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COMPLEXIFICATION OF A GROUP: ABELIAN CASE

Let G be an Abelian locally compact group. The dual group Ĝ is the set of
continuous homomorphisms:

χ : G 7→ T.

The Pontryagin duality: ˆ̂G = G.

Definition
We define the Abelian complexification Ga

C as the set of continuous
homomorphisms

ϕ : Ĝ→ C \ {0}.

We have Ra
C ' C, Ta

C ' C \ {0}, Za
C ' Z.
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COMPLEXIFICATION OF A COMPACT GROUP
Let G be a compact group and x 7→ λ(x) the left regular representation of G,
λ(x)ξ(y) = ξ(x−1y), ξ ∈ L2(G). Consider VN(G) = {λ(x) : x ∈ G}′′.
If G is compact, and Ĝ is the unitary dual of G, treated as a set of unitary
representations π : G→ U(Hπ), dπ = dim(Hπ), we have that

λ ' ⊕π∈Ĝπ and VN(G) ' ⊕`
∞

π∈ĜL(Hπ).

Let Trig(G) be the span of matrix coefficients of elements in Ĝ:

Trig(G) = ⊕π∈ĜTrigπ(G).

The Fourier transform: u ∈ Trig(G) 7→ (û(π))π∈Ĝ where

û(π) =

∫
G

u(s)π(s−1)ds ∈ L(Hπ).

Hence the linear dual space Trig(G)† can be identified with
∏
π∈Ĝ L(Hπ) via

〈u, (Tπ)〉 =
∑
π∈Ĝ

dπTr(û(π)Tπ).

Note that
∏

π∈Ĝ L(Hπ) is the set of affiliated elements with VN(G).
July 3, 2020 3 / 25



COMPACT GROUPS COMPLEXIFICATION, CONT.
Definition [McKennon ’79, Cartwright-McMullen, ’81]
We define a complexification of GC of a compact group G as the set of
characters of Trig(G), i.e.

GC = {T ∈
∏
π∈Ĝ

L(Hπ) \ {0} : 〈T, uu′〉 = 〈T, u〉〈T, u′〉, u, u′ ∈ Trig(G)}

T ∈ GC iff m†(T) = T ⊗ T , where m is the multiplication on Trig(G).
We identify G ' {(π(s))π∈Ĝ : s ∈ G} = λ(G).

Theorem (Krein, Tanaka, McKennon, Cartwright, McMullen)
GC is a group

GC ∩ VN(G) = λ(G) ' G

T ∈ GC ⇒ |T| = (|Tπ|)π∈Ĝ ∈ GC and |T|−1T ∈ G.

Cartan decomposition: GC = G · G+
C .
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WHY COMPLEXIFICATION?
Consider

gC = {X ∈
∏
π∈Ĝ

L(Hπ) : 〈X, uu′〉 = 〈X, u〉u′(e) + u(e)〈X, u′〉, u, u′ ∈ Trig(G)},

i.e. m†(X) = X ⊗ I + I ⊗ X,

g = {X ∈ gC : X = −X∗} gC = g + ig

gC is a Lie algebra, g is a real Lie subalgebra.

Theorem (Cartwright, McMullen)

exp(tX) ∈ GC ⇔ X ∈ gC; exp(tX) ∈ G⇔ X ∈ g;

exp(ig) = G+
C , exp(g) ⊂ G.

If G is a connected Lie group with the Lie algebra g, then GC is a Lie group with Lie
algebra gC.

Example
SU(n)C = SL(n,C), TC = C \ {0}. If G is abelian and compact then Ga

C ' GC.
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COMPLEXIFICATION: GENERAL CASE

Let G be a locally compact group G, λ the left regular representation, VN(G)
the group von Neumann algebra.
Consider

coproduct: Γ : VN(G)→ VN(G)⊗̄VN(G), λ(s) 7→ λ(s)⊗ λ(s),

antipode: S : VN(G) 7→ VN(G), λ(s) 7→ λ(s−1).

If G is abelian, then VN(G) ' L∞(Ĝ), the coproduct is
Γ(f )(s, t) = f (st) ∈ L∞(G)⊗̄L∞(G), antipode S(f )(s) = f (s−1).
There is a fundamental unitary W ∈ VN(G)⊗̄B(L2(G)) that implements the
coproduct:

Γ(X) = W∗(1⊗ X)W,X ∈ VN(G).

