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Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.

I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .

I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:

I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;

I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Semigroup C*-algebras

I Let P be a left-cancellative semigroup.
I Consider its left regular representation

P → Isom(`2P), p 7→ λp,

given by λp(δx) = δpx .
I Define the semigroup C*-algebra

C∗λ(P) := C∗({λp: p ∈ P}) ⊆ L(`2P).

Related constructions:
I Full or universal semigroup C*-algebras;
I Non-self-adjoint versions:

Aλ(P) = span({λp: p ∈ P}) ⊆ L(`2P).

3



Examples

I P = N; C∗λ(N) is the Toeplitz algebra [Coburn, ...]
I P = positive cone of totally ordered group [Douglas, Murphy, ...]

For instance, take λ ∈ (0,∞) and P = Z[λ, λ−1] ∩ [0,∞).
Multiplication by λ yields 〈λ〉y P. Form P o 〈λ〉 [L].

I Numerical semigroups [Kakariadis-Katsoulis-L]
Example: P = N \ {1} = {0, 2, 3, 4, . . .}.
More generally: Finitely generated abelian semigroups [Cuntz]

I P = N× N, C∗λ(N× N) ∼= C∗λ(N)⊗ C∗λ(N);
P = N ∗ N, 0→ K → C∗λ(N ∗ N)→ O2 → 0.
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Examples

I N× N, N ∗ N are examples of right-angled Artin monoids
[Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...]
Let Γ = (V ,E ) be an undirected graph, with E ⊆ V × V . Define

A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ .

Examples (for N× N and N ∗ N):

Theorem (Eilers-L-Ruiz): C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ ) if and only if
1. t(Γ) = t(Λ)
2. Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
3. N0(Γ) > 0, or

∑
k>0 N−k(Γ) ≡

∑
k>0 N−k(Λ) mod 2

Here t and N• are invariants of graphs.
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Examples

The Isomorphism Problem for Semigroup C∗-Algebras 311

N−4=1 N−3=1 N−2=1 N−2=1 N−2=1 N−1=1 N−1=1

N−1=1 N−1=1 N−1=1 N−1=1 N−1=1 N0=1 N0=1

N0=1 N0=1 N0=1 N0=1 N0=1 N1=1 N1=1

N−3=1 N−2=1 N−2=1 N−1=2 N−1=1 N−1=1 N−1=1

t=1 N−1=1 t=1 t=1 t=1 t=1

N0=1 N−2=1 N−1=2 N−1=1 N−1=1 t=5

t=1 t=2 t=1 t=2 t=3

Figure 1: Invariants for all graphs with 5 vertices. Any quantity not mentioned
equals zero.

Documenta Mathematica 21 (2016) 309–343
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Examples

I Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
Let I be an index set and mij ∈ {2, 3, 4, . . .} ∪ {∞} with mij = mji .

P :=
〈
{σi}i∈I | σiσjσiσj · · ·︸ ︷︷ ︸

mij

= σjσiσjσi · · ·︸ ︷︷ ︸
mji

for all i , j ∈ I , i 6= j
〉+

.

If mij ∈ {2,∞}, then we get right-angled Artin monoids.

Example: I = {1, 2} and m1,2 = m2,1 = 3:

B+
3 := 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉+ .

σ1 σ2

7
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Example: I = {1, 2} and m1,2 = m2,1 = 3:

B+
3 := 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉+ .

σ1 σ2

7



Examples

I One-relator monoids [L-Omland-Spielberg]
P = 〈S | u = v〉+, where u, v are finite words in S

I Baumslag-Solitar monoids [Spielberg]
P =

〈
a, b | abk = bla

〉+ or P =
〈
a, b | a = blabk

〉+

GBS monoids: P =
〈
{ai}i , b | aibki = bli ai or ai = bli aib

ki
〉+.

Graphs of monoids [Chen-L]:

N N

N

N N

N
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Examples

I P = R o R× for a ring R (of number-theoretic origin)
[Cuntz-Deninger-Laca, ...]

Theorem (L, Bruce-L): Let R and S be rings of algebraic integers in
number fields K and L. Assume that K and L are Galois over Q.
Then C∗λ(R o R×) ∼= C∗λ(S o S×) if and only if K ∼= L.

