The spectrum of the restriction to an invariant subspace

Dimos Drivaliaris

Department of Financial and Management Engineering University of the Aegean

08/05/2020

Dimos Drivaliaris

The spectrum of the restriction to an invariant subspace 1 / 29

Preliminaries

Throughout X is a Banach space over \mathbb{C} and $A : X \to X$ is a bounded linear operator.

Preliminaries

By $\sigma(A)$ we will denote the spectrum of A, i.e.

 $\sigma(A) = \{\lambda \in \mathbb{C} \mid A - \lambda I \text{ not invertible } \},\$

by $\rho(A)$ we will denote the resolvent of A, i.e.

$$\rho(\mathsf{A}) = \mathbb{C} \setminus \sigma(\mathsf{A}),$$

for each $\lambda \in \rho(A)$,

1

$$R(\lambda, A) = (A - \lambda I)^{-1},$$

and by $\sigma_{\rm ap}(A)$ we will denote the approximate point spectrum of A, i.e.

$$\sigma_{\rm ap}(A) = \left\{ \lambda \in \mathbb{C} \, | \, \exists \{x_n\} \text{ such that } \|x_n\| = 1 \text{ and } (A - \lambda I) x_n \to 0 \right\}.$$

Preliminaries

By M we will denote a closed subspace of X which is invariant under A, i.e. $A(M) \subseteq M$. By $A|_M : M \to M$ we will denote the restriction of A on M. Question

Question

What can we say about the relation between $\sigma(A)$ and $\sigma(A|_M)$?

Two Examples

Example

Let $A \in \mathbb{M}_n(\mathbb{C})$ be an $n \times n$ matrix with eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ and corresponding eigenvectors $\{x_1, \ldots, x_n\}$. If $M = \operatorname{span}\{x_k\}$, then obviously M is an invariant subspace of A, $A|_M = \lambda_k I_M$ and

$$\sigma(A|_M) = \{\lambda_k\} \subseteq \{\lambda_1, \ldots, \lambda_n\} = \sigma(A).$$

Two Examples

Example

Let $X = l^2(\mathbb{Z})$ and $A: X \to X$ be the bilateral shift, i.e.

$$A(\{\lambda_n\}) = \sum_{n=-\infty}^{\infty} \lambda_n e_{n+1}.$$

We know that

$$\sigma(A) = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}.$$

lf

$$M = \left\{ \left\{ \lambda_n \right\} \in l^2(\mathbb{Z}) \, | \, \lambda_n = 0, \text{ for all } n < 0 \right\},$$

then *M* is an invariant subspace of *A*. Moreover $A|_M$ is actually the unilateral shift on $l^2(\mathbb{N})$ and so

$$\sigma(A|_{\mathcal{M}}) = \{\lambda \in \mathbb{C} \mid |\lambda| \leq 1\}.$$

Dimos Drivaliaris

Holes of the Spectrum

We will say that D is a hole of the spectrum $\sigma(A)$ if D is a bounded connected component of the resolvent set $\rho(A)$. Recall that $\rho(A)$ has one unbounded connected component D_{∞} and may have other connected components D. Moreover recall that the resolvent function

 $\lambda \mapsto R(\lambda, A)$

is analytic on each connected component of $\rho(A)$.

Theorem

Let D be a connected component of $\rho(A)$. If

 $D\cap\sigma\left(A|_{M}\right)\neq\emptyset,$

then

 $D\subseteq\sigma\left(A|_{M}
ight)$.

Corollary

Let D_{∞} be the unbounded connected component of $\rho(A)$. Then

$$D_{\infty} \cap \sigma(A|_M) = \emptyset$$
.

Proof.

Assume that

$$D_{\infty}\cap\sigma\left(A|_{M}
ight)
eq\emptyset$$
.

Then, by the Theorem,

 $D_{\infty} \subseteq \sigma\left(A|_{M}\right) \,,$

which leads to a contradiction, since $\sigma(A|_M)$ is bounded while D_{∞} is unbounded. So

$$D_{\infty}\cap\sigma\left(A|_{M}\right)=\emptyset$$
.

