Semigroup C*-algebras and their K-theory

Xin Li

University of Glasgow

erc

- Semigroup C*-algebras
- ► Examples

Outline

- Semigroup C*-algebras
- Examples
- ► The underlying dynamics

- Semigroup C*-algebras
- Examples
- The underlying dynamics
- K-theory for semigroup C*-algebras

Outline

- Semigroup C*-algebras
- Examples
- The underlying dynamics
- K-theory for semigroup C*-algebras
- Examples and applications

Outline

- Semigroup C*-algebras
- Examples
- The underlying dynamics
- K-theory for semigroup C*-algebras
- Examples and applications
- A more general K-theory formula

▶ Let *P* be a left-cancellative semigroup.

- ▶ Let *P* be a left-cancellative semigroup.
- Consider its left regular representation

$$P \to \operatorname{Isom}(\ell^2 P), \ p \mapsto \lambda_p,$$

- ▶ Let *P* be a left-cancellative semigroup.
- Consider its left regular representation

$$P \to \operatorname{Isom}(\ell^2 P), \ p \mapsto \lambda_p,$$

given by $\lambda_p(\delta_x) = \delta_{px}$.

- ▶ Let *P* be a left-cancellative semigroup.
- Consider its left regular representation

$$P \to \operatorname{Isom}(\ell^2 P), \ p \mapsto \lambda_p,$$

given by $\lambda_p(\delta_x) = \delta_{px}$.

► Define the semigroup C*-algebra

$$\mathcal{C}^*_\lambda(\mathcal{P}) := \mathcal{C}^*(\{\lambda_{\mathcal{P}}: \ \mathcal{p} \in \mathcal{P}\}) \subseteq \mathcal{L}(\ell^2 \mathcal{P}).$$

- ▶ Let *P* be a left-cancellative semigroup.
- Consider its left regular representation

$$P \to \operatorname{Isom}(\ell^2 P), \ p \mapsto \lambda_p,$$

given by $\lambda_p(\delta_x) = \delta_{px}$.

Define the semigroup C*-algebra

$$\mathcal{C}^*_\lambda(\mathcal{P}) := \mathcal{C}^*(\{\lambda_{\mathcal{P}}: \ \mathcal{p} \in \mathcal{P}\}) \subseteq \mathcal{L}(\ell^2 \mathcal{P}).$$

Related constructions:

- ▶ Let *P* be a left-cancellative semigroup.
- Consider its left regular representation

$$P \to \operatorname{Isom}(\ell^2 P), \ p \mapsto \lambda_p,$$

given by $\lambda_p(\delta_x) = \delta_{px}$.

Define the semigroup C*-algebra

$$\mathcal{C}^*_\lambda(\mathcal{P}) := \mathcal{C}^*(\{\lambda_{\mathcal{P}}: \ \mathcal{p} \in \mathcal{P}\}) \subseteq \mathcal{L}(\ell^2 \mathcal{P}).$$

Related constructions:

Full or universal semigroup C*-algebras;

- ▶ Let *P* be a left-cancellative semigroup.
- Consider its left regular representation

$$P \to \operatorname{Isom}(\ell^2 P), \ p \mapsto \lambda_p,$$

given by $\lambda_p(\delta_x) = \delta_{px}$.

► Define the semigroup C*-algebra

$$C^*_{\lambda}(P) := C^*(\{\lambda_p: p \in P\}) \subseteq \mathcal{L}(\ell^2 P).$$

Related constructions:

- Full or universal semigroup C*-algebras;
- Non-self-adjoint versions:

$$A_{\lambda}(P) = \overline{\operatorname{span}}(\{\lambda_p: p \in P\}) \subseteq \mathcal{L}(\ell^2 P).$$

• $P = \mathbb{N}$; $C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ *P* = positive cone of totally ordered group [Douglas, Murphy, ...]

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$.

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \curvearrowright P$. Form $P \rtimes \langle \lambda \rangle$ [L].

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \sim P$. Form $P \rtimes \langle \lambda \rangle$ [L].
- Numerical semigroups [Kakariadis-Katsoulis-L] Example: P = N \ {1} = {0,2,3,4,...}.

