The parabolic algebra revisited

Eleftherios Kastis

Joint work with Prof. Stephen Power Lancaster University

June 26, 2020

E. Kastis (Lancaster University)

A (concrete) operator algebra is a subalgebra of B(H), for some Hilbert space H.

Algebra :

An operator algebra is called selfajoint, if it is closed under the involution map

$$T \mapsto T^*$$
, where $\langle Tx, y \rangle = \langle x, T^*y \rangle$, $\forall x, y \in H$.

Topologies :

• Norm Topology : $T_n \xrightarrow{\|\cdot\|} T$, when $\sup\{\|T_n x - Tx\| : x \in B_H\} \xrightarrow{n} 0$

• SOT Topology :
$$T_i \xrightarrow{SOI} T$$
, when $T_i x \xrightarrow{I} Tx$, $\forall x \in H$.

- WOT Topology : $T_i \stackrel{WOT}{\rightarrow} T$, when $\langle T_i x, y \rangle \stackrel{i}{\rightarrow} \langle Tx, y \rangle$, $\forall x, y \in H$.
- w*-topology : $T_n \xrightarrow{w^*} T$, when $\sum_{n=1}^{\infty} \beta_n \langle (T_n T) x_n, y_n \rangle \to 0$, for all $(\beta_n) \in \ell^1$, $||x_n|| = ||y_n|| = 1$.

Operator algebras	selfadjoint	non-selfadjoint
norm topology	$C(\mathbb{T})$	$A(\mathbb{T})$
w*-topology	$L^{\infty}(\mathbb{T})$	$H^\infty(\mathbb{T})$

Write $F = alg\{e^{inx} : n \in \mathbb{N}\}$ and $F_+ = alg\{e^{inx} : n \ge 0\}$. Then

Operator algebras	selfadjoint	non-selfadjoint
norm topology	$\overline{F}^{\ \cdot\ }$	$\overline{F_+}^{\parallel \cdot \parallel}$
w*-topology	\overline{F}^{w^*}	$\overline{F_+}^{w^*}$

Let *H* be a Hilbert space and $S \subseteq B(H)$. We define its **commutant** to be the set :

$$\mathcal{S}' = \{T \in \mathcal{B}(\mathcal{H}) : TS = ST, \forall S \in \mathcal{S}\}$$

The set \mathcal{S}' is a unital algebra and it is SOT-closed.

Let *H* be a Hilbert space. A **von Neumann algebra** \mathcal{M} acting on *H* is a selfadjoint subset of **B**(*H*), that satisfies the property $\mathcal{M} = \mathcal{M}''$.

Bicommutant Theorem

If $\mathcal{A} \subseteq \mathbf{B}(H)$ is a unital selfadjoint algebra, then

$$\mathcal{A}^{\prime\prime} = \overline{\mathcal{A}}^{w*}.$$

In fact , the following are equivalent :

(a) \mathcal{A} is a von Neumann algebra

(β) \mathcal{A} is w*-closed

Proposition

Let \mathcal{M} be a von Neumann algebra acting on Hilbert space H. Then \mathcal{M} is the norm closed linear span of its projections.

Furthermore, if H is separable, there is a countable set $\mathcal{E} \subseteq \mathcal{M}$ of projections, such that $\mathcal{E}'' = \mathcal{M}$.

Note: A C^* -algebra may have no non-trivial projections.

Definitions

What happens with non-selfadjoint algebras?

Given a set of operators \mathcal{A} , the lattice of all invariant subspaces of \mathcal{A} is denoted $Lat \mathcal{A}$.

Similarly, if \mathcal{L} is a set of subspaces, then $Alg\mathcal{L}$ denotes the algebra of all operators leaving each element of $\mathcal L$ invariant.

Definition

An algebra \mathcal{A} is **reflexive** if $\mathcal{A} = Alg Lat \mathcal{A}$.

A lattice \mathcal{L} is **reflexive** if $\mathcal{L} = Lat Alg \mathcal{L}$.

Do we get an analogue of von Neumann theorem?

No. Take $\mathcal{A} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{C} \right\}$ and $\mathcal{B} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{C} \right\}$. Then \mathcal{A} is w^{*}-closed, but Alg Lat $\mathcal{A} = \mathcal{B}$.

