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» Let P be a left-cancellative semigroup.

» Consider its left regular representation
P — Isom((?P), p — Ap,

given by Ap(dx) = Opx.
» Define the semigroup C*-algebra

Ci(P) := C*({\p: p € P}) C L(£?P).

Related constructions:
» Full or universal semigroup C*-algebras;

» Non-self-adjoint versions:

Ax(P) =span({\y: p € P}) C L(£*P).
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[Nica, Laca, Raeburn, Crisp, Eilers-L-Ruiz, ...]
Let ' = (V, E) be an undirected graph, with E C V x V. Define

Af = {o,: veV} |oy04 = 0y0, forall (v,w) € E)T.

Examples (for N x N and N * N):

o——©O [ J [ J

Theorem (Eilers-L-Ruiz): C;(Al) = C;(Ay) if and only if
1. t(M) = t(N)
2. Nk(l') + N_k(l') = Nk(/\) -+ N_k(/\) forall ke Z
3. No(F) >0, or Yoo Nok(T) = S4og Nok(A) mod 2
Here t and N, are invariants of graphs.



Examples

Figure 1: Invariants for all graphs with 5 vertices. Any quantity not mentioned
equals zero.
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» Artin monoids [Crisp-Laca, L-Omland-Spielberg, ...]
Let / be an index set and mj; € {2,3,4,...} U{oo} with mjj = mj.

+
P .= <{0,-},-€, | ojiojoioj--- = ojoiojo;--- forall i,jel, i7éj> )

mjj mj;
If m; € {2,00}, then we get right-angled Artin monoids.

Example: | = {1,2} and mp=my1 =3:

B;r = <0’1,0’2 | 010201 = 0'20'10'2>+
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> One-relator monoids [L-Omland-Spielberg]
P=(S|u=v)" where u, v are finite words in S

» Baumslag-Solitar monoids [Spielberg]
P={a, b|abk= b’a>+ or P=(a bla= blabk) "
GBS monoids: P = ({a;};, b | ajb" = b"a; or a; = b"'a,-bkf>+.
Graphs of monoids [Chen-L]:
N N
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Its C*-algebra C5(/;(P)) is closely related to C¥(P).
Let J := {dom(s): s € [|(P)} and Q := {x : J — {0,1} mult.}.
Every s € /;(P) induces a partial homeomorphism as :
{xeQ x(s7ts) =1} = {x € x(ss71) =1}, x = x(s7 ' Us).
» For a subsemigroup P of a group G, every s € I;(P) acts by left
multiplication with some element o(s) € G. For s, t € I;(P) with
o(s) = o(t), as and «a; coincide whenever possible. This gives rise
to a partial action G ~ €, and we obtain C{(P) = C(Q) %, G.
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For X, Y € J*, define X ~ Y if there is g € G with gX = Y.
For X € J*, define Gx := {g € G: gX = X}.

» If P C G is Toeplitz, then the partial action G ~ Q is globalizable
and C5(P) is Morita equivalent to a (global) crossed product.
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» It turns out that we do not need the Toeplitz condition!

Theorem (L): Let P be a subsemigroup of a group G satisfying
the Baum-Connes conjecture with coefficients.
If P satisfies independence,

then K.(C5(P)) = @pxer~ /. Ku(C3(Gx)).

» Idea: G ~ Q may not be globalizable. But we can always construct
Morita enveloping action G ~ A such that C(Q) x, G ~y A X, G.
However, A will no longer be commutative (see [Abadie]).
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» Consider one-relator monoids of the form P = (S | u=v)",

where S is a countable set and u, v are finite words in S (...):
Given Pl = <81 | u = V1>Jr and P2 = <82 | Uy = V2>Jr

such that their C*-algebras C;(P1) and C;(P>) are nuclear,
then C{(P1) = C5(P») if and only if |S1] = |S2].
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A more general K-theory formula

P: semigroup

PCG

P sat. independence

G sat. Baum-Connes

K(EX(P))
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The End

Thank you very much!