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \sim P$. Form $P \rtimes \langle \lambda \rangle$ [L].
- Numerical semigroups [Kakariadis-Katsoulis-L]
 Example: P = N \ {1} = {0,2,3,4,...}.
 More generally: Finitely generated abelian semigroups [Cuntz]

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \sim P$. Form $P \rtimes \langle \lambda \rangle$ [L].
- Numerical semigroups [Kakariadis-Katsoulis-L]
 Example: P = N \ {1} = {0, 2, 3, 4, ...}.
 More generally: Finitely generated abelian semigroups [Cuntz]

$$\blacktriangleright P = \mathbb{N} \times \mathbb{N},$$

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \sim P$. Form $P \rtimes \langle \lambda \rangle$ [L].
- Numerical semigroups [Kakariadis-Katsoulis-L]
 Example: P = N \ {1} = {0, 2, 3, 4, ...}.
 More generally: Finitely generated abelian semigroups [Cuntz]

•
$$P = \mathbb{N} \times \mathbb{N}$$
, $C^*_{\lambda}(\mathbb{N} \times \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N}) \otimes C^*_{\lambda}(\mathbb{N})$;

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \sim P$. Form $P \rtimes \langle \lambda \rangle$ [L].
- Numerical semigroups [Kakariadis-Katsoulis-L]
 Example: P = N \ {1} = {0, 2, 3, 4, ...}.
 More generally: Finitely generated abelian semigroups [Cuntz]

$$P = \mathbb{N} \times \mathbb{N}, \ C^*_{\lambda}(\mathbb{N} \times \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N}) \otimes C^*_{\lambda}(\mathbb{N}); P = \mathbb{N} * \mathbb{N},$$

- $P = \mathbb{N}; \ C^*_{\lambda}(\mathbb{N})$ is the Toeplitz algebra [Coburn, ...]
- ▶ P = positive cone of totally ordered group [Douglas, Murphy, ...]For instance, take $\lambda \in (0, \infty)$ and $P = \mathbb{Z}[\lambda, \lambda^{-1}] \cap [0, \infty)$. Multiplication by λ yields $\langle \lambda \rangle \sim P$. Form $P \rtimes \langle \lambda \rangle$ [L].
- Numerical semigroups [Kakariadis-Katsoulis-L]
 Example: P = N \ {1} = {0, 2, 3, 4, ...}.
 More generally: Finitely generated abelian semigroups [Cuntz]

$$P = \mathbb{N} \times \mathbb{N}, \ C^*_{\lambda}(\mathbb{N} \times \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N}) \otimes C^*_{\lambda}(\mathbb{N}); P = \mathbb{N} * \mathbb{N}, \ 0 \to \mathcal{K} \to C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \to \mathcal{O}_2 \to 0.$$

 N × N, N ∗ N are examples of right-angled Artin monoids [Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...]

 N×N, N*N are examples of right-angled Artin monoids [Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...] Let Γ = (V, E) be an undirected graph, with E ⊆ V × V.

 N × N, N * N are examples of right-angled Artin monoids [Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...] Let Γ = (V, E) be an undirected graph, with E ⊆ V × V. Define

$$\mathsf{A}_{\mathsf{\Gamma}}^{+} := \langle \{ \sigma_{\mathsf{v}} \colon \mathsf{v} \in \mathsf{V} \} \mid \sigma_{\mathsf{v}} \sigma_{\mathsf{w}} = \sigma_{\mathsf{w}} \sigma_{\mathsf{v}} \text{ for all } (\mathsf{v}, \mathsf{w}) \in \mathsf{E} \rangle^{+}$$

 N × N, N * N are examples of right-angled Artin monoids [Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...] Let Γ = (V, E) be an undirected graph, with E ⊆ V × V. Define

$$\mathcal{A}^+_{\Gamma} := \langle \{ \sigma_{\mathsf{v}} \colon \mathsf{v} \in \mathsf{V} \} \mid \sigma_{\mathsf{v}} \sigma_{\mathsf{w}} = \sigma_{\mathsf{w}} \sigma_{\mathsf{v}} ext{ for all } (\mathsf{v}, \mathsf{w}) \in \mathsf{E}
angle^+$$

Examples (for $\mathbb{N} \times \mathbb{N}$ and $\mathbb{N} * \mathbb{N}$):

 N × N, N * N are examples of right-angled Artin monoids [Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...] Let Γ = (V, E) be an undirected graph, with E ⊆ V × V. Define

$$\mathcal{A}_{\Gamma}^{+} := \langle \{ \sigma_{\mathsf{v}} \colon \mathsf{v} \in \mathsf{V} \} \mid \sigma_{\mathsf{v}} \sigma_{\mathsf{w}} = \sigma_{\mathsf{w}} \sigma_{\mathsf{v}} \text{ for all } (\mathsf{v}, \mathsf{w}) \in \mathsf{E} \rangle^{+}$$

Examples (for $\mathbb{N} \times \mathbb{N}$ and $\mathbb{N} * \mathbb{N}$):

Theorem (Eilers-L-Ruiz): $C^*_{\lambda}(A^+_{\Gamma}) \cong C^*_{\lambda}(A^+_{\Lambda})$ if and only if

