Representation rigidity of subgroups and ideal structure of C*-algebras of quasi-regular representations

Mehrdad Kalantar (University of Houston)

joint with Bachir Bekka

Functional Analysis and Operator Algebras Seminar

University of Athens

July 10, 2020

Throughout the talk G is a countable discrete group

We consider unitary representations of G, that is, group homomorphisms $\pi : G \to \mathcal{U}(H_{\pi})$, where H_{π} is a separable Hilbert space, and $\mathcal{U}(H)$ is the set of all unitary operators on H. We denote by Rep(G) the collection of all unitary reps of G.

 $K \leq H_{\pi}$ is (*G*-)invariant if $\pi(g)K \subset K$ for all $g \in G$ $\rightsquigarrow \sigma(\cdot) = p_K \pi(\cdot)p_K$ is a unitary rep on *K* In this case we say π contains σ and write $\sigma \subset \pi$

 π is irreducible if \nexists inv subspace except 0 and H_{π} .

Two reps π and σ are *unitary equivalent*, denoted $\pi \sim_u \sigma$ if \exists unitary $u: H_{\pi} \to H_{\sigma}$ such that $u\pi(g)u^* = \sigma(g) \ \forall g \in G$.

Examples

 The trivial rep 1_G; 1_G(g) = I_H for all g ∈ G obviously irreducible

• The regular rep $\lambda_G : G \to \mathcal{U}(\ell^2(G))$ $[\lambda_G(g)\xi](k) = \xi(g^{-1}k) \qquad (g, k \in G, \ \xi \in \ell^2(G))$ never irreducible (unless trivial)

Examples

More generally: The quasi-regular rep for $H \leq G$

General Goal: study the map

 $\operatorname{Sub}(G)
ightarrow H \longmapsto \lambda_{G/H} \in \operatorname{Rep}(G)$

and understand the ideal structure of the C*-algebra $C^*_{\lambda_{G/H}}(G) = \overline{\operatorname{span}}\{\lambda_{G/H}(g) : g \in G\} \subset B(\ell^2(G/H))$ Question (Rigidity): To what extent $\lambda_{G/H}$ determines H?

We like to restrict to irreducible representations. We have the following characterization due to Mackey:

 $\lambda_{G/H}$ is irreducible iff H is *self-commensurating* (s.c.) in G, that is $\{g \in G : [H : H \cap gHg^{-1}] < \infty$ and $[gHg^{-1} : H \cap gHg^{-1}] < \infty\} = H$

Theorem (Mackey 51): Let $H, L \in Sub(G)$ be s.c. Then $\lambda_{G/H} \sim_u \lambda_{G/L} \iff H \sim_{conj} L$ But, unitary equivalence is too restrictive in general for rep of non-compact groups, and specially in the case of discrete groups

e.g. the classification of $\widehat{G} = \operatorname{Irr}(G) / \sim_u$ is hopeless, unless G is virtually abelian (Glimm and Thoma)

The more appropriate notion of equivalence (and inclusion) for reps of discrete groups is that of *weak equivalence*

Prim(G): the set of irreducible unitary representations of G up to weak equivalence is a more accessible dual space of G (e.g. always a standard Borel space)

Weak containment

For $\pi, \sigma \in \operatorname{Rep}(G)$ we say σ is *weakly contained* in π , denoted $\sigma \prec \pi$ iff

$$\left\|\sum_{j}c_{j}\sigma(g_{j})
ight\|_{\mathcal{B}(\mathcal{H}_{\sigma})} \le \left\|\sum_{j}c_{j}\pi(g_{j})
ight\|_{\mathcal{B}(\mathcal{H}_{\pi})}$$

for any finite sequence $c_1, c_2, ... \in \mathbb{C}$; equivalently, the map $\pi(g) \mapsto \sigma(g)$ extends to a C*-homomorphism $C^*_{\pi}(G) \to C^*_{\sigma}(G)$

Thus, weak containment structure of π is equivalent to ideal structure of its C*-algebra $C^*_{\pi}(G)$

We say π and σ are weakly equivalent, denoted $\sigma\sim_w\pi,$ iff $\sigma\prec\pi$ and $\pi\prec\sigma$

Example:

 $1_G \subset \lambda_G$ iff G is finite, and $1_G \prec \lambda_G$ iff G is amenable

Recall: G is amenable if there is a non-zero positive linear functional $M : \ell^{\infty}(G) \to \mathbb{C}$ that is G-invariant: $M(\varphi_g) = M(\varphi)$ for all $\varphi \in \ell^{\infty}(G)$ and $g \in G$, where $\varphi_g(h) = \varphi(g^{-1}h)$

In the case of quasi-regular reps: $\lambda_{G/H} \subset \lambda_G$ iff H is finite, and $\lambda_{G/H} \prec \lambda_G$ iff H is amenable Mackey's rigidity result fails for weak equivalence: Let $G = \mathbb{F}_2 = \langle a, b \rangle$ be the free group on two generators. Then $H = \langle a \rangle$ and $L = \langle b \rangle$ are both s.c., and $\lambda_{G/H} \sim_w \lambda_{G/L}$ but $H \not\sim_{\text{conj}} L$

But, there are rigid examples: G = H * H with H non-amenable (e.g. the free group \mathbb{F}_2). Then H is s.c. in G and for any s.c. $L \leq G$, we have $\lambda_{G/H} \sim_w \lambda_{G/L}$ iff $H \sim_{\text{conj}} L$

Theorem:

Let *H* be a subgroup of *G* with the *spectral gap property*. Then *H* is s.c. and for any s.c. $L \leq G$, we have $\lambda_{G/H} \sim_w \lambda_{G/L}$ iff $H \sim_{conj} L$

Definition:

 $H \leq G$ has the spectral gap property (s.g.) if there is no H-invariant mean on $\ell^{\infty}(G/H \setminus \{H\})$.

