Duality for crossed products of operator spaces and the approximation property of Haagerup-Kraus

Dimitrios Andreou

National and Kapodistrian University of Athens, Greece

Functional Analysis & Operator Algebras Seminar

June 2020

Spatial & Fubini tensor product

A dual operator space is a w*-closed subspace of $\mathcal{B}(H)$ for some Hilbert space H.

For dual operator spaces X ⊆ B(H) and Y ⊆ B(K), the spatial tensor product of X and Y is the subspace of B(H ⊗ K) defined by

$$X \overline{\otimes} Y = \overline{\operatorname{span}}^{w^*} \{ x \otimes y : x \in X, y \in Y \},$$

where $(x \otimes y)(h \otimes k) = (xh) \otimes (yk)$, for $h \in H$, $k \in K$.

• The Fubini tensor product of *X* and *Y* is the space:

$$X\overline{\otimes}_{\mathcal{F}}Y = (X\overline{\otimes}\mathcal{B}(\mathcal{K})) \cap (\mathcal{B}(\mathcal{H})\overline{\otimes}Y) \simeq (X_*\widehat{\otimes}Y_*)^*$$

- Obviously, $X \overline{\otimes} Y \subseteq X \overline{\otimes}_{\mathcal{F}} Y$ for all dual operator spaces X and Y.
- We say that Y has property S_{σ} if $X \otimes Y = X \otimes_{\mathcal{F}} Y$ for any dual operator space X.
- (Kraus) Every *injective* von Neumann algebra M (e.g. of type I) has property S_{σ} .
- (Effros-Ruan) If *M* and *N* are von Neumann algebras, then $M \overline{\otimes} N = M \overline{\otimes}_{\mathcal{F}} N$.

Comodules-basic definitions

A Hopf-von Neumann algebra (HvNa) is a pair (M, Δ) , where M is a von Neumann algebra and $\Delta: M \to M \otimes M$ is a comultiplication, that is a normal unital *-injection which is coassociative:

$$(\Delta \otimes \mathrm{id}_M) \circ \Delta = (\mathrm{id}_M \otimes \Delta) \circ \Delta \qquad \qquad \begin{array}{c} M & \xrightarrow{\Delta} & M \overline{\otimes} M \\ \Delta \downarrow & & \downarrow \Delta \otimes \mathrm{id}_M \\ M \overline{\otimes} M & \xrightarrow{M \overline{\otimes} M} & \overline{M \overline{\otimes} M \overline{\otimes} M} \end{array}$$

An *M*-comodule is a pair (X, α) , where X is a dual operator space and $\alpha \colon X \to X \overline{\otimes}_{\mathcal{F}} M$ is an *M*-action on X, i.e. a w*-continuous complete isometry which is coassociative over Δ :

$$(\alpha \otimes \mathrm{id}_{M}) \circ \alpha = (\mathrm{id}_{X} \otimes \Delta) \circ \alpha \qquad \qquad \begin{array}{c} X & \underbrace{\alpha} & X \otimes_{\mathcal{F}} M \\ \alpha \downarrow & \downarrow \\ X \otimes_{\mathcal{F}} M & \underbrace{\downarrow}_{\alpha \otimes \mathrm{id}_{M}} \\ X \otimes_{\mathcal{F}} M & \underbrace{\downarrow}_{\mathrm{id}_{X} \otimes \Delta} X \otimes_{\mathcal{F}} M \otimes_{\mathcal{F}} M \end{array}$$

The fixed point space of X is the subspace $X^{\alpha} = \{x \in X : \alpha(x) = x \otimes 1_M\}$. An *M*-subcomodule of X is w*-closed subspace $Y \subseteq X$ such that $\alpha(Y) \subseteq Y \otimes_{\mathcal{F}} M$, i.e. $(Y, \alpha|_Y)$ is an *M*-comodule.