 N×N, N*N are examples of right-angled Artin monoids [Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...] Let Γ = (V, E) be an undirected graph, with E ⊆ V × V. Define

$$\mathcal{A}_{\Gamma}^{+} := \langle \{ \sigma_{\mathsf{v}} \colon \mathsf{v} \in \mathsf{V} \} \mid \sigma_{\mathsf{v}} \sigma_{\mathsf{w}} = \sigma_{\mathsf{w}} \sigma_{\mathsf{v}} \text{ for all } (\mathsf{v}, \mathsf{w}) \in \mathsf{E} \rangle^{+}$$

Examples (for $\mathbb{N} \times \mathbb{N}$ and $\mathbb{N} * \mathbb{N}$):

Theorem (Eilers-L-Ruiz): $C_{\lambda}^*(A_{\Gamma}^+) \cong C_{\lambda}^*(A_{\Lambda}^+)$ if and only if 1. $t(\Gamma) = t(\Lambda)$ 2. $N_k(\Gamma) + N_{-k}(\Gamma) = N_k(\Lambda) + N_{-k}(\Lambda)$ for all $k \in \mathbb{Z}$ 3. $N_0(\Gamma) > 0$, or $\sum_{k>0} N_{-k}(\Gamma) \equiv \sum_{k>0} N_{-k}(\Lambda) \mod 2$ Here t and N_{\bullet} are invariants of graphs.

 $N_{-4} = 1$ $N_{-3} = 1$ $N_{-2} \!=\! 1$ $N_{-2} = 1$ $N_{-2} = 1$ $N_{-1} = 1$ $N_{-1} = 1$ $N_{-1}=1$ $N_{-1}=1$ $N_{-1} = 1$ $N_{-1} = 1$ $N_0 = 1$ $N_0 = 1$ $N_{-1}=1$ $N_0 = 1$ $N_0 = 1$ $N_0 = 1$ $N_0 = 1$ $N_1 = 1$ $N_1 = 1$ $N_0 = 1$ $N_{-3}=1$ $N_{-2}=1$ $N_{-2}=1$ $N_{-1}=2$ $N_{-1} = 1$ $N_{-1} = 1$ $N_{-1} = 1$ $N_{-1} = 1$ t=1t=1t=1t=1t=1 $N_0 = 1$ $N_{-2}=1$ $N_{-1}=2$ $N_{-1} = 1$ $N_{-1}=1$ t=5t=2t=1t=1t=2t=3

Figure 1: Invariants for all graphs with 5 vertices. Any quantity not mentioned equals zero.

Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
 Let *I* be an index set and m_{ij} ∈ {2,3,4,...} ∪ {∞} with m_{ij} = m_{ji}.

Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
 Let *I* be an index set and m_{ij} ∈ {2,3,4,...} ∪ {∞} with m_{ij} = m_{ji}.

$$P := \left\langle \{\sigma_i\}_{i \in I} \mid \underbrace{\sigma_i \sigma_j \sigma_i \sigma_j \cdots}_{m_{ij}} = \underbrace{\sigma_j \sigma_i \sigma_j \sigma_i \cdots}_{m_{ji}} \text{ for all } i, j \in I, \ i \neq j \right\rangle^+.$$

Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
 Let *I* be an index set and m_{ij} ∈ {2,3,4,...} ∪ {∞} with m_{ij} = m_{ji}.

$$P := \left\langle \{\sigma_i\}_{i \in I} \mid \underbrace{\sigma_i \sigma_j \sigma_i \sigma_j \cdots}_{m_{ij}} = \underbrace{\sigma_j \sigma_i \sigma_j \sigma_i \cdots}_{m_{ji}} \text{ for all } i, j \in I, \ i \neq j \right\rangle^+.$$

If $m_{ij} \in \{2, \infty\}$, then we get right-angled Artin monoids.

Artin monoids [Crisp-Laca, L-Omland-Spielberg, …]
 Let *I* be an index set and m_{ij} ∈ {2,3,4,...} ∪ {∞} with m_{ij} = m_{ji}.

$$P := \left\langle \left\{ \sigma_i \right\}_{i \in I} \mid \underbrace{\sigma_i \sigma_j \sigma_i \sigma_j \cdots}_{m_{ij}} = \underbrace{\sigma_j \sigma_i \sigma_j \sigma_i \cdots}_{m_{ji}} \text{ for all } i, j \in I, \ i \neq j \right\rangle^+.$$

If $m_{ij} \in \{2, \infty\}$, then we get right-angled Artin monoids.