Examples of s.g. subgroups

Theorem:

Let $H \leq G$ be non-amenable such that $H \cap gHg^{-1}$ is amenable for every $g \in G - H$. Then $H \in Sub_{sg}(G)$.

Example: $SL_2(\mathbb{Z}) \leq SL_3(\mathbb{Z})$

Example:

Let G = H * L (non-trivial free product). If H is non-amenable then H has s.g. In particular, $\lambda_{G/H} \sim_w \lambda_{G/L}$ iff both H and L are amenable. (cf. $H = L = \mathbb{Z}$). Examples of s.g. subgroups

I heorem: If $H \in \text{Sub}(G)$ is "strongly s.c." with property (T), then $H \in \text{Sub}_{sg}(G)$.

Example: $SL_n(\mathbb{Z}) \leq SL_{n+1}(\mathbb{Z}), n > 2.$

Theorem:

Let $H \in \text{Sub}_{sg}(G)$. Then $C^*_{\lambda_{G/H}}(G)$ has a smallest non-zero ideal I_{\min} (i.e. contained in every ideal of $C^*_{\lambda_{G/H}}(G)$).

Back to the map

$\mathsf{Sub}(G) \ni H \longmapsto \lambda_{G/H} \in \mathsf{Rep}(G)$

Back to the map

$$\frac{\mathsf{Sub}(G)}{\sim_{\mathrm{conj}}} \ni H \longmapsto \lambda_{G/H} \in \frac{\mathsf{Rep}(G)}{\sim_w}$$

 $Sub(G) \subset 2^G \rightsquigarrow a \text{ compact space}$ $G \curvearrowright Sub(G): g \cdot H = gHg^{-1}$

Rep(G) carries the Fell topology: $\pi_n \to \pi$ iff $\pi \prec \bigoplus_k \pi_{n_k}$ for every subsequence $(\pi_{n_k})_k$ of $(\pi_n)_n$

Theorem (Fell): The above map is continuous.

In particular, if $g_n H g_n^{-1} \rightarrow \{e\}$, then $\lambda_G \prec \lambda_{G/H}$

Definition (Furstenberg):

 $G \cap X$ is a boundary action if $\forall x \in X$ and $\forall \nu \in \operatorname{Prob}(X)$ there is a net $(g_i) \in G$ such that $g_i \nu \xrightarrow{\operatorname{weak}^*} \delta_x$.

Example: $\mathbb{F}_2 \curvearrowright \partial \mathbb{F}_2$

Example: $SL_n(\mathbb{Z}) \curvearrowright \mathbb{P}^{n-1}(\mathbb{R})$

Example:

G is amenable iff G has no non-trivial boundary action

Definition:

We say $H \leq G$ is *weakly parabolic* if \exists top. free boundary action $G \curvearrowright X$ such that $\operatorname{Prob}_H(X) \neq \emptyset$

Theorem:

Let $H \leq G$ be weakly parabolic. Then $C^*_{\lambda_{G/H}}(G)$ contains a largest proper ideal I_{\max} (i.e. contains every ideal of $C^*_{\pi}(G)$) Moreover,

$$rac{C^*_{\lambda_{G/H}}(G)}{I_{ ext{max}}}\cong C^*_{\lambda_G}(G)$$

Example:

Let G be a group which admits a top. free boundary action. Then every amenable $H \leq G$ is weakly parabolic.

Example: $G = PGL_n(\mathbb{Q})$ for $n \ge 2$, $H = PO_n(\mathbb{Q})$

Example: $G = PSL_n(\mathbb{Q})$ for $n \ge 2$, $H = PSL_n(\mathbb{Z})$

Weakly parabolic subgroups with spectral gap property

Corollary:

Let $H \leq G$ be a weakly parabolic subgroup with the spectral gap property. Then there are ideals I_{\min} , $I_{\max} \leq C^*_{\lambda_{G/H}}(G)$ such that

$$0 \neq I_{\min} \leq I \leq I_{\max} \leq C^*_{\lambda_G/H}(G)$$

for every non-zero proper ideal *I*.

Example:

 $G = PSL_n(\mathbb{Z}), H = PSL_{n-1}(\mathbb{Z})$ for $n \geq 3$

Example:

 $G = PGL_n(\mathbb{Q}), H = PGL_{n-1}(\mathbb{Q}), \text{ for } n \geq 3$

Thank You!