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COMPLEXIFICATION OF A GROUP: ABELIAN CASE

Let G be an Abelian locally compact group. The dual group G is the set of
continuous homomorphisms:

x:G—T.

The Pontryagin duality: G = G.

Definition

We define the Abelian complexification G as the set of continuous
homomorphisms
v:G— C\{0}.

We have R{. ~ C, T¢. ~ C\ {0}, Z{ ~ Z.



COMPLEXIFICATION OF A COMPACT GROUP

Let G be a compact group and x — A(x) the left regular representation of G,
Ax)E(y) = E(x1y), € € L*(G). Consider VN(G) = {\(x) : x € G}

If G is compact, and G is the unitary dual of G, treated as a set of unitary
representations 7 : G — U(H,), d, = dim(H ), we have that

A~ & omand VN(G) ~ &! _ L(Hx).
Let Trig(G) be the span of matrix coefficients of elements in G:

Trig(G) = @, .5 Trig, (G).

The Fourier transform: u € Trig(G) — (it(7)),. ¢ Where

a(m) = / u(s)m(s~Vds € L(Hy).
Je
Hence the linear dual space Trig(G)' can be identified with [ . £(Hx) via
(u, (Tr)) = dxTr(i(m)T).

neG
Note that [ | . c; L(Hx) is the set of affiliated elements with VN(G).
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COMPACT GROUPS COMPLEXIFICATION, CONT.
Definition [McKennon *79, Cartwright-McMullen, ’81]

We define a complexification of G¢ of a compact group G as the set of
characters of Trig(G), i.e.

Ge={T € H L(H;)\ {0} : (T, udy = (T, u){T,u'),u,u’ € Trig(G)}

weG

T € Geiff m'(T) = T @ T, where m is the multiplication on Trig(G).
We identify G =~ {(7(s)),.c¢; : 5 € G} = A(G).

Theorem (Krein, Tanaka, McKennon, Cartwright, McMullen)
e Gc is a group
@ GcNVN(G) =\G)~G
o T €Gc = |T|=(|Tx|),ci; € Gcand |T|7'T € G.

Cartan decomposition: G¢ = G - G(‘;.




WHY COMPLEXIFICATION?

Consider

gc=1{X¢ H L(Hy) : (X,uu") = (X, u)u'(e) + u(e)(X,u'),u,u’ € Trig(G)},
e

ie.m(X)=X®I+12X,
g={X€gc: X=X} ogc=g+ig
gc is a Lie algebra, g is a real Lie subalgebra.
Theorem (Cartwright, McMullen)
@ exp(tX) e Gc & X €ge;exp(tX) eG= X € g,
@ exp(ig) = G¢, exp(g) C G.

If G is a connected Lie group with the Lie algebra g, then G¢ is a Lie group with Lie
algebra gc.

Example
SU(n)c = SL(n,C), Tc = C\ {0}. If G is abelian and compact then G% ~ Gg. J




COMPLEXIFICATION: GENERAL CASE

Let G be a locally compact group G, A the left regular representation, VN(G)
the group von Neumann algebra.
Consider

e coproduct: T : VN(G) — VN(G)®VN(G), A(s) — A(s) @ A(s),

e antipode: S : VN(G) — VN(G), A(s) — A(s~1).
If G is abelian, then VN(G) ~ L*(G), the coproduct is
L(f)(s, 1) = f(st) € L°(G)RL>®(G), antipode S(f)(s) = f(s~').
There is a fundamental unitary W € VN(G)@B(L*(G)) that implements the
coproduct:

N'X)=w"(1X)W,X € VN(G).

(WE)(s, 1) = (s, 1), € € L2(G) ® L*(G).



We have: G ~ \(G) = {X € VN(G) \ {0} : T'(X) = X ® X}.

Recall that if M is a von Neumann algebra on H, then a closed densely
defined unbounded operator T on H is affiliated with M if U*TU = T for
every unitary U € M’. We write M for the set of all such elements.

Obs! If T = U|T)| is the polar decomposition of T, then T € M iff U € M
and Ep(A) € M, A € B(R), where E7|(-) is the spectral measure of
positive operator |T|.

AsT'(X) = W (1 @ X)W, X € VN(G), we can extend I" to VN(G) to get a
map I' : VN(G) — VN(G)®VN(G).