Example: $I = \{1, 2\}$ and $m_{1,2} = m_{2,1} = 3$:

$$B_3^+ := \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle^+ \,.$$

Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
 Let *I* be an index set and m_{ij} ∈ {2,3,4,...} ∪ {∞} with m_{ij} = m_{ji}.

$$P := \left\langle \{\sigma_i\}_{i \in I} \mid \underbrace{\sigma_i \sigma_j \sigma_i \sigma_j \cdots}_{m_{ij}} = \underbrace{\sigma_j \sigma_i \sigma_j \sigma_i \cdots}_{m_{ji}} \text{ for all } i, j \in I, \ i \neq j \right\rangle^+.$$

If $m_{ij} \in \{2, \infty\}$, then we get right-angled Artin monoids.

Example: $I = \{1, 2\}$ and $m_{1,2} = m_{2,1} = 3$:

$$B_3^+ := \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle^+.$$

$$X |_{\sigma_1} | X = X = X$$

► One-relator monoids [L-Omland-Spielberg]
P = ⟨S | u = v⟩⁺, where u, v are finite words in S

- One-relator monoids [L-Omland-Spielberg] $P = \langle S \mid u = v \rangle^+$, where *u*, *v* are finite words in *S*
- Baumslag-Solitar monoids [Spielberg]

$$P = \langle a, b \mid ab^k = b^l a \rangle^+$$

- One-relator monoids [L-Omland-Spielberg] $P = \langle S \mid u = v \rangle^+$, where *u*, *v* are finite words in *S*
- Baumslag-Solitar monoids [Spielberg]

$$P = \langle a, b \mid ab^k = b^l a \rangle^+$$
 or $P = \langle a, b \mid a = b^l a b^k \rangle^+$

- One-relator monoids [L-Omland-Spielberg] $P = \langle S \mid u = v \rangle^+$, where *u*, *v* are finite words in *S*
- ► Baumslag-Solitar monoids [Spielberg] $P = \langle a, b \mid ab^k = b^l a \rangle^+$ or $P = \langle a, b \mid a = b^l a b^k \rangle^+$ GBS monoids: $P = \langle \{a_i\}_i, b \mid a_i b^{k_i} = b^{l_i} a_i$ or $a_i = b^{l_i} a_i b^{k_i} \rangle^+$.

- One-relator monoids [L-Omland-Spielberg] $P = \langle S \mid u = v \rangle^+$, where *u*, *v* are finite words in *S*
- ► Baumslag-Solitar monoids [Spielberg] $P = \langle a, b \mid ab^k = b^l a \rangle^+$ or $P = \langle a, b \mid a = b^l a b^k \rangle^+$ GBS monoids: $P = \langle \{a_i\}_i, b \mid a_i b^{k_i} = b^{l_i} a_i$ or $a_i = b^{l_i} a_i b^{k_i} \rangle^+$.

Graphs of monoids [Chen-L]:

Theorem (L, Bruce-L): Let R and S be rings of algebraic integers in number fields K and L.

Theorem (L, Bruce-L): Let R and S be rings of algebraic integers in number fields K and L. Assume that K and L are Galois over \mathbb{Q} .

Theorem (L, Bruce-L): Let R and S be rings of algebraic integers in number fields K and L. Assume that K and L are Galois over \mathbb{Q} . Then $C_{\lambda}^*(R \rtimes R^{\times}) \cong C_{\lambda}^*(S \rtimes S^{\times})$ if and only if $K \cong L$.

Theorem (L, Bruce-L): Let R and S be rings of algebraic integers in number fields K and L. Assume that K and L are Galois over \mathbb{Q} . Then $C_{\lambda}^*(R \rtimes R^{\times}) \cong C_{\lambda}^*(S \rtimes S^{\times})$ if and only if $K \cong L$.

 Zappa-Szép products [Nekrashevych, Exel-Pardo, Laca-Raeburn-Ramagge-Whittaker, Starling, ...]

Theorem (L, Bruce-L): Let R and S be rings of algebraic integers in number fields K and L. Assume that K and L are Galois over \mathbb{Q} . Then $C_{\lambda}^*(R \rtimes R^{\times}) \cong C_{\lambda}^*(S \rtimes S^{\times})$ if and only if $K \cong L$.

 Zappa-Szép products [Nekrashevych, Exel-Pardo, Laca-Raeburn-Ramagge-Whittaker, Starling, ...]

Let I_l(P) be the smallest inverse semigroup of partial bijections of P containing P → pP, x → px (for all p ∈ P).

Let I_l(P) be the smallest inverse semigroup of partial bijections of P containing P → pP, x → px (for all p ∈ P).
 Its C*-algebra C^{*}_λ(I_l(P)) is closely related to C^{*}_λ(P).