I Zappa-Szép products [Nekrashevych, Exel-Pardo,
Laca-Raeburn-Ramagge-Whittaker, Starling, ...]

I etc ...
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The underlying dynamics

I Let Il(P) be the smallest inverse semigroup of partial bijections of P
containing P ∼−→ pP, x 7→ px (for all p ∈ P).
Its C*-algebra C∗λ(Il(P)) is closely related to C∗λ(P).
Let J := {dom (s): s ∈ Il(P)} and Ω := {χ : J � {0, 1} mult.}.
Every s ∈ Il(P) induces a partial homeomorphism αs :{
χ ∈ Ω: χ(s−1s) = 1

}
→
{
χ ∈ Ω: χ(ss−1) = 1

}
, χ 7→ χ(s−1 t s).

I For a subsemigroup P of a group G , every s ∈ Il(P) acts by left
multiplication with some element σ(s) ∈ G . For s, t ∈ Il(P) with
σ(s) = σ(t), αs and αt coincide whenever possible. This gives rise
to a partial action G y Ω, and we obtain C∗λ(P) ∼= C (Ω) or G .
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K-theory for semigroup C*-algebras

Theorem (Cuntz-Echterhoff-L): Let P be a subsemigroup of a
group G satisfying the Baum-Connes conjecture with coefficients.

If P satisfies independence and P ⊆ G is Toeplitz,
then K∗(C∗λ(P)) ∼=

⊕
[X ]∈J×/∼

K∗(C∗λ(GX )).

I J× =
{
q−1
n pn · · · q−1

1 p1P
}
\ {∅} (constructible ideals). P sat.

independence if {1X : X ∈ J×} ⊆ `∞(P) is linearly independent.
For X ,Y ∈ J×, define X ∼ Y if there is g ∈ G with gX = Y .
For X ∈ J×, define GX := {g ∈ G : gX = X}.

I If P ⊆ G is Toeplitz, then the partial action G y Ω is globalizable
and C∗λ(P) is Morita equivalent to a (global) crossed product.
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K-theory for semigroup C*-algebras

I It turns out that we do not need the Toeplitz condition!

Theorem (L): Let P be a subsemigroup of a group G satisfying
the Baum-Connes conjecture with coefficients.

If P satisfies independence,
then K∗(C∗λ(P)) ∼=

⊕
[X ]∈J×/∼

K∗(C∗λ(GX )).

I Idea: G y Ω may not be globalizable. But we can always construct
Morita enveloping action G y A such that C (Ω) or G ∼M Aor G .
However, A will no longer be commutative (see [Abadie]).
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K-theory for semigroup C*-algebras

I Special case: If P is right LCM, i.e., J× = {pP}, then
independence is automatic and K∗(C∗λ(P)) ∼= K∗(C∗λ(P∗)).

I Examples:
Artin monoids;
Baumslag-Solitar monoids, GBS monoids, graphs of monoids;
C*-algebras of right regular representations of R o R×;
...

I Consider one-relator monoids of the form P = 〈S | u = v〉+,
where S is a countable set and u, v are finite words in S (...):
Given P1 = 〈S1 | u1 = v1〉+ and P2 = 〈S2 | u2 = v2〉+
such that their C*-algebras C∗λ(P1) and C∗λ(P2) are nuclear,
then C∗λ(P1) ∼= C∗λ(P2) if and only if |S1| = |S2|.
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A more general K-theory formula

P: semigroup

S : inverse semigroup G y X : partial
dynamical system

P ⊆ G

∃ idempotent pure
partial hom. S → G

—

P sat. independence

— ∃ G -inv. regular basis V
of compact open sets in X

G sat. Baum-Connes

G sat. Baum-Connes G sat. Baum-Connes

K∗(C∗λ(P))
∼=

⊕
[X ]∈J×/∼

K∗(C∗λ(GX ))

K∗(C∗λ(S))
∼=

⊕
[d ]∈E×/∼

K∗(C∗λ(Sd))
K∗(C0(X ) or G )

∼=
⊕

[V ]∈V×/∼

K∗(C∗λ(GV ))
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The End

Thank you very much!
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