Dimitrios Andreou (NKUA)

Comultiplications on $L^{\infty}(G)$ and L(G)

Let *G* be a locally compact group with left Haar measure and modular function Δ_G . Also, let $\lambda : G \to \mathcal{B}(L^2(G))$ be the left regular representation of *G*:

$$\lambda_s \xi(t) = \xi(s^{-1}t), \qquad \xi \in L^2(G).$$

• $L^{\infty}(G)$ is regarded as a von Neumann algebra acting on $L^{2}(G)$ by multiplication and it is a HvNa with comultiplication

$$\alpha_{\mathbf{G}} \colon L^{\infty}(\mathbf{G}) \to L^{\infty}(\mathbf{G} \times \mathbf{G}) \simeq L^{\infty}(\mathbf{G}) \overline{\otimes} L^{\infty}(\mathbf{G}),$$

$$\alpha_G(f)(s,t) = f(ts), \quad s,t \in G, \ f \in L^{\infty}(G).$$

The left group von Neumann algebra *L*(*G*) := λ(*G*)["] ⊆ *B*(*L*²(*G*)) is also a HvNa with comultiplication

$$\delta_G \colon L(G) o L(G) \overline{\otimes} L(G),$$

 $\delta_G(\lambda_s) = \lambda_s \otimes \lambda_s, \quad s \in G.$

Why comodules?

Any L[∞](G)-action α on X corresponds to a strongly w*-continuous G-action γ: G → Aut^{ci}_{w*}(X) by completely isometric w*-continuous automorphisms,

$$\gamma_{\boldsymbol{s}} = \alpha^{-1} \circ (\mathrm{id}_{\boldsymbol{X}} \otimes \mathrm{Ad}\lambda_{\boldsymbol{s}}) \circ \alpha, \ \boldsymbol{s} \in \boldsymbol{G}.$$

In fact, this is a bijective correspondence since the L[∞](G)-action α is uniquely determined by the G-action γ via

$$\langle \alpha(\mathbf{x}), \omega \otimes \mathbf{h} \rangle = \int_{G} \langle \gamma_s^{-1}(\mathbf{x}), \omega \rangle \mathbf{h}(\mathbf{s}) \, \mathrm{d}\mathbf{s}, \ \mathbf{x} \in \mathbf{X}, \ \omega \in \mathbf{X}_*, \ \mathbf{h} \in L^1(G),$$

using the duality $X \overline{\otimes} L^{\infty}(G) \simeq (X_* \widehat{\otimes} L^1(G))^*$.

• $(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \alpha_{\mathsf{G}}) \circ \alpha \iff \gamma_{\mathsf{s}} \circ \gamma_{t} = \gamma_{\mathsf{st}} \forall \mathsf{s}, t \in \mathsf{G}.$

•
$$X^{\alpha} = \{x \in X : \gamma_s(x) = x \ \forall s \in G\}.$$

If G is abelian, then L(G) ≃ L[∞](Ĝ) where Ĝ is the dual group. In the non-abelian case, we have to replace dual group actions with L(G)-comodules since there is not dual group.

Spatial crossed product

For an $L^{\infty}(G)$ -comodule (X, α) with $X \subseteq \mathcal{B}(H)$ the spatial crossed product of X by α is w*-closed $\mathbb{C}1_H \overline{\otimes} L(G)$ -submodule of $X \overline{\otimes} \mathcal{B}(L^2(G))$ generated by $\alpha(X)$. That is the space

$$X \overline{\rtimes}_{\alpha} G = \overline{\operatorname{span}}^{\mathrm{w}^*} \{ (\mathbf{1}_H \otimes \lambda_s) \alpha(x) : s \in G, x \in X \}.$$

Remark: If α is trivial, i.e. $\alpha(x) = x \otimes 1$ for all $x \in X$, then $X \overline{\rtimes}_{\alpha} G = X \overline{\otimes} L(G)$.

Also, if *X* is a von Neumann algebra and α is a unital *-homomorphism induced by a *G*-action γ , then from the covariance relations

$$\alpha(\gamma_s(x)) = (1 \otimes \lambda_s) \alpha(x) (1 \otimes \lambda_s^{-1})$$

it follows that $X \boxtimes_{\alpha} G = (\alpha(X) \cup (\mathbb{C}1 \boxtimes L(G)))''$, i.e. the usual von Neumann algebra crossed product.

