Fourier algebra of $\mathbb{R}\rtimes\mathbb{R}^{\times}$ and a dual convolution

Mahya Ghandehari

University of Delaware

February 26, 2021

<ロ> < (回) < ((u) < (u) < ((u) < (((u) < (((u) < ((u) < ((u) < (((u) < ((u) < ((u) < ((u) < ((u

Non-commutative harmonic analysis

Function spaces related to Fourier analysis of non-abelian groups. E.g.

- Fourier alg, Rajchman alg, weighted Fourier alg.
- Study of their derivations, spectrum, and amenability.

My plan:

- What is the Fourier algebra? What do we know about it?
- Describe the Fourier algebra of $\mathbb{R}\rtimes\mathbb{R}^\times,$ and define a dual convolution for it.
- Construct symmetric derivation on Fourier algebra of ℝ ⋊ ℝ[×].

Classical harmonic analysis

Let G be abelian, and

$$\widehat{G} = \Big\{ \chi : G \to \mathbb{T} : \text{ continuous } \& \chi(xy) = \chi(x)\chi(y) \Big\}.$$

Fourier transform

•
$$\mathcal{F} : L^1(G) \to C_0(\widehat{G})$$
 given by $\widehat{f}(\xi) = \int_G f(x)\overline{\xi(x)}dx$ is a cts *-hom.
• $\mathcal{F}(f * g) = \widehat{f} \ \widehat{g}$.

Fourier algebra

$$\mathrm{A}(\widehat{G}) = \mathcal{F}(L^1(G)), \quad \|\widehat{f}\|_{\mathrm{A}} = \|f\|_1.$$

Coefficient function spaces

- *G*: locally compact group. E.g. \mathbb{Z}^n , \mathbb{R}^n , SU(2), SL(2, \mathbb{R}), ...
 - A continuous unitary representation of G on a Hilbert space \mathcal{H} is

$$\pi: \mathbf{G} \to \mathcal{U}(\mathcal{H}), \ \pi(\mathbf{xy}) = \pi(\mathbf{x})\pi(\mathbf{y}).$$

- $\widehat{G} = \{$ equivalence classes of irreducible $\pi \}.$
- A coefficient function associated with π is

$$\pi_{\xi,\eta}: \boldsymbol{G} o \mathbb{C}, \; \pi_{\xi,\eta}(\boldsymbol{x}) := \langle \pi(\boldsymbol{x})\xi, \eta \rangle.$$

Ex. Let $\mathcal{H} = \mathbb{C}^n$ with standard basis $\{e_i\}_{i=1}^n$, $\xi = e_i$ and $\eta = e_j$.

Coefficient function spaces

- *G*: locally compact group. E.g. \mathbb{Z}^n , \mathbb{R}^n , SU(2), SL(2, \mathbb{R}), ...
 - A continuous unitary representation of G on a Hilbert space \mathcal{H} is

$$\pi: \mathbf{G} \to \mathcal{U}(\mathcal{H}), \ \pi(\mathbf{xy}) = \pi(\mathbf{x})\pi(\mathbf{y}).$$

- $\widehat{G} = \{$ equivalence classes of irreducible $\pi \}.$
- A coefficient function associated with π is

$$\pi_{\xi,\eta}: \boldsymbol{G}
ightarrow \mathbb{C}, \; \pi_{\xi,\eta}(\boldsymbol{x}) := \langle \pi(\boldsymbol{x})\xi,\eta
angle.$$

Example

Regular representation $\lambda : G \rightarrow \mathcal{U}(L^2(G))$ is defined as

 $(\lambda(x)f)(y)=f(x^{-1}y).$

Peter-Weyl Theorem for compact groups

Regular rep decomposes into irreducible reps.

Fourier algebra [Eymard, 1964]

Recall.
$$\lambda_{f,g}(x) = \langle \lambda(x)f, g \rangle_{L^2(G)}$$
.

Fourier algebra

$$\mathrm{A}(G):=\Big\{\lambda_{\mathrm{f},\mathrm{g}}:\ \mathrm{f},\mathrm{g}\in\mathrm{L}^{2}(G)\Big\}\subseteq\mathrm{C}_{0}(G).$$

• This is a commutative Banach algebra (pointwise product).

•
$$\|u\|_{\mathcal{A}(G)} = \inf \left\{ \|f\|_2 \|g\|_2 : u = \lambda_{f,g} \right\}.$$

•
$$A(G)^* \simeq VN(G)$$
.

If G is abelian, then

$$A(G) = \left\{ f \in C_0(G) : f = \widehat{h} \text{ for some } h \in L^1(\widehat{G}) \right\}.$$

• If G compact, then

$$\mathrm{A}(G)=\Big\{f\in \mathcal{C}(G):\sum_{\pi\in\widehat{G}}d_{\pi}\|\pi(f)\|_{1}<\infty\Big\}.$$

 $\pi(f) = \int_G f(x)\pi(x)dx.$

The Banach algebra A(G) encodes G.

