# Δυναμικά συστήματα, ημι-σταυρωτά γινόμενα και το ριζικό τους

Α. Κατάβολος κ.α.

28 Φεβρουαρίου 2020

# The Covariance Algebra of a Dynamical System $(X,\phi)$

*X*: locally compact Hausdorff [metrisable]

$$\phi: X \to X$$
 continuous, onto,

proper (i.e.  $K \operatorname{cpct} \Rightarrow \phi^{-1}(K) \operatorname{cpct}$ ).

 $\alpha:C_0(X)\to C_0(X):f\to f\circ \phi$  isometric \*-endomorphism.

The linear space

$$c_{00}(\mathbb{Z}_+,C_0(X)) = c_{00}(\mathbb{Z}_+) \otimes C_0(X)$$

consists of formal 'polynomials'

$$a = (f_n) = \sum_{n=0}^{N} e_n \otimes f_n = \sum_{n\geq 0} u^n f_n, \quad f_n \in C_0(X).$$

A multiplication on  $c_{00}(\mathbb{Z}_+, C_0(X))$  is defined by setting

$$u^n f u^m g = u^{m+n} (\alpha^m (f)g)$$

and extending by linearity:

$$(\sum u^n f_n) * (\sum u^m g_m) = \sum_i u^k (\sum \alpha^m (f_{k-m}) g_m) \,.$$

May assume  $C_0(X) \simeq \mathcal{C} \subseteq \mathcal{B}(H_0)$ .

So each  $f \in C_0(X)$  is identified with an operator on  $H_0$ .

Idea: 'Enlarge' the space (if necessary) to accommodate U and  $\pi(f)$  on H so that  $\pi(\alpha(f)) = U^*\pi(f)U \ \forall f \in \mathcal{C}$  holds:

Consider

$$\begin{split} H &= \ell^2(\mathbb{Z}_+) \otimes H_0 := \{ (\xi(n))_{n \in \mathbb{Z}_+} : \xi(n) \in H_0 \ \forall n, \ \sum_n \left\| \xi(n) \right\|_{H_0}^2 < \infty \} \\ & \left\langle (\xi(n)), (\eta(n)) \right\rangle := \sum \left\langle \xi(n), \eta(n) \right\rangle_{H_0} \end{split}$$

and  $U_0: H \to H$ :

$$U_0: (\xi(0),\xi(1),\xi(2),\dots) \to (0,\xi(0),\xi(1),\dots)$$

Notation: for  $n\in\mathbb{Z}_+$  and  $\xi\in H_0$  denote by  $e_n\otimes \xi\in H$  the function

$$\mathbb{Z}_+ \to H_0: m \to (e_n \otimes \xi)(m) = \left\{ \begin{array}{ll} \xi, & m = n \\ 0, & m \neq n \end{array} \right.$$

(note  $H=\overline{\operatorname{span}}\{e_n\otimes \xi:n\in\mathbb{Z}_+,\xi\in H_0\}$ ).

The map  $U_0$  is given by

$$U_0(e_n \otimes \xi) = e_{n+1} \otimes \xi.$$

Also define the representation  $\pi_0:\mathcal{C}\to\mathcal{B}(H)$  by

$$\pi_0(f)(e_n\otimes\xi)=e_n\otimes\alpha^n(f)\xi$$

where  $f \in \mathcal{C}, \xi \in H_0, n \in \mathbb{Z}_+$ .

Representing these as matrices with entries in  $\mathcal{B}(H_0)\text{,}$ 

$$\pi_0(f) = \operatorname{diag}(\alpha^n(f)) = \begin{bmatrix} f & \\ & \alpha(f) & \\ & \ddots & \end{bmatrix},$$
 
$$U_0 = \begin{bmatrix} 0 & \\ \mathbf{1}_{H_0} & 0 & \\ & \mathbf{1}_{H_0} & \ddots & \\ & & \ddots & \vdots \end{bmatrix}.$$

$$\begin{split} &\|\pi_0(f)\| = \|f\|_{C_0(X)} \\ &U_0\text{: (proper) isometry.} \end{split}$$

We have

$$\begin{split} \pi_0(f)U_0:e_n\otimes\xi & \xrightarrow{U_0} e_{n+1}\otimes\xi \xrightarrow{\pi_0(f)} e_{n+1}\otimes\alpha^{n+1}(f)\xi \\ U_0\pi_0(\alpha(f)):e_n\otimes\xi & \xrightarrow{\pi_0(\alpha(f))} e_n\otimes\alpha^n(\alpha(f))\xi \xrightarrow{U_0} e_{n+1}\otimes\alpha^n(\alpha(f))\xi \end{split}$$

hence

$$\pi_0(f)U_0=U_0\pi_0(\alpha(f)), \quad \text{equivalently} \qquad \pi_0(\alpha(f))=U_0^*\pi_0(f)U_0.$$

Now define

$$\begin{split} \pi := U_0 \times \pi_0 : c_{00}(\mathbb{Z}_+) \otimes \mathcal{C} &\to \mathcal{B}(H) \\ \pi \left( \sum_k u^k f_k \right) = \sum_k U_0^k \pi_0(f_k) \,. \end{split}$$

#### Πρόταση

The representation  $U_0 \times \pi_0$  just constructed is injective on the covariance algebra  $c_{00}(\mathbb{Z}_+) \otimes \mathcal{C}$ .