Definition
An abstract (\-) complexification Gg, of G is defined as the set

Gea = {X € VN(G) \ {0} : T(X) = X ® X}.

If G is compact, G¢, coincides with McKennon, Cartwright-McMullen
abstract complexification Gc.



Let

A={a € VNG) : T(a)=a®1+1Qa,a" = —a}.
As in the compact case we have

Theorem (O.Giselsson-T.)

e o € A — exp(ia) is a bijection onto Gg ) N VN(G)Jr

e Gc ) = {A(s)exp(ia) : @ € A, s € G}

@ If G is a connected Lie group with Lie algebra g then
A = {0X(X) : X € g} and Gc \ = {\(s) exp(iOA(X)) : X € g,5 € G},
where ON(X) = dA(X) and dA(X)§ = 4\ (exp(tX))€ =0, £ € D®(N).

t

Questions

Is G¢,) always a group?ls there a good locally compact structure on Ge »? If
G is a connected Lie group what is a connection to the universal
complexification of G?




FOURIER ALGEBRA OF LOCALLY COMPACT GROUP

@ The Fourier algebra A(G) of alocally compact group G is
Q@ A(G) = VN(G), with multiplication u - v = I',(u ® v), where I is the
coproduct OR
Q@ AG)={f*3:f,g€L*(G)} C Cy(G), where g(x) = g(x 1), with
pointwise multiplication.
@ A(G) is a (non-closed) subalgebra of Cy(G) which is a commutative
Banach algebra with norm [|ul| 4Gy = inf.=rsg [|f]2]|g]l2-
e the duality with VN(G) is given by (T, f  g) = (Tg,f), in particular,
(A(x),u) = u(x),x € G.
@ (Eymard, 64’). We have a homeomorphism

SpecA(G) ~ G, \(x) — x,

where SpecA(G) is the Gelfand spectrum, i.e. all (bounded) non-zero
multiplicative linear maps from A(G) into C.



The homeomorphism can be seen as follows: X € VN(G) \ {0} is a character
of A(G) iff for any u, v € A(G),

XX, uev)=(X,u)X,v) = (X,uv)
=X,T\(u®v) =TX),uxv),

i.e.
r'X)=X®X,

and hence X € A\(G).

F A
e If G is abelian, the Fourier transform gives A(G) =~ L'(G).
e If G is compact, Trig(G) C A(G) and

AG) = {u:G = C: lulla@) = D la(m)|1dr < o0},
neG
where Fg(u)(m) = () = [;u(s)m(s™")ds, dr = dim Hp, || - [|; is the
trace norm.



WEIGHTS AND WEIGHTED FOURIER ALGEBRAS

A scalar weight function on G is a measurable function w : G — R™ such that
w(st) < w(s)w(z) forall s, 7 € G.

We will also assume that it is bounded bellow, i.e. w := w™! € L*(G) and

WwOw<T(w),eg G=RorZ wx) = BN+ |x|).

@ If G is abelian and w is a weight on G, we consider L' (G, w) which is a Banach
algebra (w.r.t. convolution) and weighted norm and let

A(G,w) := ]:GLI(G., w).

@ If G is compact we define a weight function on the dual GofGasw:G — R
such that

w(o) < w(m)w(p) forany o C 7 ® p.
Lettingw := &__w™ ' (7)I; € VN(G), we obtain w @ w < I'(w). We define
A(G,w) = {u: G = C: lullw = Y a(m)[iw(m)dr < oo}, } = w-A(G),
weG
where w - u € A(G) is given by (T, w - u) = (Tw, u).
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Definition (general case)
A weight inverse on the dual of G is w € VN(G) such that

0 wu* @ uww' <T'(ww*) (& w®w = I'(w) for a unique 2 € VN(G)
with || Q]| < 1)

@ kerw = kerw* = {0}

Welet A(G,w) :=w-A(G) C A(G). Itis a subalgebra of A(G) as:
()@ v) = Dal(w ®w) - (1)) = w- (Cu(Qu @ v))).

It is a commutative Banach algebra, called a Beurling-Fourier algebra of G,
with respect to [|w - ul| 4G ) = [|u]|4(c) With the dual A(G,w)* = VN(G) and
duality: (T,w - u),, := (T,u), T € VN(G), u € A(G).

Question J

What is the spectrum of A(G,w)? Its relation to the complexification?