- [Eymard, 1964] $\sigma(A(G)) \simeq G$ (set-wise and topologically).
- [Walter, 1970] $A(G_1) \simeq A(G_2)$ iff $G_1 \simeq G_2$.
- [Leptin, 1968] A(G) has b.a.i. iff G amenable.
 (e.g. G compact or abelian or solvable...)

My focus

Existence or non-existence of "derivations" on A(G) has many implications in G.

Theorem [Connes and Haagerup]

For C^* -algebras, "lack of derivations" and nuclearity coincide.

Definition

 $D: A(G) \rightarrow X$ is derivation if linear, continuous, and

$$D(uv) = D(u) \cdot v + u \cdot D(v)$$

Note. X is a Banach A(G)-bimodule, *i.e.* $||u \cdot x||, ||x \cdot u|| \le C||x|| ||u||$.

When do derivations exist?

- $\not\exists$ derivation $D : A(G) \to \mathbb{C}$, as it would be $f \mapsto f'(x_0)$.
- $\not\exists$ derivation $D : A(G) \rightarrow A(G)$. [Singer-Wermer, 55]

Open question

For which $G \exists$ nonzero derivation $D : A(G) \rightarrow A(G)^*$?

Open question

For which $G \exists$ nonzero derivation $D : A(G) \rightarrow A(G)^*$?

Note. $A(G)^*$ is an important *symmetric* A(G)-bimodule.

Question was reduced to connected groups. [Forrest 88, Johnson 94, Forrest-Runde 04]

Conjecture, 1995

G connected group. Then such D exists iff G non-abelian.

Conjecture confirmed for compact connected groups, by reducing to Lie cases. [Johnson, 94; Forrest-Samei-Spronk, 09]

Non-compact groups; semisimple Lie

Theorem [Choi-G., 2014]

If G non-compact, connected semisimple Lie, then A(G) has a nonzero derivation.

G: group of affine transformations on the real line (connected). $\mathbb{R} \rtimes \mathbb{R}^{\times}_{+} = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a \in \mathbb{R}^{>0}, b \in \mathbb{R} \right\}$

Theorem [Choi-G., 2014]

We find the first explicit $A(\mathbb{R} \rtimes \mathbb{R}^{\times}_{+}) \to A(\mathbb{R} \rtimes \mathbb{R}^{\times}_{+})^*$, for non-cpt *G*.

$$D(f) : A(\mathbb{R} \rtimes \mathbb{R}_{+}^{\times}) \to A(\mathbb{R} \rtimes \mathbb{R}_{+}^{\times})^{*},$$

$$D(f)(g) = \int_{\mathbb{R} \rtimes \mathbb{R}^{\times}} (\text{suitable function}) \frac{\partial f}{\partial b}(b, a)g(b, a) d(b, a).$$

Note. $A(\mathbb{R} \rtimes \mathbb{R}^{\times}) \to \mathbb{C}, f \mapsto \frac{\partial f}{\partial b}$ is not a bounded derivation.

Problem solved!

Theorem [Lee-Ludwig-Samei-Spronk, 2016]

If G connected non-abelian Lie group, then A(G) has nonzero derivations.

Idea of proof

By structure theory of connected Lie groups, the problem reduces to

- Affine group of \mathbb{R} ,
- e Heisenberg group,
- Euclidean motion group,
- Grélaud group.

Remark

The condition "Lie" was dropped by Victor Losert (2020?).

Understanding space of derivations

Candidates $A \rtimes H$, where $H \leq \operatorname{GL}_n(\mathbb{R})$.

Typical example: group of affine translations on $\mathbb R$

$$G = \mathbb{R}
ightarrow \mathbb{R}^{ imes} = igg\{ \left[egin{array}{cc} a & b \ 0 & 1 \end{array}
ight] : \ a \in \mathbb{R}^{ imes}, b \in \mathbb{R} igg\}.$$

• $\mathbb{R}^{\times} := (\mathbb{R}_{\neq 0}, *)$ with Haar measure $\frac{dt}{|t|}$. \mathbb{R}^{\times} acts on \mathbb{R} by mult.

•
$$G \simeq \mathbb{R} \rtimes \mathbb{R}^{\times} = \{(b, a) : b \in \mathbb{R}, a \in \mathbb{R}^{\times}\}.$$

$\infty\text{-dim}$ irred rep

Mackey machine for induced rep $\pi : G \rightarrow \mathcal{U}(L^2(\mathbb{R}^{\times}, dt/|t|)),$

$$\pi(b,a)\xi(t)=e^{2\pi ibt}\xi(at).$$

- $\lambda \simeq \infty \cdot \pi$.
- coefficient functions $\pi_{\xi,\eta}(b,a) = \int_0^\infty e^{2\pi i b t} \xi(at) \overline{\eta(t)} \frac{dt}{|t|}$.
- π is square integrable, *i.e.* $\pi_{\xi,\eta} \in A(G)$.