Let *I_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*).
 Its C*-algebra *C*^{*}_λ(*I_l(P)*) is closely related to *C*^{*}_λ(*P*).
 Let *J* := {dom (*s*): *s* ∈ *I_l(P)*}

Let *I_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*).
 Its C*-algebra *C*^{*}_λ(*I_l(P)*) is closely related to *C*^{*}_λ(*P*).
 Let *J* := {dom (*s*): *s* ∈ *I_l(P)*} and Ω := {*x* : *J* → {0,1} mult.}.

Let *I_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*). Its C*-algebra C^{*}_λ(*I_l(P)*) is closely related to C^{*}_λ(*P*). Let *J* := {dom(*s*): *s* ∈ *I_l(P)*} and Ω := {*χ* : *J* → {0,1} mult.}. Every *s* ∈ *I_l(P)* induces a partial homeomorphism α_s : {*χ* ∈ Ω: *χ*(*s*⁻¹*s*) = 1} → {*χ* ∈ Ω: *χ*(*ss*⁻¹) = 1}, *χ* → *χ*(*s*⁻¹ ⊔ *s*).

- Let *I_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*).
 Its C*-algebra *C*^{*}_λ(*I_l(P)*) is closely related to *C*^{*}_λ(*P*).
 Let *J* := {dom(*s*): *s* ∈ *I_l(P)*} and Ω := {*χ* : *J* → {0,1} mult.}.
 Every *s* ∈ *I_l(P)* induces a partial homeomorphism α_s : {*χ* ∈ Ω: *χ*(*s*⁻¹*s*) = 1} → {*χ* ∈ Ω: *χ*(*ss*⁻¹) = 1}, *χ* → *χ*(*s*⁻¹ ⊔ *s*).
- For a subsemigroup P of a group G, every s ∈ I_l(P) acts by left multiplication with some element σ(s) ∈ G.

- ▶ Let $I_l(P)$ be the smallest inverse semigroup of partial bijections of Pcontaining $P \xrightarrow{\sim} pP$, $x \mapsto px$ (for all $p \in P$). Its C*-algebra $C_{\lambda}^*(I_l(P))$ is closely related to $C_{\lambda}^*(P)$. Let $\mathcal{J} := \{ \operatorname{dom}(s) : s \in I_l(P) \}$ and $\Omega := \{ \chi : \mathcal{J} \xrightarrow{\rightarrow} \{0, 1\} \text{ mult.} \}$. Every $s \in I_l(P)$ induces a partial homeomorphism $\alpha_s :$ $\{ \chi \in \Omega : \chi(s^{-1}s) = 1 \} \rightarrow \{ \chi \in \Omega : \chi(ss^{-1}) = 1 \}, \chi \mapsto \chi(s^{-1} \sqcup s)$.
- For a subsemigroup P of a group G, every s ∈ I_l(P) acts by left multiplication with some element σ(s) ∈ G. For s, t ∈ I_l(P) with σ(s) = σ(t),

- Let *I_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*). Its C*-algebra C^{*}_λ(*I_l(P)*) is closely related to C^{*}_λ(*P*). Let *J* := {dom(*s*): *s* ∈ *I_l(P)*} and Ω := {*χ* : *J* → {0,1} mult.}. Every *s* ∈ *I_l(P)* induces a partial homeomorphism α_s : {*χ* ∈ Ω: *χ*(*s*⁻¹*s*) = 1} → {*χ* ∈ Ω: *χ*(*ss*⁻¹) = 1}, *χ* → *χ*(*s*⁻¹ ⊔ *s*).
- For a subsemigroup P of a group G, every s ∈ I_l(P) acts by left multiplication with some element σ(s) ∈ G. For s, t ∈ I_l(P) with σ(s) = σ(t), α_s and α_t coincide whenever possible.

- Let *l_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*). Its C*-algebra C^{*}_λ(*l_l(P)*) is closely related to C^{*}_λ(*P*). Let *J* := {dom (*s*): *s* ∈ *l_l(P)*} and Ω := {*χ* : *J* → {0,1} mult.}. Every *s* ∈ *l_l(P)* induces a partial homeomorphism α_s : {*χ* ∈ Ω: *χ*(*s*⁻¹*s*) = 1} → {*χ* ∈ Ω: *χ*(*ss*⁻¹) = 1}, *χ* → *χ*(*s*⁻¹ ⊔ *s*).
- ► For a subsemigroup *P* of a group *G*, every $s \in I_l(P)$ acts by left multiplication with some element $\sigma(s) \in G$. For $s, t \in I_l(P)$ with $\sigma(s) = \sigma(t)$, α_s and α_t coincide whenever possible. This gives rise to a partial action $G \curvearrowright \Omega$,

