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Preliminaries

Preliminaries

Throughout X is a Banach space over C and A : X → X is a bounded
linear operator.

Dimos Drivaliaris The spectrum of the restriction to an invariant subspace 2 / 29



Preliminaries

Preliminaries

By σ(A) we will denote the spectrum of A, i.e.

σ(A) = {λ ∈ C |A− λI not invertible } ,

by ρ(A) we will denote the resolvent of A, i.e.

ρ(A) = C \ σ(A) ,

for each λ ∈ ρ(A),
R(λ,A) = (A− λI )−1 ,

and by σap(A) we will denote the approximate point spectrum of A, i.e.

σap(A) = {λ ∈ C | ∃{xn} such that ‖xn‖ = 1 and (A− λI )xn → 0} .
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Preliminaries

Preliminaries

By M we will denote a closed subspace of X which is invariant under A,
i.e. A(M) ⊆ M.
By A|M : M → M we will denote the restriction of A on M.
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Question

Question

What can we say about the relation between σ(A) and σ (A|M)?
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Two Examples

Two Examples

Example

Let A ∈Mn(C) be an n × n matrix with eigenvalues {λ1, . . . , λn} and
corresponding eigenvectors {x1, . . . , xn}.
If M = span{xk}, then obviously M is an invariant subspace of A,
A|M = λk IM and

σ (A|M) = {λk} ⊆ {λ1, . . . , λn} = σ(A) .
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Two Examples

Two Examples

Example

Let X = l2(Z) and A : X → X be the bilateral shift, i.e.

A({λn}) =
∞∑

n=−∞
λnen+1 .

We know that
σ(A) = {λ ∈ C | |λ| = 1} .

If
M = {{λn} ∈ l2(Z) |λn = 0, for all n < 0} ,

then M is an invariant subspace of A.
Moreover A|M is actually the unilateral shift on l2(N) and so

σ (A|M) = {λ ∈ C | |λ| ≤ 1} .
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Holes of the Spectrum

Holes of the Spectrum

We will say that D is a hole of the spectrum σ(A) if D is a bounded
connected component of the resolvent set ρ(A).
Recall that ρ(A) has one unbounded connected component D∞ and may
have other connected components D.
Moreover recall that the resolvent function

λ 7→ R(λ,A)

is analytic on each connected component of ρ(A).
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Filling the Holes of the Spectrum

Filling the Holes of the Spectrum

Theorem

Let D be a connected component of ρ(A).
If

D ∩ σ (A|M) 6= ∅ ,

then
D ⊆ σ (A|M) .
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Filling the Holes of the Spectrum

Filling the Holes of the Spectrum

Corollary

Let D∞ be the unbounded connected component of ρ(A).
Then

D∞ ∩ σ (A|M) = ∅ .
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Filling the Holes of the Spectrum

Filling the Holes of the Spectrum

Proof.

Assume that
D∞ ∩ σ (A|M) 6= ∅ .

Then, by the Theorem,
D∞ ⊆ σ (A|M) ,

which leads to a contradiction, since σ (A|M) is bounded while D∞ is
unbounded. So

D∞ ∩ σ (A|M) = ∅ .
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Filling the Holes of the Spectrum

Filling the Holes of the Spectrum

Corollary

Let D be a hole of σ(A).
Then either

D ∩ σ (A|M) = ∅

or
D ⊆ σ (A|M) .
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Proofs of the Theorem

Proofs of the Theorem

Proof [J. Scroggs [10, Lemmas 6–7, Theorem 4, Corollary 4.1]; see also
[04, Theorem 1.29]]
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Proofs of the Theorem

Proofs of the Theorem

Lemma

Let T : X → X be an invertible operator and M be an invariant subspace
of T .
Then T |M is invertible if and only if M is an invariant subspace of T−1.

Proof.

Exercise
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Proofs of the Theorem

Proofs of the Theorem

Let
λ0 ∈ D ∩ σ (A|M) .

Then, by the previous Lemma,

(A− λ0I )−1(M) 6⊂ M .

Thus there exist x ∈ M and f ∈ M⊥ such that

〈(A− λ0I )−1x , f 〉 6= 0 .