Examples of reflexive algebras:

- H^{∞} as multiplication algebra on $L^{2}(\mathbb{R})$.
- Nest algebras.

A **nest** N is a totally ordered lattice of closed subspaces of a Hilbert space H containing {0} and H. The **nest algebra** is AlgN.

Theorem (Erdos Density theorem)

The finite rank contractions in a nest algebra $\mathcal A$ are dense in the unit ball of $\mathcal A$ in the SOT-topology.

Examples:

- Let $\{e_i \mid i = 1, ..., n\}$ be a basis in \mathbb{C}^n and $N_k = span\{e_1, ..., e_k\}$. Then the set $\mathcal{N} = \{N_k : k \in \{1, ..., n\}\} \cup \{0\}$ is a nest. The nest algebra $Alg\mathcal{N}$ consists of all the upper triangular matrices with respect to the basis.
- Let $H = L^2(\mathbb{R})$. The **Volterra nest** is the family $\mathcal{N}_v = \{N_t : t \in \mathbb{R}\} \cup \{\{0\}, L^2(\mathbb{R})\}$, where

$$N_t = \{ t \in L^2(\mathbb{R}) \mid t(x) = 0 \text{ a.e. on } (-\infty, t] \}.$$

• The analytic nest :

$$\mathcal{N}_{\alpha} = \mathcal{F}^* \mathcal{N}_{\nu} = \{ e^{i \beta x} \mathcal{H}^2(\mathbb{R}) : \hat{\mathcal{J}} \in \mathbb{R} \} \cup \{ \{ 0 \}, \mathcal{L}^2(\mathbb{R}) \}$$
 (Paley - Wiener)

Intermission

Our favorite operators in $L^2(\mathbb{R})$.

- $(M_{\hat{n}}f)(x) = e^{i\hat{n}x}f(x)$, multiplication operator
- $(D_{\mu}f)(x) = f(x \mu)$, translation operator
- $(V_t f)(x) = e^{t/2} f(e^t x)$, dilation operator
- $(M_{\phi_s}f)(x) = e^{-isx^2/2}f(x)$

Note that $\mathcal{A}_{v} = \overline{alg\{M_{\hat{n}}D_{\mu}|\hat{n}\in\mathbb{R},\mu\geq0\}}^{w^{*}}$.

Reflexivity

Define

$$\mathcal{A}_{p} = \overline{alg\{M_{\hat{\mathcal{H}}} D_{\mu} | \hat{\mathcal{H}}, \mu \geq 0\}}^{w^{*}}$$

Theorem (Katavolos - Power)

Define $\mathcal{A}_{FB} = Alg(\mathcal{N}_a \cup \mathcal{N}_v).$ The non-selfadjoint algebra \mathcal{R}_{FB} is called the Fourier Binest Algebra. Then

$$\mathcal{A}_{FB}=\mathcal{A}_{p}.$$

Properties:

- \mathcal{A}_{FB} is a reflexive algebra
- \mathcal{R}_{FB} contains no non-zero finite rank operators.
- \mathcal{A}_{FB} contains no non-trivial selfadjoint operators, i.e. $\mathcal{A}_{FB} \cap \mathcal{A}_{FB}^* = \mathbb{C}I$.
- Its automorphism group is generated by $\{M_{\partial}, D_{\mu}, V_t : \partial, \mu, t \in \mathbb{R}\}$.

Reflexivity

Sketch of proof:

Proposition

Given
$$k \in L^2(\mathbb{R}^2)$$
, define $\Theta(k) : (x, t) \mapsto k(x, x - t)$. Then

$$\mathcal{A}_{FB} \cap C_2 = \{ Intk | \Theta(k) \in H^2(\mathbb{R}) \otimes L^2(\mathbb{R}_+) \}$$

Take $h \in H^2(\mathbb{R}), \phi \in L^2(\mathbb{R}_+)$. Then $Int(\Theta^{-1}(h \otimes \phi))$ lies in \mathcal{A}_{ρ} . Thus

Proposition

$$\mathcal{A}_{FB} \cap C_2 = \mathcal{A}_p \cap C_2$$

The theorem follows from the fact that C_2 is an ideal in the $B(L^2(\mathbb{R}))$, and

Proposition

 $\mathcal{A}_{
m p}$ has a bounded approximate identity of Hilbert Schmidt operators in SOTtopology.

