(H)$, then

$$\Phi(a)=V^*\pi(a)W \quad \textit{for all } a\in\mathcal{A}.$$

where π is a *-representation of \mathcal{A} on the Hilbert space H_{π} and $V, W : H \to H_{\pi}$ are bounded, with $\|\Phi\|_{cb} = \|V\| \|W\|$.

$$\begin{array}{ccc} A & \stackrel{\pi}{\longrightarrow} & \mathcal{B}(H_{\pi}) \\ \text{id} & & & & \\ A & \stackrel{\Phi}{\longrightarrow} & \mathcal{B}(H) \end{array}$$

Back to tensor products: C*-cross norms

Let A and B be C*-algebras.

A cross-norm on $A \odot B$ is a norm $\left\|\cdot\right\|_{\gamma}$ s.t. $\left\|a \otimes b\right\|_{\gamma} = \|a\| \|b\|$.

A C*-cross-norm is a cross norm $\|\cdot\|_{\gamma}$ satisfying $\|xy\|_{\gamma} \leq \|x\|_{\gamma} \|y\|_{\gamma}$ and the C*-property $\|x^*x\|_{\gamma} = \|x\|_{\gamma}^2$. Do such norms exist?

Minimal tensor norm

Take faithful reps $\pi : A \to \mathcal{B}(H_1)$ and $\rho : B \to \mathcal{B}(H_2)$ and define $\pi \otimes \rho : A \odot B \to \mathcal{B}(H_1 \otimes H_2) : a \otimes b \mapsto \pi(a) \otimes \rho(b)$. This is a faithful rep of the *-algebra, so defines a norm $\|x\|_{\min} := \|(\pi \otimes \rho)(x)\|_{\mathcal{B}(H_1 \odot H_2)}$. Clearly a cross norm. It is independent of the reps π, ρ and is minimal:

Theorem (Takesaki)

If $\|\cdot\|_{\gamma}$ is a C*-cross norm on $A \odot B$, then $\|x\|_{\gamma} \ge \|x\|_{\min}$.

The completion is denoted $A \otimes_{\min} B$ or $A \otimes B$. The min norm is *injective*: If $A \subseteq C$ and $B \subseteq D$ then $A \otimes B \subseteq C \otimes D$. Thus the notion extends to subspaces:

Definition

Consider two (concrete) operator spaces $X \subseteq \mathcal{B}(\mathcal{H})$ and $Y \subseteq \mathcal{B}(\mathcal{K})$ for \mathcal{H}, \mathcal{K} Hilbert spaces. Their spatial or minimal tensor product is defined to be the completion of their algebraic tensor product in the norm of $\mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ through the inclusion:

 $X \otimes Y \subseteq \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$

i.e. $X \otimes_{\min} Y := \overline{X \otimes Y}^{norm}$.

The space $X \otimes_{\min} Y$ is independent of the embeddings $X \subseteq \mathcal{B}(\mathcal{H})$ and $Y \subseteq \mathcal{B}(\mathcal{K})$.

Minimal tensor norm

Proposition

For any
$$x = \sum a_1 \otimes b_i \in X \otimes Y$$
 we have

$$\left\|x\right\|_{\min} = \sup\left\{\left\|\sum v(a_i) \otimes w(b_i)\right\|_{M_{nm}}\right\}$$

where the supremum runs over $n, m \ge 1$ and all pairs of $v \in Ball(\mathcal{CB}(X, M_n))$ and $w \in Ball(\mathcal{CB}(Y, M_m))$.

Maximal tensor norm

If A and B are C* algebras, define a norm on $A \odot B$ by

$$||x||_{\max} := \sup\{||\pi(x)|| : \pi : *-\text{rep. of } A \odot B\}.$$

This is finite (why?), and is a norm because it dominates $\|\cdot\|_{\min}$. The completion is denoted $A \otimes_{\max} B$. If $\pi : A \to \mathcal{B}(\mathcal{H})$ and $\rho : B \to \mathcal{B}(\mathcal{H})$ are *-reps (same H) with commuting ranges, then the map

$$\sum a_i \otimes b_i \mapsto \sum \pi(a_i) \rho(b_i) : A \odot B \to \mathcal{B}(H)$$

extends to a *-rep of $A \otimes_{\max} B$ on same H.

References [1, Chapter 3], [2, Appendix T].

Bibliography

🌭 Brown, Nathanial P., Ozawa, Narutaka, C^* -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, Providence, RI, 2008, MR 2391387. doi:10.1090/gsm/088.

N. E. Wegge-Olsen.

K-theory and C^* -algebras.

Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1993. A friendly approach.