(Wξ)(s, t) = ξ(ts, t), ξ ∈ L2(G)⊗ L2(G).
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We have: G ' λ(G) = {X ∈ VN(G) \ {0} : Γ(X) = X ⊗ X}.

Recall that ifM is a von Neumann algebra onH, then a closed densely
defined unbounded operator T onH is affiliated withM if U∗TU = T for
every unitary U ∈M′. We writeM for the set of all such elements.
Obs! If T = U|T| is the polar decomposition of T , then T ∈M iff U ∈M
and E|T|(∆) ∈M, ∆ ∈ B(R), where E|T|(·) is the spectral measure of
positive operator |T|.

As Γ(X) = W∗(1⊗ X)W, X ∈ VN(G), we can extend Γ to VN(G) to get a
map Γ : VN(G)→ VN(G)⊗̄VN(G).

Definition
An abstract (λ-) complexification GC,λ of G is defined as the set

GC,λ = {X ∈ VN(G) \ {0} : Γ(X) = X ⊗ X}.

If G is compact, GC,λ coincides with McKennon, Cartwright-McMullen
abstract complexification GC.
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Let
Λ = {α ∈ VN(G) : Γ(α) = α⊗ 1 + 1⊗ α, α∗ = −α}.

As in the compact case we have

Theorem (O.Giselsson-T.)

α ∈ Λ 7→ exp(iα) is a bijection onto GC,λ ∩ VN(G)
+

GC,λ = {λ(s) exp(iα) : α ∈ Λ, s ∈ G}
If G is a connected Lie group with Lie algebra g then
Λ = {∂λ(X) : X ∈ g} and GC,λ = {λ(s) exp(i∂λ(X)) : X ∈ g, s ∈ G},
where ∂λ(X) = dλ(X) and dλ(X)ξ = d

dtλ(exp(tX))ξ|t=0, ξ ∈ D∞(λ).

Questions
Is GC,λ always a group?Is there a good locally compact structure on GC,λ? If
G is a connected Lie group what is a connection to the universal
complexification of G?
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FOURIER ALGEBRA OF LOCALLY COMPACT GROUP

The Fourier algebra A(G) of a locally compact group G is
1 A(G) = VN(G)∗ with multiplication u · v = Γ∗(u⊗ v), where Γ is the

coproduct OR
2 A(G) = {f ∗ ǧ : f , g ∈ L2(G)} ⊂ C0(G), where ǧ(x) = g(x−1), with

pointwise multiplication.

A(G) is a (non-closed) subalgebra of C0(G) which is a commutative
Banach algebra with norm ‖u‖A(G) = infu=f∗ǧ ‖f‖2‖g‖2.

the duality with VN(G) is given by 〈T, f̄ ∗ ǧ〉 = 〈Tg, f 〉, in particular,
〈λ(x), u〉 = u(x), x ∈ G.

(Eymard, 64’). We have a homeomorphism

SpecA(G) ' G, λ(x) 7→ x,

where SpecA(G) is the Gelfand spectrum, i.e. all (bounded) non-zero
multiplicative linear maps from A(G) into C.
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The homeomorphism can be seen as follows: X ∈ VN(G) \ {0} is a character
of A(G) iff for any u, v ∈ A(G),

〈X ⊗ X, u⊗ v〉 = 〈X, u〉〈X, v〉 = 〈X, uv〉
= 〈X,Γ∗(u⊗ v)〉 = 〈Γ(X), u⊗ v〉,

i.e.
Γ(X) = X ⊗ X,

and hence X ∈ λ(G).

If G is abelian, the Fourier transform gives A(G)
FG' L1(Ĝ).

If G is compact, Trig(G) ⊂ A(G) and

A(G) ' {u : G→ C : ‖u‖A(G) =
∑
π∈Ĝ

‖û(π)‖1dπ <∞},

where FG(u)(π) = û(π) =
∫

G u(s)π(s−1)ds, dπ = dim Hπ, ‖ · ‖1 is the
trace norm.
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WEIGHTS AND WEIGHTED FOURIER ALGEBRAS
A scalar weight function on G is a measurable function w : G→ R+ such that

w(st) ≤ w(s)w(t) for all s, t ∈ G.

We will also assume that it is bounded bellow, i.e. ω := w−1 ∈ L∞(G) and
ω ⊗ ω ≤ Γ(ω), e.g. G = R or Z, w(x) = β|x|(1 + |x|)s.