Corollary

Let D be a hole of $\sigma(A)$. Then either

 $D\cap\sigma\left(A|_{M}\right)=\emptyset$

or

 $D\subseteq\sigma\left(A|_{M}
ight)$.

Proof [J. Scroggs [10, Lemmas 6–7, Theorem 4, Corollary 4.1]; see also [04, Theorem 1.29]]

Lemma

Let $T : X \to X$ be an invertible operator and M be an invariant subspace of T.

Then $T|_M$ is invertible if and only if M is an invariant subspace of T^{-1} .

Proof.

Exercise

Let

$$\lambda_0 \in D \cap \sigma(A|_M)$$
.

Then, by the previous Lemma,

$$(A-\lambda_0I)^{-1}(M) \not\subset M$$
 .

Thus there exist $x \in M$ and $f \in M^{\perp}$ such that

$$\langle (A-\lambda_0 I)^{-1}x, f \rangle \neq 0.$$

Recall that

$$\lambda \mapsto \langle (A - \lambda I)^{-1} x, f \rangle$$

is analytic on D.

Therefore it is non-zero except on a discrete set.

If $D = D_{\infty}$, then that leads to a contradiction (Exercise: Why?) If $D \neq D_{\infty}$, then D is contained in $\sigma(A|_M)$ except a discrete set. Since $\sigma(A|_M)$ is closed that implies that $D \subseteq \sigma(A|_M)$.

Proof [S. Parrott, 1960's; see [03, Lemma 2], [07, Problem 201], [09, Theorem 0.8], [02, Theorem II.2.11(c)]]

Lemma

Let $T : X \to X$ be a bounded linear operator and $\vartheta(\sigma(T))$ be the boundary of $\sigma(T)$. Then $\vartheta(\sigma(T)) \subseteq \sigma_{ap}(T)$.

Proof.

Exercise

Lemma

We have that

$$\sigma_{\mathrm{ap}}(A|_M) \subseteq \sigma_{\mathrm{ap}}(A).$$

Proof.

Let $\lambda \in \sigma_{ap}(A|_M)$. Then there exists a sequence $\{x_n\}$ in M such that $||x_n|| = 1$ and

$$(A|_M - \lambda I_M) x_n \to 0$$

which obviously implies that

$$(A - \lambda I)x_n \rightarrow 0$$

and so $\lambda \in \sigma_{\mathrm{ap}}(A)$.

Dimos Drivaliaris

Let $D^- = D \setminus \sigma(A|_M)$ and $D^+ = D \cap \sigma(A|_M)$. Then $D^- \cup D^+ = D$ and $D^- \cap D^+ = \emptyset$. Since D is open and $\sigma(A|_M)$ is closed, D^- is open. On the other hand, if $\lambda \in D^+$, then $\lambda \in D$ and so $\lambda \notin \sigma(A)$. In particular $\lambda \notin \sigma_{\rm ap}(A)$. Thus, by the second Lemma, $\lambda \notin \sigma_{\rm ap}(A|_M)$. So, by the first Lemma, $\lambda \notin \vartheta (\sigma (A|_M))$. Thus $\lambda \in int (\sigma(A|_M))$. So $D^+ = D \cap \operatorname{int} (\sigma(A|_M))$ and thus it is open. Since both D^- and D^+ are open, $D^- \cup D^+ = D$ and $D^- \cap D^+ = \emptyset$, and D is connected we get that, since $D + \neq \emptyset$, $D^+ = D$.

Parrott's proof is more or less the same to the one given by T. Ito in [08, Theorem 8] for a normal operator A on a Hilbert space H. Ito's proof is a simplified version of the one given by J. Bram in [01, Theorem 4] again for a normal operator A on a Hilbert space H.

Proof [N. Yannakakis and D. D. [06]] Let $a \in D \cap \sigma(A|_M)$. Assume that there exists $b \in D$ with $b \in \rho(A|_M)$. Let C be any (continuous) rectifiable path that lies in D and connects a and b.