- Let *l_l(P)* be the smallest inverse semigroup of partial bijections of *P* containing *P* → *pP*, *x* → *px* (for all *p* ∈ *P*). Its C*-algebra *C*^{*}_λ(*l_l(P)*) is closely related to *C*^{*}_λ(*P*). Let *J* := {dom(*s*): *s* ∈ *l_l(P)*} and Ω := {*χ* : *J* → {0,1} mult.}. Every *s* ∈ *l_l(P)* induces a partial homeomorphism α_s : {*χ* ∈ Ω: *χ*(*s*⁻¹*s*) = 1} → {*χ* ∈ Ω: *χ*(*ss*⁻¹) = 1}, *χ* → *χ*(*s*⁻¹ ⊔ *s*).
 For a subsemigroup *P* of a group *G*, every *s* ∈ *l_l(P)* acts by left
- For a subsemigroup P of a group G, every s ∈ I_l(P) acts by left multiplication with some element σ(s) ∈ G. For s, t ∈ I_l(P) with σ(s) = σ(t), α_s and α_t coincide whenever possible. This gives rise to a partial action G ∩ Ω, and we obtain C^{*}_λ(P) ≅ C(Ω) ⋊_r G.

K-theory for semigroup C*-algebras

K-theory for semigroup C*-algebras

Theorem (Cuntz-Echterhoff-L): Let P be a subsemigroup of a group G

Theorem (Cuntz-Echterhoff-L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients.

Theorem (Cuntz-Echterhoff-L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients. If P satisfies independence and $P \subseteq G$ is Toeplitz, **Theorem** (Cuntz-Echterhoff-L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients. If P satisfies independence and $P \subseteq G$ is Toeplitz, then $K_*(C^*_{\lambda}(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_{\lambda}(G_X)).$ **Theorem** (Cuntz-Echterhoff-L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients. If P satisfies independence and $P \subseteq G$ is Toeplitz, then $K_*(C^*_{\lambda}(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_{\lambda}(G_X)).$

• $\mathcal{J}^{\times} = \left\{ q_n^{-1} p_n \cdots q_1^{-1} p_1 P \right\} \setminus \{\emptyset\}$ (constructible ideals).

Theorem (Cuntz-Echterhoff-L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients. If P satisfies independence and $P \subseteq G$ is Toeplitz, then $K_*(C^*_{\lambda}(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_{\lambda}(G_X)).$

▶ $\mathcal{J}^{\times} = \{q_n^{-1}p_n \cdots q_1^{-1}p_1P\} \setminus \{\emptyset\}$ (constructible ideals). *P* sat. independence if $\{1_X: X \in \mathcal{J}^{\times}\} \subseteq \ell^{\infty}(P)$ is linearly independent.
J[×] = {q_n⁻¹p_n ··· q₁⁻¹p₁P} \ {∅} (constructible ideals). P sat. independence if {1_X: X ∈ J[×]} ⊆ ℓ[∞](P) is linearly independent. For X, Y ∈ J[×], define X ~ Y if there is g ∈ G with gX = Y.

▶ $\mathcal{J}^{\times} = \{q_n^{-1}p_n \cdots q_1^{-1}p_1P\} \setminus \{\emptyset\}$ (constructible ideals). *P* sat. independence if $\{1_X: X \in \mathcal{J}^{\times}\} \subseteq \ell^{\infty}(P)$ is linearly independent. For $X, Y \in \mathcal{J}^{\times}$, define $X \sim Y$ if there is $g \in G$ with gX = Y. For $X \in \mathcal{J}^{\times}$, define $G_X := \{g \in G: gX = X\}$.

▶ $\mathcal{J}^{\times} = \{q_n^{-1}p_n \cdots q_1^{-1}p_1P\} \setminus \{\emptyset\}$ (constructible ideals). *P* sat. independence if $\{1_X: X \in \mathcal{J}^{\times}\} \subseteq \ell^{\infty}(P)$ is linearly independent. For $X, Y \in \mathcal{J}^{\times}$, define $X \sim Y$ if there is $g \in G$ with gX = Y. For $X \in \mathcal{J}^{\times}$, define $G_X := \{g \in G: gX = X\}$.