Beurling-Fourier algebras were introduced simultaneously in 2012 by H.H. Lee, E.Samei (JFA,
2012) and J.Ludwig, N.Spronk, T. (JFA, 2012)



SPEC(A(G,w)) AND COMPLEXIFICATION: COMPACT G

If G is a compact group then Trig(G) C A(G,w) as a dense subalgebra for
any weight inverse w.

I T = (Tx), .4 € Spec(A(G,w)) C VN(G) = &'~ _L(Hy), then
<T, MV)w = <T7 u>w<T7 V>UJ7 u,v € Trlg(G)

As (T,u), = (T,w- (W u))y = (T,w™ ' u) =56 dTr(Trw™ ! (m)ia(r)),
Tw~! € Ge. Identifying VN(G) with VN(G,w™") := {Xw™" : X € VN(G)},
X — Xw™! we have Spec(A(G,w)) C G¢

Examples

1.G=T,and wg : Z — R*, wg(n) = 87I"l, B > 1 then
Te ~ {(xn)n: Z = C* : Xy = xpxX¥n,m € Z} = {(¢")p : c € C*}

and Spec(A(T,w)) = {c € C: 4 < || < B} C C* = Tc as we need
("B, € £2°.

2.G=Tandw(n) = (1+ |n|)~%, a > 0then (c"w(n)) € £ iff c € T and
Spec(A(T,w)) ~ T.

v




EXMAPLES, CONT.
Examples
3.G=5SU(2),G = {m, : n € NU{0}}, where m; = id and

i ) Wiy & Wit @) Wi zp—3) @) o o o (&D) T |p—m| -

We have 7 generates G in the sense that 7 € G = 7 C ﬂ?” for some n.
w: G — R is a weight inverse iff &(n) = w(m,) is a weight inverse on N U {0}
(eg.w(n)=a™ a>1)g~su(2),gc ~sl(2,C)and Gc ~ SL(2,C).

Let p, = lim, o Cu(n)l/”, A e SLR2,C)T, (m)c(A) = A =~ [ & A ],
A®" = (m)@"(A) = [|(m)c(A)]| = max(X, A7).

Hence

sup ||(m,)c(A)]|@(n) = sup max(\", \™")@(n) < oo < max(\, A" )p, <1
neN neN

and

Spec(A(G,w)) ~ {x € SL(2,C) : o(|x]) = {\ A"} pw <A< 1/py,}




SPEC(A(G,w)) AND COMPLEXIFICATION: GENERAL G

Let w € VN(G) be a weight inverse and let Q2 € VN(G)®VN(G) be such that
INw)Q =w®w (]| <1). Then Qis a 2-cocycle, i.e.

D) ()UIeQ) =T e)(Q)QxI).
Identifying Spec(A(G,w)) with a subset of A(G,w)* = VN(G), we have that
Spec(A(G,w)) ={oc € VN(G) : 0 #0,T'(0)Q =0 R c}.

In fact,

(c®@o,u®v) = (0,w- u),(o,w V), = (0, (w- u)(w- V)
=(0,w- (Tu(QUu®v))))w = (o, T (QUu v

What are solutions to I'(0)Q2 = 0 ® 0?




SOLUTIONS TOI'(0)2 = 0 ® 0?

Guess: o = T,w fora T, € Gc, ), since formally
D(To)(w§ @wn) = T(To)L(w)Q§ @ 1) = (o) @ n) = ol @ on
On the other hand,
(Te @ To)(wE @ wn) = 0§ @ on

so that I'(Ty) = T, ® T, and T, € G¢ ). Hence if we can show that the
operator 7, : w& +— 0§ is closable, then the closure T, € Gc .



CLOSABILITY OF T, : w§ +— o€

Let S be the antipode on VN(G), an anti-homomorphism given by
S(A(s)) = As7), s €G.

Theorem [O.Giselsson-T.]

If o € SpecA(G,w) then Ty, : w§ — o€ is closable and hence T, € Gc,) if
the following hold:

Q kero* = {0};
Q S(0)o = S(w)w.

If o = Tw with T € G, then formally S(T) = 7! and as S is an
anti-homomorphism

S(o)o = S(wW)T™'Tw = S(w)w.
If (1) and (2) hold then

w&, — 0and o€, — n = S(0)c&, — S(o)n =0 = lim S(w)wé,

andn = 0 as ker S(o) = {0}.
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Proposition [O.Giselsson-T.]
If ker Q* = {0} then ker o* = {0} for all 0 € Spec(A(G,w)). J

Aim: To prove S(o)o = S(w)w for any o € Spec(A(G,w)). J

Let W be the fundamental unitary that implements I', i.e. I'(X) = W*(I ® X)W. Then
S((t®g)(W)) =1®g(W*) forall g € B(L*(G))..

