Introduction to C* Algebras II

Aristides Katavolos

October 23, 2020

Definition

(a) A Banach algebra \mathcal{A} is a complex algebra equipped with a complete norm which is sub-multiplicative:

 $\|ab\| \leq \|a\| \, \|b\| \qquad \text{for all } a,b \in \mathcal{A}.$

(b) An involution is a map on A such that

(a + λb)* = a* + λb*, (ab)* = b*a*, a** = a for all a, b ∈ A and λ ∈ C.
(c) A C*-algebra A is a Banach algebra equipped with an involution

a → a* satisfying the C*-condition

$$\|a^*a\| = \|a\|^2 \quad \text{for all } a \in \mathcal{A}.$$

A morphism Φ between C*-algebras \mathcal{A} and \mathcal{B} is a linear map $\Phi: \mathcal{A} \to \mathcal{B}$ which preserves multiplication and involution. A representation π of \mathcal{A} on a Hilbert space H is a morphism $\pi: \mathcal{A} \to \mathcal{B}(H)$.

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra \mathcal{A} is isometrically *-isomorphic to $C_0(\hat{\mathcal{A}})$ where $\hat{\mathcal{A}}$ is the set of nonzero morphisms $\phi : \mathcal{A} \to \mathbb{C}$ which, equipped with the topology of pointwise convergence, is a locally compact Hausdorff space. For each $a \in \mathcal{A}$ the function $\hat{a} : \hat{\mathcal{A}} \to \mathbb{C} : \phi \to \phi(a)$ is in $C_0(\hat{\mathcal{A}})$. The Gelfand transform:

$$\mathcal{A} \to C_0(\hat{\mathcal{A}}): \; a \to \hat{a}$$

is an isometric *-isomorphism. The space $\hat{\mathcal{A}}$ is compact if and only if \mathcal{A} is unital.

Recall The spectrum $\sigma(a)$ of an element a of a C*-algebra \mathcal{A} is

 $\sigma(a):=\{\lambda\in\mathbb{C}:\lambda\mathbf{1}-a\text{ not invertible in }\mathcal{A}\}$

(calculated in the unitisation for non-unital \mathcal{A} .)

Definition

An element $a \in \mathcal{A}$ is **positive** if $a = a^*$ and $\sigma(a) \subseteq \mathbb{R}_+$. We write $\mathcal{A}_+ = \{a \in \mathcal{A} : a \ge 0\}$. If a, b are selfadjoint, we define $a \le b$ by $b - a \in \mathcal{A}_+$.

Examples

• In C(X): $f \ge 0$ iff $f(t) \in \mathbb{R}_+$ for all $t \in X$ because $\sigma(f) = f(X)$.

• In $M_n(\mathbb{C})$: $T \ge 0$ iff T is diagonalisable and has nonnegative e-values, equivalently iff it is positive semidefinite, i.e. $\langle T\xi, \xi \rangle \ge 0$ for all $\xi \in \mathbb{C}^n$. • In $\mathcal{B}(\mathcal{H})$: $T \ge 0$ iff $\langle T\xi, \xi \rangle \ge 0$ for all $\xi \in H$.

Proposition

Every positive element has a unique positive square root. In fact

$$a \in \mathcal{A}_+ \quad \Longleftrightarrow \quad there \ exists \ b \in \mathcal{A}_+ \ such \ that \ a = b^2$$
 $(= b^*b).$

Theorem

In any C^* -algebra, any element of the form b^*b is positive.

For the proof of the Theorem, we need

Proposition

For any C^* *-algebra, the set* \mathcal{A}_+ *is a* cone:

$$a,b\in \mathcal{A}_+,\,\lambda\geq 0\quad\Rightarrow\quad\lambda a\in \mathcal{A}_+,a+b\in \mathcal{A}_+.$$

Lemma

In a unital C*-algebra, if $x = x^*$ and $||x|| \le 1$, then

 $x \geq 0 \quad \iff \quad \|1-x\| \leq 1.$

Definition

A linear map $\Phi:\mathcal{A}\to\mathcal{B}$ between C*-algebras is positive if $a\in\mathcal{A}_+\Rightarrow\Phi(a)\in\mathcal{B}_+.$

Remark

Any morphism $\pi : \mathcal{A} \to \mathcal{B}$ between C*-algebras is positive.