Indeed, suppose  $(U_0 \times \pi_0) \left(\sum_k u^k f_k\right) = 0$ , i.e.  $\sum_k U_0^k \pi_0(f_k) = 0$ . Then for all  $\xi, \eta \in H_0$  and all  $m \in \mathbb{Z}_+$  we have

$$\begin{split} 0 &= \sum_{k=0}^\infty U_0^k \pi_0(f_k) (e_0 \otimes \xi) = \sum_k U_0^k (e_0 \otimes \alpha^0(f_k) \xi) = \sum_k e_k \otimes \alpha^0(f_k) \xi \\ \text{and so} \quad 0 &= \left\langle \sum_k e_k \otimes f_k \xi, e_m \otimes \eta \right\rangle = \left\langle f_m \xi, \eta \right\rangle_{H_0} \end{split}$$

which shows that  $f_m=0$  and so, since m is arbitrary, that  $\sum_k u^k f_k=0$  in  $c_{00}(\mathbb{Z}_+)\otimes\mathcal{C}.$ 

# The Semicrossed product $\mathcal{C} \rtimes_{\alpha} \mathbb{Z}_+$

This is defined to be the closure of the covariance algebra  $\mathcal{A}_0 := c_{00}(\mathbb{Z}_+) \otimes \mathcal{C}$  in the norm induced by the (injective) representation  $\pi$ .

The norm on  $\mathcal{A}_0$  is given by

$$\left\|\sum_k u^k f_k\right\| := \left\|(U_0 \times \pi_0) \left(\sum_k u^k f_k\right)\right\|_{\mathcal{B}(H)} = \left\|\sum_k U_0^k \pi_0(f_k)\right\|_{\mathcal{B}(H)}$$

So,  $\mathcal{A}:=\mathcal{C}\rtimes_{\alpha}\mathbb{Z}_+$  is a (norm-closed) operator algebra which is non-selfadjoint.

It is concretely represented as block-lower triangular operators  $\stackrel{\sim}{}$ 

on 
$$H \simeq \bigoplus_{n=0}^{\infty} H_0$$
.

In fact, its 'diagonal'  $\mathcal{A} \cap \mathcal{A}^*$  is just  $\pi(\mathcal{C})$ .

#### Fourier coefficients

For  $k \in \mathbb{Z}_+$ , define

$$E_k:\mathcal{A}_0\to\mathcal{C}:a=\sum_n u^n f_n\to f_k.$$

Clearly linear. Also  $\|\cdot\|$ -contractive: for  $\xi, \eta \in H_0$  of norm one,

$$\begin{split} \left\langle f_m \xi, \eta \right\rangle_{H_0} &= \left\langle \sum_k U_0^k \pi_0(f_k)(e_0 \otimes \xi), (e_m \otimes \eta) \right\rangle_H \\ \Rightarrow & \left| \left\langle f_m \xi, \eta \right\rangle_{H_0} \right| \leq \left\| \sum_k U_0^k \pi_0(f_k) \right\|_{\mathcal{B}(H)} = \left\| \sum_n u^n f_n \right\| \\ \Rightarrow & \| E_m(a) \|_{\mathcal{C}} = \| f_m \|_{\mathcal{C}} \leq \| a \| \quad \forall a \in \mathcal{A}_0 \end{split}$$

#### Fourier coefficients

Thus, for all  $k \in \mathbb{Z}_+$ , the map  $E_k$  extends by continuity to a linear contraction on the  $\|\cdot\|$ -completion:

$$E_k:\mathcal{C}\rtimes_{\alpha}\mathbb{Z}_+\to\mathcal{C}$$

How to isolate the k-th Fourier coefficient of an arbitrary  $a \in \mathcal{A}$ ?

# Locating $E_k(a)$

Define the gauge action (of  $\mathbb{T}$ ) first on  $\mathcal{A}_0$ : for  $e^{it} \in \mathbb{T}$ , let

$$\theta_t\left(\sum_n u^n f_n\right) = \sum_n (e^{it}u)^n f_n$$

Claim. Each  $\theta_t$  extends to an isometric automorphism of  $\mathcal{C}\rtimes_{\alpha}\mathbb{Z}_+.$ 

Proof For each  $e^{it} \in \mathbb{T}$  let  $V_t(e_m \otimes \xi) \mapsto e^{itm}(e_m \otimes \xi)$ : this extends to an isometry  $V_t: H \to H$ , clearly onto. Can verify that  $\theta_t(a) = V_t a V_t^*$ . Hence  $\|\theta_t(a)\| \leq \|a\|$  when  $a \in \mathcal{A}_0$ . Etc.