Fubini crossed product

For an $L^{\infty}(G)$ -comodule (X, α) we have an $L^{\infty}(G)$ -action

$$\widetilde{\alpha} \colon X \overline{\otimes} \mathcal{B}(L^2(G)) \to X \overline{\otimes} \mathcal{B}(L^2(G)) \overline{\otimes} L^{\infty}(G),$$

defined as the following composition:

The Fubini crossed product of X by α is the fixed point space

$$X \rtimes^{\mathcal{F}}_{\alpha} G = \left(X \overline{\otimes} \mathcal{B}(L^{2}(G))\right)^{\widetilde{\alpha}} = \{y \in X \overline{\otimes} \mathcal{B}(L^{2}(G)) : \ \widetilde{\alpha}(y) = y \otimes 1\}.$$

Comments on the definition

Note that if the L[∞](G)-action α on X corresponds to a G-action γ: G → Aut^{ci}_{w*}(X), then α̃ is the L[∞](G)-action on X ⊗ B(L²(G)) which corresponds to the G-action s ∈ G ↦ γ_s ⊗ Adρ_s, where ρ is the right regular representation

$$ho_s\xi(t)=\Delta_G(s)^{1/2}\xi(ts),\qquad \xi\in L^2(G).$$

Thus we have

$$X\rtimes_{\alpha}^{\mathcal{F}}G=\{y\in X\overline{\otimes}\mathcal{B}(L^{2}(G)):\ (\gamma_{s}\otimes \mathrm{Ad}\rho_{s})(y)=y\ \forall s\in G\}$$

So, if α is trivial, i.e. $\alpha(x) = x \otimes 1$ for all $x \in X$, then $\gamma_s = id_X$ for all $s \in G$ and hence $X \rtimes_{\alpha}^{\mathcal{F}} G = X \overline{\otimes}_{\mathcal{F}} L(G)$.

One over, it is easy to verify the following

• $(\mathbb{C}1_H \overline{\otimes} L(G))(X \rtimes^{\mathcal{F}}_{\alpha} G) \subseteq X \rtimes^{\mathcal{F}}_{\alpha} G;$

$$\blacktriangleright \ \alpha(X) \subseteq X \rtimes^{\mathcal{F}}_{\alpha} G$$

and therefore

$$X \overline{\rtimes}_{\alpha} G \subseteq X \rtimes_{\alpha}^{\mathcal{F}} G.$$

$$X \overline{\rtimes}_{\alpha} G = X \rtimes_{\alpha}^{\mathcal{F}} G ?$$

Question

Let *G* be a locally compact group and (X, α) an $L^{\infty}(G)$ -comodule. Is it true that $X \overline{\rtimes}_{\alpha} G = X \rtimes_{\alpha}^{\mathcal{F}} G$? Answer: Not always...

If $X \rtimes_{\alpha} G = X \rtimes_{\alpha}^{\mathcal{F}} G$ for any $L^{\infty}(G)$ -comodule (X, α) , then L(G) must have property S_{σ} .

This is because if α is the trivial action on X, then $X \rtimes_{\alpha} G = X \overline{\otimes} L(G)$ and $X \rtimes_{\alpha}^{\mathcal{F}} G = X \overline{\otimes}_{\mathcal{F}} L(G)$.

Counterexample: $L(SL_3(\mathbb{Z}))$ does not have property S_{σ} . However, the equality $X \rtimes_{\alpha} G = X \rtimes_{\alpha}^{\mathcal{F}} G$ holds when X has some additional structure preserved by α , e.g.

• (Digernes-Takesaki, 1975) If X is a von Neumann algebra and α is an $L^{\infty}(G)$ -action on X which is a unital *-homomorphism, then $X \rtimes_{\alpha}^{\mathcal{F}} G = X \overline{\rtimes}_{\alpha} G$.

(Salmi-Skalski, 2015) If α is an $L^{\infty}(G)$ -action on a (non-degenerately represented) W*-TRO X such that α is a (non-degenerate) TRO-morphism, then $X \rtimes_{\alpha}^{\mathcal{F}} G = X \rtimes_{\alpha} G$.

Crossed products and the AP

Definition (Haagerup-Kraus)

A locally compact group *G* has the approximation property (AP) if there is a net $\{u_i\}$ in the Fourier algebra A(G) such that $u_i \to \mathbf{1}$ in the $\sigma(M_{cb}A(G), Q(G))$ -topology.

Theorem (Crann-Neufang, 2019)

Let G be a locally compact group and consider the following conditions:

(i) G has the AP;
(ii) X_A_αG = X ⋊_α^F G for any L[∞](G)-comodule (X, α);
(iii) L(G) has property S_σ.
Then, (i) ⇒ (ii) ⇒ (iii).
If G is inner amenable (e.g. discrete), then (iii) ⇒ (i).