▶ If $P \subseteq G$ is Toeplitz, then the partial action $G \curvearrowright \Omega$ is globalizable

▶ $\mathcal{J}^{\times} = \{q_n^{-1}p_n \cdots q_1^{-1}p_1P\} \setminus \{\emptyset\}$ (constructible ideals). *P* sat. independence if $\{1_X: X \in \mathcal{J}^{\times}\} \subseteq \ell^{\infty}(P)$ is linearly independent. For $X, Y \in \mathcal{J}^{\times}$, define $X \sim Y$ if there is $g \in G$ with gX = Y. For $X \in \mathcal{J}^{\times}$, define $G_X := \{g \in G: gX = X\}$.

 If P ⊆ G is Toeplitz, then the partial action G ∩ Ω is globalizable and C^{*}_λ(P) is Morita equivalent to a (global) crossed product.

Theorem (L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients.

Theorem (L): Let P be a subsemigroup of a group G satisfying the Baum-Connes conjecture with coefficients. If P satisfies independence,

Theorem (L): Let *P* be a subsemigroup of a group *G* satisfying the Baum-Connes conjecture with coefficients. If *P* satisfies independence, then $K_*(C^*_\lambda(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_\lambda(G_X)).$

Theorem (L): Let *P* be a subsemigroup of a group *G* satisfying the Baum-Connes conjecture with coefficients. If *P* satisfies independence, then $K_*(C^*_{\lambda}(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_{\lambda}(G_X)).$

• Idea: $G \curvearrowright \Omega$ may not be globalizable.

Theorem (L): Let *P* be a subsemigroup of a group *G* satisfying the Baum-Connes conjecture with coefficients. If *P* satisfies independence, then $K_*(C^*_{\lambda}(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_{\lambda}(G_X)).$

Idea: G ∩ Ω may not be globalizable. But we can always construct Morita enveloping action G ∩ A such that C(Ω) ⋊_r G ∼_M A ⋊_r G.

Theorem (L): Let *P* be a subsemigroup of a group *G* satisfying the Baum-Connes conjecture with coefficients. If *P* satisfies independence, then $K_*(C^*_\lambda(P)) \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} K_*(C^*_\lambda(G_X)).$

Idea: G ∩ Ω may not be globalizable. But we can always construct Morita enveloping action G ∩ A such that C(Ω) ⋊_r G ∼_M A ⋊_r G. However, A will no longer be commutative (see [Abadie]).

• Special case: If P is right LCM, i.e., $\mathcal{J}^{\times} = \{pP\}$, then

- Special case: If P is right LCM, i.e., J[×] = {pP}, then independence is automatic and K_{*}(C^{*}_λ(P)) ≅ K_{*}(C^{*}_λ(P^{*})).
- Examples:

Artin monoids;

Special case: If P is right LCM, i.e., J[×] = {pP}, then independence is automatic and K_{*}(C^{*}_λ(P)) ≅ K_{*}(C^{*}_λ(P^{*})).

Examples:

Artin monoids; Baumslag-Solitar monoids,

Special case: If P is right LCM, i.e., J[×] = {pP}, then independence is automatic and K_{*}(C^{*}_λ(P)) ≅ K_{*}(C^{*}_λ(P^{*})).

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids;

Special case: If P is right LCM, i.e., J[×] = {pP}, then independence is automatic and K_{*}(C^{*}_λ(P)) ≅ K_{*}(C^{*}_λ(P^{*})).

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids; C*-algebras of right regular representations of $R \rtimes R^{\times}$;

Special case: If P is right LCM, i.e., J[×] = {pP}, then independence is automatic and K_{*}(C^{*}_λ(P)) ≅ K_{*}(C^{*}_λ(P^{*})).

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids; C*-algebras of right regular representations of $R \rtimes R^{\times}$;

• • •

Special case: If P is right LCM, i.e., J[×] = {pP}, then independence is automatic and K_{*}(C^{*}_λ(P)) ≅ K_{*}(C^{*}_λ(P^{*})).

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids; C*-algebras of right regular representations of $R \rtimes R^{\times}$;

• • •

► Consider one-relator monoids of the form P = ⟨S | u = v⟩⁺, where S is a countable set and u, v are finite words in S (...):

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids; C*-algebras of right regular representations of $R \rtimes R^{\times}$;

• • •

Consider one-relator monoids of the form P = ⟨S | u = v⟩⁺, where S is a countable set and u, v are finite words in S (...): Given P₁ = ⟨S₁ | u₁ = v₁⟩⁺ and P₂ = ⟨S₂ | u₂ = v₂⟩⁺

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids; C*-algebras of right regular representations of $R \rtimes R^{\times}$;

• • •

• Consider one-relator monoids of the form $P = \langle S \mid u = v \rangle^+$, where S is a countable set and u, v are finite words in S (...): Given $P_1 = \langle S_1 \mid u_1 = v_1 \rangle^+$ and $P_2 = \langle S_2 \mid u_2 = v_2 \rangle^+$ such that their C*-algebras $C^*_{\lambda}(P_1)$ and $C^*_{\lambda}(P_2)$ are nuclear,

