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Throughout the talk G is a countable discrete group

We consider unitary representations of G , that is, group

homomorphisms π : G → U(Hπ), where Hπ is a separable Hilbert

space, and U(H) is the set of all unitary operators on H.

We denote by Rep(G ) the collection of all unitary reps of G .

K ≤ Hπ is (G -)invariant if π(g)K ⊂ K for all g ∈ G

 σ(·) = pKπ(·)pK is a unitary rep on K

In this case we say π contains σ and write σ ⊂ π

π is irreducible if @ inv subspace except 0 and Hπ.

Two reps π and σ are unitary equivalent, denoted π ∼u σ if

∃ unitary u : Hπ → Hσ such that uπ(g)u∗ = σ(g) ∀g ∈ G .



Examples

• The trivial rep 1G ; 1G (g) = IH for all g ∈ G

obviously irreducible

• The regular rep λG : G → U(`2(G ))

[λG (g)ξ](k) = ξ(g−1k) (g , k ∈ G , ξ ∈ `2(G ))

never irreducible (unless trivial)



Examples

More generally:

The quasi-regular rep for H ≤ G

λG/H : G → U(`2(G/H))

[λG/H(g) ξ] (kH) = ξ(g−1kH) (g , k ∈ G , ξ ∈ `2(G/H))

General Goal: study the map

Sub(G ) 3 H 7−→ λG/H ∈ Rep(G )

and understand the ideal structure of the C*-algebra

C∗λG/H
(G ) = span{λG/H(g) : g ∈ G} ⊂ B(`2(G/H))



Question (Rigidity): To what extent λG/H determines H?

We like to restrict to irreducible representations. We have the following

characterization due to Mackey:

λG/H is irreducible iff H is self-commensurating (s.c.) in G , that is

{g ∈ G : [H : H ∩ gHg−1] <∞ and [gHg−1 : H ∩ gHg−1] <∞} = H

Theorem (Mackey 51):

Let H, L ∈ Sub(G ) be s.c. Then

λG/H ∼u λG/L ⇐⇒ H ∼conj L



But, unitary equivalence is too restrictive in general for rep of

non-compact groups, and specially in the case of discrete groups

e.g. the classification of Ĝ = Irr(G)/ ∼u is hopeless, unless G is

virtually abelian (Glimm and Thoma)

The more appropriate notion of equivalence (and inclusion) for reps of

discrete groups is that of weak equivalence

Prim(G ): the set of irreducible unitary representations of G up to weak

equivalence is a more accessible dual space of G (e.g. always a

standard Borel space)



Weak containment

For π, σ ∈ Rep(G ) we say σ is weakly contained in π, denoted σ ≺ π iff∥∥∑
j

cjσ(gj)
∥∥
B(Hσ)

≤
∥∥∑

j

cjπ(gj)
∥∥
B(Hπ)

for any finite sequence c1, c2, ... ∈ C; equivalently, the map

π(g) 7→ σ(g) extends to a C*-homomorphism C∗π(G )→ C∗σ(G )

Thus, weak containment structure of π is equivalent to ideal structure

of its C*-algebra C∗π(G )

We say π and σ are weakly equivalent, denoted σ ∼w π, iff σ ≺ π and

π ≺ σ



Example:

1G ⊂ λG iff G is finite, and 1G ≺ λG iff G is amenable

Recall: G is amenable if there is a non-zero positive linear functional

M : `∞(G )→ C that is G -invariant: M(ϕg ) = M(ϕ) for all

ϕ ∈ `∞(G ) and g ∈ G , where ϕg (h) = ϕ(g−1h)

In the case of quasi-regular reps:

λG/H ⊂ λG iff H is finite, and λG/H ≺ λG iff H is amenable



Mackey’s rigidity result fails for weak equivalence:

Let G = F2 =< a, b > be the free group on two generators. Then

H =< a > and L =< b > are both s.c., and λG/H ∼w λG/L but

H 6∼conj L

But, there are rigid examples: G = H ∗ H with H non-amenable (e.g.

the free group F2). Then H is s.c. in G and for any s.c. L ≤ G , we

have λG/H ∼w λG/L iff H ∼conj L



Theorem:

Let H be a subgroup of G with the spectral gap property. Then H is

s.c. and for any s.c. L ≤ G , we have λG/H ∼w λG/L iff H ∼conj L

Definition:

H ≤ G has the spectral gap property (s.g.) if there is no H-invariant

mean on `∞(G/H \ {H}).