If G is abelian and w is a weight on Ĝ, we consider L1(Ĝ,w) which is a Banach
algebra (w.r.t. convolution) and weighted norm and let

A(G,w) := FĜL1(Ĝ,w).

If G is compact we define a weight function on the dual Ĝ of G as w : Ĝ→ R+

such that
w(σ) ≤ w(π)w(ρ) for any σ ⊂ π ⊗ ρ.

Letting ω := ⊕π∈Ĝw−1(π)Iπ ∈ VN(G), we obtain ω ⊗ ω ≤ Γ(ω). We define

A(G, ω) := {u : G→ C : ‖u‖ω =
∑
π∈Ĝ

‖û(π)‖1w(π)dπ <∞}, } = ω · A(G),

where ω · u ∈ A(G) is given by 〈T, ω · u〉 = 〈Tω, u〉.
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Definition (general case)
A weight inverse on the dual of G is ω ∈ VN(G) such that

1 ωω∗ ⊗ ωω∗ ≤ Γ(ωω∗) (⇔ ω ⊗ ω = Γ(ω)Ω for a unique Ω ∈ VN(G)
with ‖Ω‖ ≤ 1)

2 kerω = kerω∗ = {0}

We let A(G, ω) := ω · A(G) ⊂ A(G). It is a subalgebra of A(G) as:

(ω · u)(ω · v) = Γ∗((ω ⊗ ω) · (u⊗ v)) = ω · (Γ∗(Ω(u⊗ v))).

It is a commutative Banach algebra, called a Beurling-Fourier algebra of G,
with respect to ‖ω · u‖A(G,ω) = ‖u‖A(G) with the dual A(G, ω)∗ = VN(G) and
duality: 〈T, ω · u〉ω := 〈T, u〉, T ∈ VN(G), u ∈ A(G).

Question
What is the spectrum of A(G, ω)? Its relation to the complexification?

Beurling-Fourier algebras were introduced simultaneously in 2012 by H.H. Lee, E.Samei (JFA,
2012) and J.Ludwig, N.Spronk, T. (JFA, 2012)
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SPEC(A(G, ω)) AND COMPLEXIFICATION: COMPACT G
If G is a compact group then Trig(G) ⊂ A(G, ω) as a dense subalgebra for
any weight inverse ω.
If T = (Tπ)π∈Ĝ ∈ Spec(A(G, ω)) ⊂ VN(G) ' ⊕`∞

π∈Ĝ
L(Hπ), then

〈T, uv〉ω = 〈T, u〉ω〈T, v〉ω, u, v ∈ Trig(G).

As 〈T, u〉ω = 〈T, ω · (ω−1 · u)〉ω = 〈T, ω−1 · u〉 =
∑
π∈Ĝ dπTr(Tπω−1(π)û(π)),

Tω−1 ∈ GC. Identifying VN(G) with VN(G, ω−1) := {Xω−1 : X ∈ VN(G)},
X 7→ Xω−1 we have Spec(A(G, ω)) ⊂ GC

Examples
1. G = T, and ωβ : Z→ R+, ωβ(n) = β−|n|, β ≥ 1 then

TC ' {(xn)n : Z→ C∗ : xn+m = xnxm∀n,m ∈ Z} = {(cn)n : c ∈ C∗}

and Spec(A(T, ω)) ' {c ∈ C : 1
β ≤ |c| ≤ β} ⊂ C∗ = TC as we need

(cnβ−|n|)n ∈ `∞.
2. G = T and ω(n) = (1 + |n|)−α, α ≥ 0 then (cnω(n)) ∈ `∞ iff c ∈ T and
Spec(A(T, ω)) ' T.
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EXMAPLES, CONT.
Examples

3. G = SU(2), Ĝ = {πn : n ∈ N ∪ {0}}, where π1 = id and

πn ⊗ πm ' πn+m ⊕ πn+m−2 ⊕ . . .⊕ π|n−m|.

We have π1 generates Ĝ in the sense that π ∈ Ĝ⇒ π ⊂ π⊗n
1 for some n.

ω : Ĝ→ R+ is a weight inverse iff ω̃(n) = ω(πn) is a weight inverse on N ∪ {0}
(e.g. ω̃(n) = α−n, α > 1) g ' su(2), gC ' sl(2,C) and GC ' SL(2,C).