Indeed, $\pi(a^*a) = \pi(a)^*\pi(a) \ge 0.$

Remark

If $a = a^*$ then $- \|a\| 1 \le a \le \|a\| 1$.

States

Proposition

If ϕ is a positive linear form, then $\phi(x^*) = \overline{\phi(x)}$ for all $x \in A$. The Cauchy-Schwarz inequality holds:

 $|\phi(b^*a)|^2 \leq \phi(a^*a)\phi(b^*b) \ \textit{for all} \ a,b \in \mathcal{A}.$

Hence the map $\langle \cdot, \cdot \rangle : \mathcal{A} \times \mathcal{A} \to \mathbb{C} : \langle a, b \rangle = \phi(b^*a)$ is a semi-inner product; it is an inner product iff ϕ is faithful.

Proposition

Every positive linear form is continuous. When A *is unital and* ϕ *is positive,* $\|\phi\| = \phi(1)$.

Definition

A state on a C*-algebra \mathcal{A} is a positive linear map of norm 1, i.e. $\phi: \mathcal{A} \to \mathbb{C}$ linear such that $\phi(a^*a) \ge 0$ for all $a \in \mathcal{A}$ and $\|\phi\| = 1$. A state is called **faithful** if $\phi(a^*a) > 0$ whenever $a \ne 0$.

States

Examples

• On $\mathcal{B}(\mathcal{H})$, $\phi(T) = \langle T\xi, \xi \rangle$ for a unit vector $\xi \in \mathcal{H}$, or $\phi(T) = \sum_i p_i \langle T\xi_i, \xi_i \rangle$ where $\{\xi_i\}$ orthonormal and $p_i \ge 0$ with $\sum p_i = 1$ ('density matrix').

• On C(K), $\phi(f) = f(t)$ for $t \in K$, or $\phi(f) = \int f d\mu$ for a probability measure μ .

• For a C*-algebra \mathcal{A} , if $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation and $\xi \in \mathcal{H}$ a unit vector, $\phi(a) = \langle \pi(a)\xi, \xi \rangle$.

The GNS construction

Conversely to the last example,

Theorem (Gelfand, Naimark, Segal)

For every state f on a C^* -algebra \mathcal{A} there is a triple $(\pi_f, \mathcal{H}_f, \xi_f)$ where π_f is a representation of \mathcal{A} on \mathcal{H}_f and $\xi_f \in \mathcal{H}_f$ a cyclic ¹ unit vector such that

$$f(a) = \left\langle \pi_f(a)\xi_f, \xi_f \right\rangle \quad \textit{for all } a \in \mathcal{A}.$$

The GNS triple $(\pi_f, \mathcal{H}_f, \xi_f)$ is uniquely determined by this relation up to unitary equivalence.

¹i.e. $\pi_f(\mathcal{A})\xi_f$ is dense in \mathcal{H}_f .

GNS: sketch of proof

(for unital \mathcal{A}).

- **1** Consider the linear space \mathcal{A} .
- 2 Equip it with the semi-inner product $\langle a, b \rangle_0 := \phi(b^*a)$. When $\mathcal{A} = C(X)$ we have $\langle a, b \rangle_0 = \int_X a(t)\overline{b(t)}d\mu(t)$.
- **3** Since ϕ is positive, $\langle a, a \rangle_0 = \phi(a^*a) \ge 0$. By Cauchy-Schwarz the set $\mathcal{N}_{\phi} = \mathcal{N} := \{ u \in \mathcal{A} : \langle u, u \rangle_0 = 0 \}$ is a linear space.

GNS: sketch of proof II

- **5** \mathcal{A} acts on the linear space \mathcal{A} as: $\pi_0(a)(b) = ab$.
- $\begin{array}{ll} \textbf{ 6} \quad \text{Since } \pi_0(a)(\mathcal{N}) \subseteq \mathcal{N} \text{, the map } \pi_0(a) \text{ induces } \pi_1(a) \text{ on } \\ H_{0\phi} = \mathcal{A}/\mathcal{N}. \end{array}$
- $\begin{array}{l} \hline \textbf{2} \quad \text{Show that } \|\pi_1(a)([b])\|_{\phi} \leq \|a\| \|\|b\|_{\phi}. \\ & [\text{When } \mathcal{A} = C(X), \|ab\|_2 \leq \|a\|_{\infty} \|b\|_2.] \\ & \text{It follows that } \pi_1(a) \text{ extends to a bounded operator } \pi_{\phi}(a) \text{ on } H_{\phi}. \end{array}$