First we show that there exists c > 0 such that

$$\|Ax - \lambda x\| \ge c \|x\|, \text{ for all } \lambda \in C \text{ and } x \in M.$$
(1)

Assume the contrary, i.e. that there exists a sequence $\{\lambda_n\}$ in C and a sequence $\{x_n\}$ in M, with $||x_n|| = 1$, such that $||Ax_n - \lambda_n x_n|| \to 0$. Then, since $\{\lambda_n\}$ is bounded, it has a subsequence, which for simplicity we denote again by $\{\lambda_n\}$, that converges to some $\lambda_0 \in C$ (note that C is the range of a continuous function and hence it is closed). But then

$$\|Ax_n - \lambda_0 x_n\| \le \|Ax_n - \lambda_n x_n\| + |\lambda_n - \lambda_0|$$

and hence $||Ax_n - \lambda_0 x_n|| \to 0$, which is a contradiction, since $\lambda_0 \in \rho(A)$.

As one may easily see inequality (1) implies that the resolvent function

$$\lambda \mapsto (A|_M - \lambda I_M)^{-1}$$

of the restriction $A|_M$, is bounded on $C \cap \rho(A|_M)$. In particular

$$\|({\mathsf A}|_M - \lambda {\mathsf I}_M)^{-1}\| \leq rac{1}{c}\,,\,\, ext{for all}\,\,\lambda \in {\mathsf C} \cap
ho({\mathsf A}|_M)\,.$$

Hence, by the elementary properties of the resolvent function, we get that if

$$|b-\lambda| < c \leq \frac{1}{\|R_b\|},$$

then $\lambda \in \rho(A|_M)$.

Since c is independent of λ the above argument shows that if two λ 's that belong to C are within c of each other and one is in the resolvent set of the restriction then the other is also in the resolvent set of the restriction. Therefore, if we divide the arc C into subarcs of length less than c, then the subarc containing b has the other endpoint in the resolvent set of the restriction, and so on.

The last subarc contains a and so a is also in the resolvent set of the restriction which is a contradiction.

A "Generalization"

Theorem

Let $A, B : X \rightarrow X$ be bounded linear operators such that

 $\sigma_{\rm ap}(B)\subseteq \sigma_{\rm ap}(A)$

```
and D be a connected component of 
ho(A).

If

D\cap\sigma(B)\neq \emptyset,

then

D\subseteq\sigma(B).
```

This "generalization" is mentioned by P. Halmos in [07, Problem 201]. The proofs by Parrott and Yannakakis and D. can be used to prove it.

Other Similar Results

Similar results hold if A is a closed densely defined operator [11] as well as if instead of A|M we take the operator $A_M : X/M \to X/M$ [05].

References

[01] J. Bram, Subnormal operators, Duke Math. J. **22**, 1 (1955), 75–94. [02] J. Conway, *The theory of subnormal operators*, American Mathematical Society, Providence Mathematical Surveys and Monographs **36**, Providence, RI, 1991.

[03] T. Crimmins and P. Rosenthal, On the decomposition of invariant subspaces, Bull. Amer. Math. Soc. **73**, (1967), 97–99. [04] H. Dowson, Spectral theory of linear operators, Academic Press, London-New York, 1978.

[05] H. Dowson, Operators induced on quotient spaces by spectral operators, J. London Math. Soc. **42**, (1967), 666–671.

[06] D. Drivaliaris and N. Yannakakis, *The spectrum of the restriction to an invariant subspace*, Bull. Amer. Math. Soc. **14**, (2020), 261–264.

References

- [07] P. Halmos, A Hilbert space problem book, Springer-Verlag, Graduate Texts in Mathematics **19**, 2nd ed., New York-Berlin, 1982.
- [08] T. Ito, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. **14**, (1958), 1–15.
- [09] H. Radjavi and P. Rosenthal, *Invariant subspaces*, Springer-Verlag, New York-Heidelberg, 1973.
- [10] J. Scroggs, On invariant subspaces of a normal operator, Duke Math. J. **26**, (1959), 95–111.
- [11] J. Stochel and F. Szafraniec, *On normal extensions of unbounded operators. III. Spectral properties.*, PRIMS **25**, (1989), 105–139.