Let ρω = limn→∞ ω̃(n)1/n, Λ ∈ SL(2,C)+, (π1)C(Λ) = Λ '
[
λ

λ−1

]
,

Λ⊗n = (π1)⊗n
C (Λ)⇒ ‖(πn)C(Λ)‖ = max(λn, λ−n).

Hence

sup
n∈N
‖(πn)C(Λ)‖ω̃(n) = sup

n∈N
max(λn, λ−n)ω̃(n) <∞⇔ max(λ, λ−1)ρω ≤ 1

and

Spec(A(G, ω)) ' {x ∈ SL(2,C) : σ(|x|) = {λ, λ−1}, ρω ≤ λ ≤ 1/ρω}

July 3, 2020 14 / 25



SPEC(A(G, ω)) AND COMPLEXIFICATION: GENERAL G
Let ω ∈ VN(G) be a weight inverse and let Ω ∈ VN(G)⊗̄VN(G) be such that
Γ(ω)Ω = ω ⊗ ω (‖Ω‖ ≤ 1). Then Ω is a 2-cocycle, i.e.

(ι⊗ Γ)(Ω)(I ⊗ Ω) = (Γ⊗ ι)(Ω)(Ω⊗ I).

Identifying Spec(A(G, ω)) with a subset of A(G, ω)∗ = VN(G), we have that

Spec(A(G, ω)) = {σ ∈ VN(G) : σ 6= 0,Γ(σ)Ω = σ ⊗ σ}.

In fact,

〈σ ⊗ σ, u⊗ v〉 = 〈σ, ω · u〉ω〈σ, ω · v〉ω = 〈σ, (ω · u)(ω · v)〉ω
= 〈σ, ω · (Γ∗(Ω(u⊗ v)))〉ω = 〈σ,Γ∗(Ω(u⊗ v))〉 = 〈Γ(σ)Ω, u⊗ v〉

What are solutions to Γ(σ)Ω = σ ⊗ σ?

July 3, 2020 15 / 25



SOLUTIONS TO Γ(σ)Ω = σ ⊗ σ?

Guess: σ = Tσω for a Tσ ∈ GC,λ, since formally

Γ(Tσ)(ωξ ⊗ ωη) = Γ(Tσ)Γ(ω)Ω(ξ ⊗ η) = Γ(σ)Ω(ξ ⊗ η) = σξ ⊗ ση

On the other hand,

(Tσ ⊗ Tσ)(ωξ ⊗ ωη) = σξ ⊗ ση

so that Γ(Tσ) = Tσ ⊗ Tσ and Tσ ∈ GC,λ. Hence if we can show that the
operator Tσ : ωξ 7→ σξ is closable, then the closure Tσ ∈ GC,λ.
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CLOSABILITY OF Tσ : ωξ 7→ σξ
Let S be the antipode on VN(G), an anti-homomorphism given by
S(λ(s)) = λ(s−1), s ∈ G.

Theorem [O.Giselsson-T.]
If σ ∈ SpecA(G, ω) then Tσ : ωξ 7→ σξ is closable and hence Tσ ∈ GC,λ if
the following hold:

1 kerσ∗ = {0};
2 S(σ)σ = S(ω)ω.

If σ = Tω with T ∈ GC,λ then formally S(T) = T−1 and as S is an
anti-homomorphism

S(σ)σ = S(ω)T−1Tω = S(ω)ω.

If (1) and (2) hold then

ωξn → 0 and σξn → η ⇒ S(σ)σξn → S(σ)η = 0 = lim
n

S(ω)ωξn

and η = 0 as ker S(σ) = {0}.
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Proposition [O.Giselsson-T.]
If ker Ω∗ = {0} then kerσ∗ = {0} for all σ ∈ Spec(A(G, ω)).

Aim: To prove S(σ)σ = S(ω)ω for any σ ∈ Spec(A(G, ω)).

Let W be the fundamental unitary that implements Γ, i.e. Γ(X) = W∗(I ⊗ X)W. Then

S((ι⊗ g)(W)) = ι⊗ g(W∗) for all g ∈ B(L2(G))∗.

Consider M = (S⊗ ι)(WΩ)WΩ. From Γ(σ)Ω = σ ⊗ σ we have
(I ⊗ σ)WΩ = W(σ ⊗ σ) and (I ⊗ σ)(S⊗ ι)(WΩ) = (S(σ)⊗ I)W∗(I ⊗ σ) and

(I ⊗ σ)M = (S(σ)⊗ I)W∗(I ⊗ σ)WΩ = S(σ)σ ⊗ σ = (I ⊗ σ)(S(σ)σ ⊗ I)

If σ = ω (kerω = {0}) it gives M = S(ω)ω ⊗ I and (I ⊗ σ)M = S(ω)ω ⊗ σ.