Examples of s.g. subgroups

Theorem:

Let H ≤ G be non-amenable such that H ∩ gHg−1 is amenable for

every g ∈ G − H. Then H ∈ Subsg(G ).

Example:

SL2(Z) ≤ SL3(Z)

Example:

Let G = H ∗ L (non-trivial free product).

If H is non-amenable then H has s.g.

In particular, λG/H ∼w λG/L iff both H and L are amenable. (cf.

H = L = Z).



Examples of s.g. subgroups

Theorem:

If H ∈ Sub(G ) is “strongly s.c.” with property (T), then H ∈ Subsg(G ).

Example:

SLn(Z) ≤ SLn+1(Z), n > 2.



On ideal structure of C∗λG/H
(G )

Theorem:

Let H ∈ Subsg(G ). Then C∗λG/H
(G ) has a smallest non-zero ideal Imin

(i.e. contained in every ideal of C∗λG/H
(G )).



On ideal structure of C∗λG/H
(G )

Back to the map

Sub(G ) 3 H 7−→ λG/H ∈ Rep(G )



On ideal structure of C∗λG/H
(G )

Back to the map

Sub(G )

∼conj
3 H 7−→ λG/H ∈

Rep(G )

∼w

Sub(G ) ⊂ 2G  a compact space

G y Sub(G ): g · H = gHg−1

Rep(G ) carries the Fell topology: πn → π iff π ≺ ⊕kπnk for every

subsequence (πnk )k of (πn)n

Theorem (Fell):

The above map is continuous.

In particular, if gnHg
−1
n → {e}, then λG ≺ λG/H



On ideal structure of C∗λG/H
(G )

Definition (Furstenberg):

G y X is a boundary action if ∀x ∈ X and ∀ν ∈ Prob(X ) there is a

net (gi) ∈ G such that giν
weak*−−−→ δx .

Example:

F2 y ∂F2

Example:

SLn(Z) y Pn−1(R)

Example:

G is amenable iff G has no non-trivial boundary action



On ideal structure of C∗λG/H
(G )

Definition:

We say H ≤ G is weakly parabolic if ∃ top. free boundary action

G y X such that ProbH(X ) 6= ∅

Theorem:

Let H ≤ G be weakly parabolic. Then C∗λG/H
(G ) contains a largest

proper ideal Imax (i.e. contains every ideal of C∗π(G )) Moreover,

C∗λG/H
(G )

Imax

∼= C∗λG
(G )



On ideal structure of C∗λG/H
(G )

Example:

Let G be a group which admits a top. free boundary action. Then

every amenable H ≤ G is weakly parabolic.

Example:

G = PGLn(Q) for n ≥ 2, H = POn(Q)

Example:

G = PSLn(Q) for n ≥ 2, H = PSLn(Z)



Weakly parabolic subgroups with spectral gap property

Corollary:

Let H ≤ G be a weakly parabolic subgroup with the spectral gap

property. Then there are ideals Imin, Imax ≤ C∗λG/H
(G ) such that

0 6= Imin ≤ I ≤ Imax � C∗λG/H
(G )

for every non-zero proper ideal I .

Example:

G = PSLn(Z), H = PSLn−1(Z) for n ≥ 3

Example:

G = PGLn(Q), H = PGLn−1(Q), for n ≥ 3



Thank You!