Examples:

Artin monoids;

Baumslag-Solitar monoids, GBS monoids, graphs of monoids; C*-algebras of right regular representations of $R \rtimes R^{\times}$;

• • •

Consider one-relator monoids of the form P = ⟨S | u = v⟩⁺, where S is a countable set and u, v are finite words in S (...): Given P₁ = ⟨S₁ | u₁ = v₁⟩⁺ and P₂ = ⟨S₂ | u₂ = v₂⟩⁺ such that their C*-algebras C^{*}_λ(P₁) and C^{*}_λ(P₂) are nuclear, then C^{*}_λ(P₁) ≅ C^{*}_λ(P₂) if and only if |S₁| = |S₂|.

A more general K-theory formula

P: semigroup	
$P \subseteq G$	
P sat. independence	
G sat. Baum-Connes	
$\cong \bigoplus_{[X]\in \mathcal{J}^{\times}/_{\sim}}^{\mathcal{K}_{*}(C_{\lambda}^{*}(P))} \mathcal{K}_{*}(C_{\lambda}^{*}(G_{X}))$	

P: semigroup	S: inverse semigroup	
$P \subseteq G$		
P sat. independence		
G sat. Baum-Connes		
$ert egin{array}{c} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P}))\ \cong igoplus_{[X]\in\mathcal{J}^ imes/_\sim} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array}$		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$		
P sat. independence		
G sat. Baum-Connes		
$ \begin{array}{ c c c c c } & \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P})) \\ \cong \bigoplus_{[X] \in \mathcal{J}^\times/_\sim} & \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array} \end{array} $		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	
P sat. independence		
G sat. Baum-Connes		
$ert egin{array}{c} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P}))\ \cong igoplus_{[X]\in\mathcal{J}^ imes/_\sim} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array}$		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	_
P sat. independence		
G sat. Baum-Connes		
$ert egin{array}{c} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P}))\ \cong igoplus_{[X]\in\mathcal{J}^ imes/_\sim} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array}$		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	_
P sat. independence	_	
G sat. Baum-Connes		
$ert egin{array}{c} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P}))\ \cong igoplus_{[X]\in\mathcal{J}^ imes/_\sim} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array}$		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	—
P sat. independence	_	$\exists G \text{-inv. regular basis } \mathcal{V}$ of compact open sets in X
G sat. Baum-Connes		
$ \begin{array}{ c c c c } \hline & \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P})) \\ \cong \bigoplus_{[X] \in \mathcal{J}^\times/_\sim} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array} \end{array} $		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	—
P sat. independence	_	$\exists G \text{-inv. regular basis } \mathcal{V}$ of compact open sets in X
G sat. Baum-Connes	G sat. Baum-Connes	G sat. Baum-Connes
$ \begin{array}{ c c c c } \hline & & & & \\ \hline & & & \\ & & & \\ & $		

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	_
P sat. independence	—	$\exists G \text{-inv. regular basis } \mathcal{V}$ of compact open sets in X
G sat. Baum-Connes	G sat. Baum-Connes	G sat. Baum-Connes
$ \begin{array}{ c c c c c } \hline & \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P})) \\ \cong \bigoplus_{[X] \in \mathcal{J}^{\times}/_{\sim}} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array} \end{array} $	$\cong \bigoplus_{[d]\in E^\times/\sim}^{K_*(C^*_\lambda(S))} K_*(C^*_\lambda(S_d))$	

P: semigroup	S: inverse semigroup	$G \curvearrowright X$: partial dynamical system
$P \subseteq G$	\exists idempotent pure partial hom. $S \rightarrow G$	—
P sat. independence	_	$\exists G \text{-inv. regular basis } \mathcal{V}$ of compact open sets in X
G sat. Baum-Connes	G sat. Baum-Connes	G sat. Baum-Connes
$ \begin{array}{ c c c c c } \hline & \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{P})) \\ & \bigoplus_{[X]\in\mathcal{J}^\times/_\sim} \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G}_X)) \end{array} \end{array} $	$\cong \bigoplus_{[d]\in E^\times/_{\sim}}^{K_*(C^*_{\lambda}(S))} K_*(C^*_{\lambda}(S_d))$	$\cong \bigoplus_{\substack{[V]\in\mathcal{V}^{\times}/\sim}}^{K_{*}(C_{0}(X)\rtimes_{r}G)} K_{*}(C_{\lambda}^{*}(G_{V}))$

Thank you very much!