Theorem (K.)

In L^p spaces,
$$\mathcal{R}^{p}_{\textit{FB}} = \mathcal{R}^{p}_{p}, \ ig(1$$

Reflexivity

Theorem (Katavolos - Power)

The Fourier binest is not reflexive.

Figure: $Lat \mathcal{A}_p$ (Copyright : AK)

Let \mathcal{L} be a reflexive subspace lattice and \mathcal{B} be a maximal abelian subalgebra of Alg \mathcal{L} . Then \mathcal{L} is said to be **synthetic relative to** \mathcal{B} if Alg \mathcal{L} is the only w^{*}-closed algebra \mathcal{A} with $Lat\mathcal{A} = \mathcal{L}$ and $\mathcal{B} \subseteq \mathcal{A}$.

Example: The Volterra nest is synthetic relative to the multiplicative masa $\mathcal{M}_{L^{\infty}}$ on $L^2(\mathbb{R})$.

Theorem (K.-Power)

The lattice $Lat\mathcal{R}_p$ fails to be synthetic relative to the maximal abelian algebra $\mathcal{M}_{H^\infty}.$

Sketch of proof:

 $\mathsf{Take}\ \mathcal{A}_0 = w^* - \mathsf{alg}\big(\{M_{\hat{\jmath}}, M_{\hat{\jmath}} D_\mu \ : \ \hat{\jmath} \ge 0, \mu \ge 2\} \cup \{M_{\hat{\jmath}} D_\mu \ : \ \hat{\jmath} \ge 2, \mu \ge 0\}\big).$

Figure: Generators of \mathcal{R}_0

- Show by cocycle argument (as in $Lat\mathcal{A}_p$) that $Lat\mathcal{A}_0 = Lat\mathcal{A}_p$
- Find w*-continuous functional to separate the two algebras.
 Check functionals of the form:

$$\omega(T) = \sum_{n \in \mathbb{N}} a_n \langle TM_{\phi_1} F^{-1} f_n, M_{\phi_1} F^{-1} g_n \rangle,$$

where $\{a_n\} \in \ell^1$, $f_n, g_n \in L^2[0, 2]$ and $||f_n||_2 = ||g_n||_2 = 1$.

Question: Is the w*-closed algebra generated by the multiplication and translation operators still reflexive, if we restrict on the Hardy space?

Theorem (K.-Power)

Let K be a non-trivial subspace of $Lat \mathcal{R}_{p}$. The w*-closure of the restriction of the parabolic algebra on K is reflexive and unitarily equivalent to the Volterra nest algebra.

Idea: $\overline{P_{L^2(\mathbb{R}_+)}(H^\infty(\mathbb{R}))}^{w^*} = L^\infty(\mathbb{R}_+).$

By the term quasicompact algebra, we mean an algebra of the type

$$Q\mathcal{A} = (\mathcal{A} + K(H)) \cap (\mathcal{A}^* + K(H)),$$

Theorem (K.-Power)

The quasicompact algebra of \mathcal{A}_p strictly larger than the algebra $\mathcal{A}_p \cap \mathcal{A}_p^* + K = \mathbb{C}I + K.$

Lemma

The restriction of the triangular truncation operator $\mathcal{P}_{v}\big|_{\mathcal{A}_{p}+\mathcal{A}_{p}^{*}}$ is unbounded.

Take $T_n \in A_p \cap K$ such that $||T_n|| = 1$ and $||T_n - T_n^*|| \to 0$. Define $A_n = D_{t_n} T_n D_{t_n}^*$ and $X_n = A_n - A_n^*$, where t_n is large enough. Set $A = SOT - \sum A_n$ and $X = A - A^*$. Then $X = || \cdot || - \sum X_n \in K(H)$. Show that $A \notin \mathbb{C}I + K$.

Questions:

- Is the parabolic algebra an integral domain ?
- What about the w^{*}-closed ideals of \mathcal{A}_{p} ?
- Could $\mathcal{R}_{p}^{p}, \mathcal{R}_{p}^{q}$ be isomorphic for different p, q?
- Is $(\mathcal{A}_v + K) \cap (\mathcal{A}_a + K)$ strictly larger than the algebra $\mathcal{A}_v \cap \mathcal{A}_a + K = \mathcal{A}_p + K$?

Thank you!