Consider M = (S @ 1)(WQ)WQ. From I'(0)2 = 0 ® o we have
(I@o)WQ=Wo®oc)and I ®0)(S®)(WQ) = (S(o) @ )W*(I ® o) and

(& o)M= (S(o) @)W (I )WQ=S(0)o @0 = (12 0)(S(0)s 1)

If o =w(kerw = {0} itgives M = S(w)w @I and (I ® )M = S(w)w ® 0.

Obs! Calculations are only formal, as S is not completely bounded in general. )
Proposition [O.Giselsson-T.]
If o*(H) Nw*(H) # {0} then (2) holds, i.e. S(0)o = S(w)w. J




RESULTS

Proposition [O.Giselsson-T.]

If there exists K C H such that VN(G)(K) C K and w| is invertible then (2)
holds for any o € SpecA(G,w), e.g. when

e G is compact;
@ G is Moore;

e G is a seprable type I-group w = | ;’; & wedp (&) and we is invertible
almost everywhere.

Extensions of weights from subgroups

Let H be a closed subgroup of G and let ¢ : VN(H) — VN(G), Au(g) — Ag(g). If wy
is a weight inverse on the dual of H then wg = t(wp) is a weight inverse on the dual
of G.

Theorem [O.Giselsson-T.]

If H is an abelian subgroup of G and wy is a weight inverse then (1) and (2)
holds for any o € Spec(A(G, t(wy))) and Spec(A(G, t(wn))) C Ge .

e TR




Theorem [O.Giselsson-T., GLLST]
Let G be one of the following groups:
@ a connected simply connected nilpotent Lie group;
© the reduced Heisenberg groups;
© the Euclidean motion group E(2).
@ simply connected cover E(2) of E(2)

and let H be an abelian connected closed subgroup of G. Suppose wy is a
weight inverse on the dual of H and let wg = ¢(wpy). Then (with identification
VN(G) =~ VN(G,wg")

Spec(A(G,wg)) =~ {Ag(s)exp(idrg(X)) : s € G,X € b,
exp(i0Ap(X)) € Spec(A(H,wn))}




IDEA OF THE PROOF

Step 1: As wg is is induced from a weight on the dual of abelian subgroup,
Spec(A(G,wg)) C Gen = {A6(s) exp(i0Xg(X)) : s € G, X € g}.

Step 2: If § is the Lie algebra of H with the basis X1, ..., X, and
wr = w(iOA g (X1), - .., 10 u (X)) for a weight inverse function
w: R™ — R* then wg = w(idAg(X1), . .., i0AG(Xy)). We show that

X € g\ b= exp(idrg(X))we is unbounded.
Step 3: Show that for X € b,

exp(i0Ag(X)) = t(exp(iOAn(X))) € Spec(A(G, t(wr))) iff
exp(i0Am(X)) € Spec(A(H,ww)).



EXAMPLE: HEISENBERG GROUP.

1 x z
e H=1< (v,z,x) = I vy |:xy,ze€R
1

e H=Hyz ={(y,2,0) € H: y,z € R}-abelian subgroup
@ We have the universal complexification
I x z
He = § (0,2,%) = 1 y|:xyzeC
1

and Cartan type decomposition H¢ ~ H - exp(ih)), where b is the Lie
algebra of H.

Let w be a weight inverse on R?. Then wy = (F7)~'M F" € VN(Hyz)is a
weight inverse and the condition exp(iOAy (X)) € Spec(A(Hy z,wy)) for
X = (y,2,0) € b is equivalent to

e”e”w(a,b) € L=(R?).



HEISENBERG GROUP, CONT.

When w(a,b) = 6;'“'62_“" € L=(R?), (a,b) € R? for some 31, B, > 1 we
get

Spec(A(H, e(wn))) =~ {g- (iviz,0) € He ~ C*: g € H,
%,z €R, [y < In B, [z[< In B}

When w(a,b) = (1 + ||(a,b)]|)™, a > 0 then Spec(A(H, t(wpy))) ~ H.



Thank You!
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