Fourier analysis of $\mathbb{R}\rtimes\mathbb{R}^\times$

Recall:
$$\pi : G \to \mathcal{U}(L^2(\mathbb{R}^{\times}, dt/|t|)), \pi(b, a)\xi(t) = e^{2\pi i b t}\xi(at).$$

Fourier transform

Let $\mathcal{H} = L^2(\mathbb{R}^{\times}, dt/|t|)$, and consider the trace-class operators $\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}$.

Fourier transform $\Psi : \mathcal{H} \widehat{\otimes} \overline{\mathcal{H}} \to A(G), \quad \xi \otimes \eta \mapsto \pi_{\xi,\eta}$

(Banach space) isometric isomorphism.

Theorem [Choi-G., 2020]

Define the dual convolution of two rank-one tensors in $\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}$ as

$$(\xi \otimes \eta) \boxtimes (\xi' \otimes \eta') :=$$
$$\int_{\mathbb{R}^{\times}} \left(\lambda(1+h)\xi \cdot \lambda(1+h^{-1})\xi' \right) \otimes \left(\lambda(1+h)\eta \cdot \lambda(1+h^{-1})\eta' \right) \frac{dh}{|h|}$$

Then, $(\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}},\boxtimes)$ is a Banach algebra.

$$(\xi \otimes \eta) \boxtimes (\xi' \otimes \eta') :=$$
$$\int_{\mathbb{R}^{\times}} \left(\lambda(1+h)\xi \cdot \lambda(1+h^{-1})\xi' \right) \otimes \left(\lambda(1+h)\eta \cdot \lambda(1+h^{-1})\eta' \right) \frac{dh}{|h|} .$$

Theorem [Choi-G., 2020]

Let T_1 , $T_2 \in S_1(\mathcal{H})$. Then for a.e. $(s, t) \in \mathbb{R}^{\times} \times \mathbb{R}^{\times}$

$$(T_1 \boxtimes T_2)(\boldsymbol{s}, t) = \int_{-\infty}^{\infty} T_1\left(\frac{\boldsymbol{s}}{1+h}, \frac{t}{1+h}\right) T_2\left(\frac{\boldsymbol{s}}{1+h^{-1}}, \frac{t}{1+h^{-1}}\right) \frac{dh}{|h|}$$

where the integral is absolutely convergent for a.e. $(s, t) \in \mathbb{R}^{\times} \times \mathbb{R}^{\times}$.

Theorem [Choi-G., 2020]

Fourier transform $\Psi : \mathcal{H} \widehat{\otimes} \overline{\mathcal{H}} \to A(G)$, $\xi \otimes \eta \mapsto \pi_{\xi,\eta}$ is a (Banach algebra) isometric isomorphism.

Derivations on $\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}$

Define a multilinear map $\Phi:\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}\otimes\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}\to\mathbb{C}$ by

$$\Phi(T_1 \otimes T_0) = \int_{\mathbb{R}^{\times} \times \mathbb{R}^{\times}} \operatorname{sign}(s) T_1(s, t) T_0(-s, -t) \frac{d(s, t)}{|s||t|}.$$

- View Φ as a bilinear form on $\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}$.
- Define D to be the corresponding operator $\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}} \to (\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}})^*$ as

$$D(T_1)(T_0) = \Phi(T_1 \otimes T_0).$$

Theorem [Choi-G., 2020]

We have

$$D(T_1 \boxtimes T_2)(T_0) = D(T_1)(T_2 \boxtimes T_0) + D(T_2)(T_1 \boxtimes T_0).$$

So *D* is a derivation on the Banach algebra $\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}}$.

Derivations on $A(\mathbb{R} \rtimes \mathbb{R}^{\times})$

- Fourier transform: $\Psi : \mathcal{H} \widehat{\otimes} \overline{\mathcal{H}} \to A(G), \quad \xi \otimes \eta \mapsto \pi_{\xi,\eta}.$
- Derivative: $D: \mathcal{H}\widehat{\otimes}\overline{\mathcal{H}} \to (\mathcal{H}\widehat{\otimes}\overline{\mathcal{H}})^*$,

$$D(T_1)(T_0) = \int_{\mathbb{R}^{\times} \times \mathbb{R}^{\times}} \operatorname{sign}(s) T_1(s,t) T_0(-s,-t) \frac{d(s,t)}{|s||t|}.$$

Theorem [Choi-G., 2020]

 $\widetilde{D} := (\Psi^{-1})^* \circ D \circ \Psi^{-1}$ is a derivation on the Ban algebra $A(\mathbb{R} \rtimes \mathbb{R}^{\times})$.

Thank you very much!