We can prove at least that (ii) \implies (i) for arbitrary locally compact groups using two main ingredients:

- A duality theory for crossed products of operator spaces;
- **2** A characterization of the AP in terms of L(G)-comodules.

Crossed products of L(G)-comodules

For an L(G)-comodule (Y, δ) with $Y \subseteq \mathcal{B}(H)$ one can define the spatial crossed product of Y by δ

$$Y \overline{\ltimes}_{\delta} G = \overline{\operatorname{span}}^{w^*} \left\{ \left(\mathbf{1}_H \otimes f \right) \delta(y) : f \in L^{\infty}(G), \ y \in Y \right\}$$

as well as the Fubini crossed product

$$Y \ltimes^{\mathcal{F}}_{\delta} G = \left(Y \overline{\otimes} \mathcal{B}(L^2(G))\right)^{\widetilde{\delta}},$$

where $\widetilde{\delta} \colon Y \overline{\otimes} \mathcal{B}(L^2(G)) \to (Y \overline{\otimes} \mathcal{B}(L^2(G))) \overline{\otimes}_{\mathcal{F}} L(G)$ is the L(G)-action

$$\widetilde{\delta} = (\mathrm{id}_{\mathsf{Y}} \otimes \mathrm{Ad} \mathsf{W}_{\mathsf{G}}) \circ (\mathrm{id}_{\mathsf{Y}} \otimes \sigma) \circ (\delta \otimes \mathrm{id}_{\mathcal{B}(\mathsf{L}^2(\mathsf{G}))})$$

and

$$W_G\xi(s,t) = \xi(s,st), \quad \xi \in L^2(G \times G), \ s,t \in G.$$

Dual actions

Let (X, α) be an $L^{\infty}(G)$ -comodule and (Y, δ) be an L(G)-comodule with $X \subseteq \mathcal{B}(H)$ and $Y \subseteq \mathcal{B}(K)$

The map

$$\widehat{lpha}(x) = (1_H \otimes W_G^*)(x \otimes 1_{L^2(G)})(1_H \otimes W_G), \quad x \in X \rtimes_{lpha}^{\mathcal{F}} G,$$

is an L(G)-action on $X \rtimes_{\alpha}^{\mathcal{F}} G$ called the dual of α . Moreover,

$$\widehat{lpha}\left(X\overline{\rtimes}_{lpha}G
ight)\subseteq\left(X\overline{\rtimes}_{lpha}G
ight)\overline{\otimes}_{\mathcal{F}}\mathcal{L}(G).$$

That is $X \rtimes_{\alpha} G$ is an L(G)-subcomodule of $(X \rtimes_{\alpha}^{\mathcal{F}} G, \widehat{\alpha})$.

Intermap

$$\widehat{\delta}(x) = (1_{\mathcal{K}} \otimes U_G^*)(x \otimes 1_{L^2(G)})(1_{\mathcal{K}} \otimes U_G), \quad x \in Y \ltimes_{\delta}^{\mathcal{F}} G$$

is an $L^{\infty}(G)$ -action on $Y \ltimes_{\delta}^{\mathcal{F}} G$ called the dual of δ . Similarly,

$$\widehat{\delta}\left(Y\overline{\ltimes}_{\delta}G\right)\subseteq\left(Y\overline{\ltimes}_{\delta}G\right)\overline{\otimes}L^{\infty}(G),$$

i.e. $Y \ltimes_{\delta} G$ is an $L^{\infty}(G)$ -subcomodule of $(Y \ltimes_{\delta}^{\mathcal{F}} G, \widehat{\delta})$.

Saturation and non-degeneracy

Definition

Let (M, Δ) be a HvNa with $M \subseteq \mathcal{B}(K)$ and let (X, α) be an *M*-comodule with $X \subseteq \mathcal{B}(H)$. We say that (X, α) is non-degenerate if

$$X\overline{\otimes}\mathcal{B}(\mathcal{K})=\overline{\mathrm{span}}^{\mathrm{w}^*}\{(\mathbf{1}_H\otimes \boldsymbol{b})\alpha(\boldsymbol{x}):\ \boldsymbol{b}\in\mathcal{B}(\mathcal{K}),\ \boldsymbol{x}\in\boldsymbol{X}\}.$$

On the other hand, (X, α) is called saturated if

$$\alpha(X) = \{ y \in X \overline{\otimes}_{\mathcal{F}} M : (\mathrm{id}_X \otimes \Delta)(y) = (\alpha \otimes \mathrm{id}_M)(y) \}.$$

Saturation and non-degeneracy are necessary in order to establish a connection between the AP and Takesaki-duality as well as to characterize those comodules whose spatial and Fubini crossed products coincide.