Easy to verify: $\pi_{\phi} : a \to \pi_{\phi}(a) : \mathcal{A} \to \mathcal{B}(H_{\phi})$ is a *-representation. [When $\mathcal{A} = C(X)$, the map $\pi_{\phi}(a)$ is a multiplication operator on $L^{2}(\mu)$, i.e. $(\pi_{\phi}(a)b)(t) = a(t)b(t)$ for μ -almost all $t \in X$.]

S Let $\xi_{\phi} = [\mathbf{1}_{\mathcal{A}}]$. Then $\langle \pi_{\phi}(a)\xi_{\phi},\xi_{\phi} \rangle_{H_{\phi}} = \langle \pi_{\phi}(a)[\mathbf{1}],[\mathbf{1}] \rangle_{H_{\phi}}$ $= \langle a, \mathbf{1} \rangle_{H_{\phi}} = \phi(\mathbf{1}^*a) = \phi(a)$. \Box

Theorem (Gelfand, Naimark)

For every C*-algebra \mathcal{A} there exists a representation (π, \mathcal{H}) which is one to one (called faithful).

Idea of proof Enough to assume \mathcal{A} unital. Let $\mathcal{S}(\mathcal{A})$ be the set of all states. For each $f \in \mathcal{S}(\mathcal{A})$ consider (π_f, \mathcal{H}_f) and 'add them up' to obtain (π, \mathcal{H}) . Why is this faithful? Because

Lemma

For each nonzero $a \in \mathcal{A}$ there exists $f \in \mathcal{S}(\mathcal{A})$ such that $f(a^*a) > 0$.

... and then

$$\left\|\pi(a)\xi_f\right\|^2 = \left\langle\pi(a^*a)\xi_f,\xi_f\right\rangle = \left\langle\pi_f(a^*a)\xi_f,\xi_f\right\rangle = f(a^*a) > 0$$

so $\pi(a) \neq 0$.

Completely positive maps

Reminder A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ between C* algebras is positive iff

$$a \ge 0 \Rightarrow \Phi(a) \ge 0.$$

For $n \in \mathbb{N}$, let $\Phi_n : M_n(\mathcal{A}) \to M_n(\mathcal{B})$ where $\Phi_n([a_{ij}]) = [\Phi(a_{ij})]$. It is NOT always true that Φ_n is positive.

Example Let $\Phi(a) = a^{\dagger}$ (transpose) on $\mathcal{A} = M_2$: clearly positive. However, in $M_2(\mathcal{A})$,

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ positive, but } \Phi_2(A) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ not positive.}$$

Definition

A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ between C* algebras is called completely positive if Φ_n is positive for all $n \in \mathbb{N}$.

Examples of completely positive (cp) maps:

Every *-morphism π is positive $(\pi(a^*a) = \pi(a)^*\pi(a) \ge 0 \ \forall a)$. Hence every *-morphism is completely positive (because every π_n is a

*-morphism).

Every map of the form $a \to V^* aV$ is completely positive (here $\mathcal{A} \subseteq \mathcal{B}(H)$ and $V \in \mathcal{B}(H)$). Hence every $a \to V^* \pi(a)V : a \to \pi(a) \to V^* \pi(a)V$ is completely positive.

There are no others:

Theorem (Stinespring)

If $\Phi : \mathcal{A} \to \mathcal{B}(H)$ is a completely positive [unital] map from a [unital] C^* -algebra \mathcal{A} to $\mathcal{B}(H)$, then

$$\Phi(a) = V^* \pi(a) V \quad \text{for all } a \in \mathcal{A}.$$

where π is a *-representation of \mathcal{A} on the Hilbert space H_{π} and $V: H \to H_{\pi}$ is bounded.

When \mathcal{A} and ϕ are unital, V is an isometry and the representation π is called a dilation of Φ via the 'embedding' $V : \mathcal{H} \to \mathcal{K}$. [The dilation is unique under a minimality condition.] Remark When $H = \mathbb{C}$ this reduces to the GNS construction (with $V : \mathbb{C} \to H_{\pi} : 1 \to \xi_{\Phi}$).