Thus  $\theta$  defines an action of the group  $\mathbb T$  on  $\mathcal C\rtimes_{\alpha}\mathbb Z_+.$ 

Now we calculate, first when  $a \in \mathcal{A}_0$  and then for general  $a \in \mathcal{A}$ , (since  $t \mapsto \theta_t(a)$  is continuous, so  $\mathcal{A}_0$ -valued integral exists)

$$\frac{1}{2\pi} \int_0^{2\pi} \theta_t(a) e^{-imt} dt = u^m E_m(a).$$

#### Finally...

#### Πρόταση

Each  $a \in \mathcal{C} \rtimes_{\alpha} \mathbb{Z}_+$  belongs to the  $\|\cdot\|$ -closed linear span of

$$\{u^k E_k(a) : k \in \mathbb{Z}_+\}.$$

Write  $a \sim \sum_n u^n E_n(a)$ . In fact, there is a Fejér expansion:

$$\lim_N \left\| a - \sum_{n=0}^N \left(1 - \frac{n}{N+1}\right) u^n E_n(a) \right\| = 0.$$

So, if all  $E_k(a)$  vanish, then a must vanish. Moreover,

#### Πρόταση

If  $J\subseteq \mathcal{A}$  is a closed ideal, invariant under the gauge automorphisms, then  $a\sim \sum_n u^n E_n(a)\in \mathcal{A}$  belongs to J iff each monomial  $u^n E_n(a)$  belongs to J.

#### The Radical

Let  $\mathcal A$  be an algebra. The Jacobson Radical of  $\mathcal A$  can be defined by

$$\mathrm{Rad}\mathcal{A}=\{q\in\mathcal{A}:\sigma_{\mathcal{A}}((\lambda+a)q)=0 \text{ for all } a\in\mathcal{A} \text{ and } \lambda\in\mathbb{C}\}.$$

For a Banach algebra,

$$\operatorname{Rad} \mathcal{A} = \{q \in \mathcal{A} : (\lambda + a)q \text{ is quasinilpotent for all } a \in \mathcal{A} \text{ and } \lambda \in \mathbb{C}\}$$

where  $x \in \mathcal{A}$  is called quasinilpotent if  $\lim ||x^n||^{1/n} = 0$ .

#### Πρόταση

Let  $\mathcal{A}=\mathcal{C}\times_{\alpha}\mathbb{Z}^+$ . An element  $a\in\mathcal{A}$  is in the radical of  $\mathcal{A}$  iff  $u^nE_n(a)\in\operatorname{Rad}\mathcal{A}$  for all  $n\geq 0$ . In particular all elements of the radical satisfy  $E_0(a)=0$ . (They are strictly lower-triangular).

# Wandering points give elements in the radical

Recall the dynamical system  $(X, \phi)$ .

Say that a set  $A\subseteq X$  is wandering if the sets  $\phi^{-n}(A)$   $(n\geq 0)$  are pairwise disjoint. Say that a point  $x\in X$  is wandering if it has a wandering neighbourhood.

### Θεώρημα (Muhly)

If 
$$(X,\phi)$$
 has a wandering point then  $\operatorname{Rad}(\mathcal{C}\times_{\alpha}\mathbb{Z}^+)\neq\{0\}.$ 

Indeed (M. Anoussis) if  $f \in \mathcal{C}$  is compactly supported in a wandering open set then  $uf \in \mathcal{A}$  generates a nonzero nilpotent ideal, hence is in  $\operatorname{Rad}(\mathcal{A})$ .

# Recurrent points give elements outside the radical

Ένα σημείο  $x\in X$  καλείται επανερχόμενο (recurrent) για το δυναμικό σύστημα  $(X,\phi)$  αν για κάθε περιοχή U του x υπάρχει  $n\geq 1$  ώστε  $\phi^n(x)\in U$ .

#### Πρόταση (Κρίσιμο Λήμμα)

Έστω  $f \in C_0(X)$  και x επανερχόμενο σημείο του  $(X, \phi)$ . Αν  $f(x) \neq 0$ , τότε  $u^l f \notin \operatorname{Rad}(\mathcal{A})$ , για κάθε  $l \in \mathbb{Z}^+$ .

#### Θεώρημα

Aν  $X_r \subseteq X$  είναι το σύνοβο των επανερχομένων σημείων του  $(X,\phi)$ ,

$$\operatorname{Rad}(\mathcal{A}) = \left\{ a \sim \sum_{n \geq 1} u^n f_n : f_n|_{X_r} = 0 \ \forall n \right\}.$$