$L^{\infty}(G)$ -comodules are saturated and non-degenerate

Proposition (A., 2020)

For any locally compact group G every $L^{\infty}(G)$ -comodule is both non-degenerate and saturated.

In particular, for an L(G)-comodule (Y, δ) , we have that $(Y \ltimes_{\delta}^{\mathcal{F}} G, \widehat{\delta})$ is non-degenerate and this is the key to the proof of the following:

Corollary (A., 2020)

Let G be any locally compact group. For any L(G)-comodule (Y, δ) , we have $Y \ltimes_{\delta}^{\mathcal{F}} G = Y \ltimes_{\delta} G$.

Therefore we can simply write $Y \ltimes_{\delta} G$ instead of $Y \ltimes_{\delta}^{\mathcal{F}} G$ or $Y \ltimes_{\delta} G$.

Takesaki-duality for $L^{\infty}(G)$ -actions

Proposition (Hamana 2011, A. 2020)

For any $L^{\infty}(G)$ -comodule (X, α) we have

$$(X \rtimes_{\alpha}^{\mathcal{F}} G) \ltimes_{\widehat{\alpha}} G = (X \overline{\rtimes}_{\alpha} G) \ltimes_{\widehat{\alpha}} G \simeq X \overline{\otimes} \mathcal{B}(L^{2}(G)).$$

Comment: Hamana proved that $X \overline{\otimes} \mathcal{B}(L^2(G)) \simeq (X \rtimes_{\alpha}^{\mathcal{F}} G) \ltimes_{\widehat{\alpha}}^{\mathcal{F}} G$ iff (X, α) is saturated (even for norm closed X!). Similarly, we proved that $X \overline{\otimes} \mathcal{B}(L^2(G)) \simeq (X \overline{\rtimes}_{\alpha} G) \overline{\ltimes}_{\widehat{\alpha}} G$ iff (X, α) is non-degenerate.

Also, note that $(X \rtimes_{\alpha}^{\mathcal{F}} G) \ltimes_{\widehat{\alpha}} G = (X \overline{\rtimes}_{\alpha} G) \ltimes_{\widehat{\alpha}} G$ even though it may be $X \rtimes_{\alpha}^{\mathcal{F}} G \neq X \overline{\rtimes}_{\alpha} G$!

This means that an L(G)-comodule (Y, δ) cannot always be recovered from its crossed product $Y \ltimes_{\delta} G$. Spoiler: unless *G* has the AP...

Regarding the AP as a stability property

If *M* is a von Neumann algebra, a net $\Phi_i \in CB_{\sigma}(M)$ is said to converge to the map $\Phi \in CB_{\sigma}(M)$ in the stable point-w*-topology if

$$(\mathrm{id}_{\mathcal{B}(\ell^2)}\otimes \Phi_i)(x)\xrightarrow{w^*} (\mathrm{id}_{\mathcal{B}(\ell^2)}\otimes \Phi)(x) \text{ for all } x\in \mathcal{B}(\ell^2)\overline{\otimes}M.$$

Equivalently, for any von Neumann algebra N, we have

$$(\mathrm{id}_N\otimes\Phi_i)(x)\xrightarrow{w^*}(\mathrm{id}_N\otimes\Phi)(x)$$
 for all $x\in N\overline{\otimes}M$.

Every $u \in A(G) \simeq L(G)_*$ defines a map $M_u \in CB_{\sigma}(L(G))$ with $M_u(\lambda_s) = u(s)\lambda_s$.

$$M_u \colon L(G) \xrightarrow{\delta_G} L(G) \overline{\otimes} L(G) \xrightarrow{\operatorname{id} \otimes u} L(G)$$

Theorem (Haagerup-Kraus, 1993)

A locally compact group G has the AP if and only if there exists a net $\{u_i\}_{i \in I}$ in A(G), such that $M_{u_i} \longrightarrow id_{L(G)}$ in the stable point-w*-topology.

Saturated/non-degenerate L(G)-comodules & the AP

The stability property characterization of the AP can be reformulated as follows.