Obs! Calculations are only formal, as S is not completely bounded in general.

Proposition [O.Giselsson-T.]
If σ∗(H) ∩ ω∗(H) 6= {0} then (2) holds, i.e. S(σ)σ = S(ω)ω.
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RESULTS

Proposition [O.Giselsson-T.]
If there exists K ⊂ H such that VN(G)(K) ⊂ K and ω|K is invertible then (2)
holds for any σ ∈ SpecA(G, ω), e.g. when

G is compact;

G is Moore;

G is a seprable type I-group ω =
∫ ⊕
ξ∈Ĝ ωξdµ(ξ) and ωξ is invertible

almost everywhere.

Extensions of weights from subgroups
Let H be a closed subgroup of G and let ι : VN(H)→ VN(G), λH(g) 7→ λG(g). If ωH

is a weight inverse on the dual of H then ωG = ι(ωH) is a weight inverse on the dual
of G.

Theorem [O.Giselsson-T.]
If H is an abelian subgroup of G and ωH is a weight inverse then (1) and (2)
holds for any σ ∈ Spec(A(G, ι(ωH))) and Spec(A(G, ι(ωH))) ⊂ GC,λ.
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Theorem [O.Giselsson-T., GLLST]
Let G be one of the following groups:

1 a connected simply connected nilpotent Lie group;
2 the reduced Heisenberg groups;
3 the Euclidean motion group E(2).
4 simply connected cover Ẽ(2) of E(2)

and let H be an abelian connected closed subgroup of G. Suppose ωH is a
weight inverse on the dual of H and let ωG = ι(ωH). Then (with identification
VN(G) ' VN(G, ω−1

G )

Spec(A(G, ωG)) ' {λG(s) exp(i∂λG(X)) : s ∈ G,X ∈ h,

exp(i∂λH(X)) ∈ Spec(A(H, ωH))}.

July 3, 2020 20 / 25



IDEA OF THE PROOF

Step 1: As ωG is is induced from a weight on the dual of abelian subgroup,

Spec(A(G, ωG)) ⊂ GC,λ = {λG(s) exp(i∂λG(X)) : s ∈ G,X ∈ g}.

Step 2: If h is the Lie algebra of H with the basis X1, . . . ,Xm and
ωH = ω(i∂λH(X1), . . . , i∂λH(Xm)) for a weight inverse function
ω : Rm → R+ then ωG = ω(i∂λG(X1), . . . , i∂λG(Xm)). We show that

X ∈ g \ h⇒ exp(i∂λG(X))ωG is unbounded.

Step 3: Show that for X ∈ h,
exp(i∂λG(X)) = ι(exp(i∂λH(X))) ∈ Spec(A(G, ι(ωH))) iff
exp(i∂λH(X)) ∈ Spec(A(H, ωH)).
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EXAMPLE: HEISENBERG GROUP.

H =

(y, z, x) =

 1 x z
1 y

1

 : x, y, z ∈ R


H = HY,Z = {(y, z, 0) ∈ H : y, z ∈ R}-abelian subgroup
We have the universal complexification

HC =

(y, z, x) =

 1 x z
1 y

1

 : x, y, z ∈ C


and Cartan type decomposition HC ' H · exp(ih), where h is the Lie
algebra of H.

Let ω be a weight inverse on R2. Then ωH = (FH)−1MωFH ∈ VN(HY,Z) is a
weight inverse and the condition exp(i∂λH(X)) ∈ Spec(A(HY,Z, ωH)) for
X = (y, z, 0) ∈ h is equivalent to

eayebzω(a, b) ∈ L∞(R2).
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HEISENBERG GROUP, CONT.

When ω(a, b) = β
−|a|
1 β

−|b|
2 ∈ L∞(R2), (a, b) ∈ R2 for some β1, β2 ≥ 1 we

get

Spec(A(H, ι(ωH))) ' {g · (iy, iz, 0) ∈ HC ' C3 : g ∈ H,
y, z ∈ R, |y| ≤ lnβ1, |z[≤ lnβ2}.

When ω(a, b) = (1 + ‖(a, b)‖)−α, α > 0 then Spec(A(H, ι(ωH))) ' H.
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Thank You!
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