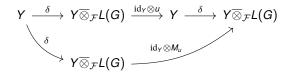
Proposition (A., 2020)

For a locally compact group G the following conditions are equivalent:

- G has the AP;
- Every L(G)-comodule is saturated;
- Severy L(G)-comodule is non-degenerate;
- Solution All saturated L(G)-comodules are non-degenerate.

The key to the proof is the observation that for any L(G)-comodule (Y, δ) we have

$$(\mathrm{id}_Y \otimes M_u) \circ \delta = \delta \circ (\mathrm{id}_Y \otimes u) \circ \delta \qquad \forall \ u \in A(G),$$



Comparing $X \rtimes_{\alpha}^{\mathcal{F}} G$ with $X \rtimes_{\alpha} G$

Proposition (A., 2020)

For a locally compact group G and an $L^{\infty}(G)$ -comodule (X, α) we have:

- $(X \rtimes_{\alpha}^{\mathcal{F}} G, \widehat{\alpha})$ is a saturated L(G)-comodule;
- $(X \overline{\rtimes}_{\alpha} G, \widehat{\alpha}) \text{ is a non-degenerate } L(G)\text{-comodule.}$

Theorem (A., 2020)

Let (X, α) be an $L^{\infty}(G)$ -comodule. The following are equivalent:

$$X \rtimes_{\alpha}^{\mathcal{F}} G = X \overline{\rtimes}_{\alpha} G;$$

- ($X \rtimes_{\alpha}^{\mathcal{F}} G, \widehat{\alpha}$) is non-degenerate;
- $(X \rtimes_{\alpha} G, \widehat{\alpha}) is saturated.$

The above yields an alternative proof of the Crann-Neufang theorem: If *G* has the AP, then every L(G)-comodule is saturated (and non-degenerate) and thus we get $X \rtimes_{\alpha}^{\mathcal{F}} G = X \overline{\rtimes}_{\alpha} G$ for any $L^{\infty}(G)$ -comodule (X, α) .

Takesaki-type duality for L(G)-actions

Proposition (A., 2020)

For any L(G)-comodule (Y, δ) , there is a w*-continuous complete isometry

 $\phi\colon Y\overline{\otimes}\mathcal{B}(L^2(G))\to Y\overline{\otimes}\mathcal{B}(L^2(G))\overline{\otimes}\mathcal{B}(L^2(G))$

such that

• (Y, δ) is non-degenerate if and only if

$$\phi\left(Y\overline{\otimes}\mathcal{B}(L^{2}(G))\right)=(Y\ltimes_{\delta}G)\overline{\rtimes}_{\widehat{\delta}}G;$$

2 (\mathbf{Y}, δ) is saturated if and only if

$$\phi\left(Y\overline{\otimes}\mathcal{B}(L^2(G))
ight)=\left(Y\ltimes_{\delta}G
ight)
times_{\widehat{\delta}}^{\mathcal{F}}G.$$

A dynamical characterization of the AP

Theorem (Crann-Neufang 2019, A. 2020)

For a locally compact group G the following conditions are equivalent:

- (1) G has the AP;
- (2) $(Y \ltimes_{\delta} G) \rtimes_{\widehat{\delta}}^{\mathcal{F}} G = (Y \ltimes_{\delta} G) \overline{\rtimes}_{\widehat{\delta}} G$ for any L(G)-comodule (Y, δ) ;
- (3) $X \rtimes_{\alpha}^{\mathcal{F}} G = X \overline{\rtimes}_{\alpha} G$ for any $L^{\infty}(G)$ -comodule (X, α) .

Proof.

The implication (1) \Longrightarrow (3) is already known by Crann-Neufang, while (3) \Longrightarrow (2) is obvious, since $(Y \ltimes_{\delta} G, \widehat{\delta})$ is an $L^{\infty}(G)$ -comodule. (2) \Longrightarrow (1): It suffices to show that given (2) it follows that all saturated L(G)-comodules are non-degenerate. Indeed, if (Y, δ) is saturated, then $\phi(Y \otimes \mathcal{B}(L^2(G))) = (Y \ltimes_{\delta} G) \rtimes_{\widehat{\delta}}^{\mathcal{F}} G$ and thus from (2) it follows that $\phi(Y \otimes \mathcal{B}(L^2(G))) = (Y \ltimes_{\delta} G) \rtimes_{\widehat{\delta}}^{\mathcal{F}} G$, which in turn means that (Y, δ) is non-degenerate.

A class of masa-bimodules arising as crossed products

The comultiplication $\delta_G : L(G) \to L(G)$ extends to an L(G)-action on $\mathcal{B}(L^2(G))$:

$$\delta_G(T) = W^*_G(T \otimes 1)W_G \qquad T \in \mathcal{B}(L^2(G)).$$

That is

$$\delta_G(f\lambda_s) = f\lambda_s \otimes \lambda_s$$

for any $f \in L^{\infty}(G)$ and $s \in G$.

For a closed ideal *J* of A(G) with annihilator $J^{\perp} \subseteq L(G)$, Anoussis, Katavolos and Todorov introduced two 'different' $L^{\infty}(G)$ -bimodules in $\mathcal{B}(L^{2}(G))$, namely

$$\operatorname{Bim}_{L^{\infty}(G)}(J^{\perp}) := \overline{\operatorname{span}}^{\operatorname{w}^{*}} \{ L^{\infty}(G)J^{\perp} \},$$
$$(\operatorname{Sat} J)^{\perp} := \{ T \in \mathcal{B}(L^{2}(G)) : S_{u}(T) = 0 \, \forall u \in J \},$$

where

$$S_u = (\mathrm{id} \otimes u) \circ \delta_G,$$

i.e. $S_u(f\lambda_s) = u(s)f\lambda_s$ for $f \in L^{\infty}(G), s \in G$.

 $\operatorname{Bim}_{L^{\infty}(G)}(J^{\perp}) = (\operatorname{Sat} J)^{\perp}$

Theorem (Anoussis-Katavolos-Todorov, 2014) $\operatorname{Bim}_{L^{\infty}(G)}(J^{\perp}) = (\operatorname{Sat} J)^{\perp}$ for any closed ideal J of A(G).

A less technical proof of the above theorem can be obtained as follows:

• Since J is an ideal of A(G), it follows that

$$\delta_G(J^{\perp}) \subseteq J^{\perp} \overline{\otimes}_{\mathcal{F}} L(G),$$

i.e. (J^{\perp}, δ_G) is an L(G)-comodule.

• The canonical isomorphism

$$\Phi = \sigma \circ \delta_G \colon \mathcal{B}(L^2(G)) \to L(G) \ltimes_{\delta_G} G \colon f\lambda_s \mapsto \lambda_s \otimes f\lambda_s$$

satisfies $\Phi(\operatorname{Bim}_{L^{\infty}(G)}(J^{\perp})) = J^{\perp} \overline{\ltimes}_{\delta_{G}} G$ and $\Phi((\operatorname{Sat} J)^{\perp}) = J^{\perp} \ltimes_{\delta_{G}}^{\mathcal{F}} G$.

• Thus $\operatorname{Bim}_{L^{\infty}(G)}(J^{\perp}) = (\operatorname{Sat} J)^{\perp}$ because the Fubini and the spatial crossed products coincide for any L(G)-comodule.

The dual picture: L(G)-bimodules from ideals of $L^1(G)$

Similarly, for a closed (left) ideal *J* of $L^1(G)$ with annihilator $J^{\perp} \subseteq L^{\infty}(G)$ we have two L(G)-bimodules in $\mathcal{B}(L^2(G))$:

$$\operatorname{Bim}(J^{\perp}) := \overline{\operatorname{span}}^{\mathrm{w}^*} \{ L(G) J^{\perp} \},$$

$$(\operatorname{Ran} J)^{\perp} := \{ T \in \mathcal{B}(L^2(G)) : \Theta(h)(T) = 0 \ \forall h \in J \},$$

where

$$\Theta(h)(T) = \int_G h(s) \operatorname{Ad} \rho_s(T) \, \mathrm{d} s.$$

The fact that J is an ideal yields that

$$\alpha_{G}(J^{\perp}) \subseteq J^{\perp} \overline{\otimes} L^{\infty}(G)$$

thus (J^{\perp}, α_G) is an $L^{\infty}(G)$ -comodule (i.e. a left translation invariant subspace of $L^{\infty}(G)$, since $\alpha_G \longleftrightarrow \operatorname{Ad} \lambda$) and there is a canonical isomorphism

$$\Psi\colon \mathcal{B}(L^2(G))\to L^\infty(G)\rtimes_{\alpha_G}G:\ f\lambda_s\mapsto (1\otimes\lambda_s)\alpha_G(f),$$

such that $J^{\perp} \rtimes_{\alpha_G}^{\mathcal{F}} G = \Psi((\operatorname{Ran} J)^{\perp})$ and $J^{\perp} \overline{\rtimes}_{\alpha_G} G = \Psi(\operatorname{Bim}(J^{\perp}))$.

$\operatorname{Bim}(J^{\perp}) = (\operatorname{Ran} J)^{\perp} ?$

Since $\operatorname{Bim}(J^{\perp}) \simeq J^{\perp} \rtimes_{\alpha_G} G$ and $(\operatorname{Ran} J)^{\perp} \simeq J^{\perp} \rtimes_{\alpha_G}^{\mathcal{F}} G$, the Crann-Neufang theorem yields the following theorem first proved by Anoussis-Katavolos-Todorov for *G* being either abelian or compact or weakly amenable discrete.

Theorem (AKT 2018–CN 2019)

If G has the AP, then $\operatorname{Bim}(J^{\perp}) = (\operatorname{Ran} J)^{\perp}$ for any closed left ideal J of $L^{1}(G)$.

Is the AP necessary?

$$egin{aligned} \mathcal{B}(L^2(G)) & \longrightarrow L^\infty(G)
ightarrow_{lpha_G} G \ & & & \downarrow^{\widehat{lpha_G}} \ & & \downarrow^{\widehat{lpha_G}} \ & & & \downarrow^{\widehat{lpha_G}} \ & & \mathcal{B}(L^2(G)) \overline{\otimes} L(G) & \xrightarrow{\Psi \otimes \mathrm{id}} (L^\infty(G)
ightarrow_{lpha_G} G) \overline{\otimes} L(G) \end{aligned}$$

Thus Bim (J^{\perp}) and $(\operatorname{Ran} J)^{\perp}$ are L(G)-subcomodules of $(\mathcal{B}(L^2(G)), \delta_G)$ which are respectively isomorphic to $(J^{\perp} \rtimes_{\alpha_G} G, \widehat{\alpha_G})$ and $(J^{\perp} \rtimes_{\alpha_G}^{\mathcal{F}} G, \widehat{\alpha_G})$.

Weaker (?) conditions that imply $\operatorname{Bim}(J^{\perp}) = (\operatorname{Ran} J)^{\perp}$

Corollary

Let J be a left closed ideal of $L^1(G)$. The following are equivalent:

• Bim
$$(J^{\perp}) = (\operatorname{Ran} J)^{\perp};$$

(Bim
$$(J^{\perp}), \delta_G$$
) is a saturated $L(G)$ -comodule;

- ((RanJ)^{\perp}, δ_G) is a non-degenerate L(G)-comodule;
- Bim $(J^{\perp}) = \{T \in \mathcal{B}(L^2(G)) : S_u(T) \in \operatorname{Bim}(J^{\perp}), \forall u \in A(G)\};$

$$(\operatorname{Ran} J)^{\perp} = \overline{\operatorname{span}}^{w^*} \{ S_u(T) : u \in A(G), T \in (\operatorname{Ran} J)^{\perp} \}$$

Corollary

The following conditions are equivalent:

- (i) Every L(G)-subcomodule of $(\mathcal{B}(L^2(G)), \delta_G)$ is saturated;
- (ii) Every L(G)-subcomodule of $(\mathcal{B}(L^2(G)), \delta_G)$ is non-degenerate;

(iii) $T \in \overline{\{S_u(T) : u \in A(G)\}}^{w^*}$ for any $T \in \mathcal{B}(L^2(G))$.

Also, all above imply that $\operatorname{Bim}(J^{\perp}) = (\operatorname{Ran} J)^{\perp}$ for any left closed ideal J of $L^{1}(G)$.

Some food for thought...

Let $u \cdot T := S_u(T)$ for $u \in A(G)$ and $T \in \mathcal{B}(L^2(G))$.

Questions

- Which of the implications above are strict?
- Is property D_∞ necessary and/or sufficient in order to have Bim(J[⊥]) = (RanJ)[⊥] for all (left) closed ideals J ⊲ L¹(G)?
- Solution Are there any groups without property D_{∞} ? What about $SL_3(\mathbb{Z})$?
- **③** ∃ *G* and *J* such that $\operatorname{Bim}(J^{\perp}) \neq (\operatorname{Ran} J)^{\perp}$?

Thanks for your attention!