Recall that
λ 7→ 〈(A− λI )−1x , f 〉

is analytic on D.
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Proofs of the Theorem

Proofs of the Theorem

Therefore it is non-zero except on a discrete set.
If D = D∞, then that leads to a contradiction (Exercise: Why?)
If D 6= D∞, then D is contained in σ (A|M) except a discrete set.
Since σ (A|M) is closed that implies that D ⊆ σ (A|M).
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Proofs of the Theorem

Proofs of the Theorem

Proof [S. Parrott, 1960’s; see [03, Lemma 2], [07, Problem 201], [09,
Theorem 0.8], [02, Theorem II.2.11(c)]]
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Proofs of the Theorem

Proofs of the Theorem

Lemma

Let T : X → X be a bounded linear operator and ϑ(σ(T )) be the
boundary of σ(T ).
Then ϑ(σ(T )) ⊆ σap(T ).

Proof.

Exercise
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Proofs of the Theorem

Proofs of the Theorem

Lemma

We have that
σap (A|M) ⊆ σap(A) .

Proof.

Let λ ∈ σap (A|M).
Then there exists a sequence {xn} in M such that ‖xn‖ = 1 and

(A|M − λIM)xn → 0

which obviously implies that

(A− λI )xn → 0

and so λ ∈ σap(A).
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Proofs of the Theorem

Proofs of the Theorem

Let D− = D \ σ (A|M) and D+ = D ∩ σ (A|M).
Then D− ∪ D+ = D and D− ∩ D+ = ∅.
Since D is open and σ (A|M) is closed, D− is open.
On the other hand, if λ ∈ D+, then λ ∈ D and so λ /∈ σ(A).
In particular λ /∈ σap(A).
Thus, by the second Lemma, λ /∈ σap (A|M).
So, by the first Lemma, λ /∈ ϑ (σ (A|M)).
Thus λ ∈ int (σ (A|M)).
So D+ = D ∩ int (σ (A|M)) and thus it is open.
Since both D− and D+ are open, D− ∪ D+ = D and D− ∩ D+ = ∅, and
D is connected we get that, since D+ 6= ∅, D+ = D.
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Proofs of the Theorem

Proofs of the Theorem

Parrott’s proof is more or less the same to the one given by T. Ito in [08,
Theorem 8] for a normal operator A on a Hilbert space H. Ito’s proof is a
simplified version of the one given by J. Bram in [01, Theorem 4] again for
a normal operator A on a Hilbert space H.
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Proofs of the Theorem

Proofs of the Theorem

Proof [N. Yannakakis and D. D. [06]]
Let a ∈ D ∩ σ(A|M).
Assume that there exists b ∈ D with b ∈ ρ(A|M).
Let C be any (continuous) rectifiable path that lies in D and connects a
and b.
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Proofs of the Theorem

Proofs of the Theorem

First we show that there exists c > 0 such that

‖Ax − λx‖ ≥ c‖x‖ , for all λ ∈ C and x ∈ M . (1)

Assume the contrary, i.e. that there exists a sequence {λn} in C and a
sequence {xn} in M, with ‖xn‖ = 1, such that ‖Axn − λnxn‖ → 0.
Then, since {λn} is bounded, it has a subsequence, which for simplicity we
denote again by {λn}, that converges to some λ0 ∈ C (note that C is the
range of a continuous function and hence it is closed).
But then

‖Axn − λ0xn‖ ≤ ‖Axn − λnxn‖+ |λn − λ0|

and hence ‖Axn − λ0xn‖ → 0, which is a contradiction, since λ0 ∈ ρ(A).
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Proofs of the Theorem

Proofs of the Theorem

As one may easily see inequality (1) implies that the resolvent function

λ 7→ (A|M − λIM)−1 ,

of the restriction A|M , is bounded on C ∩ ρ(A|M).
In particular

‖(A|M − λIM)−1‖ ≤ 1

c
, for all λ ∈ C ∩ ρ(A|M) .

Hence, by the elementary properties of the resolvent function, we get that
if

|b − λ| < c ≤ 1

‖Rb‖
,

then λ ∈ ρ(A|M).
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Proofs of the Theorem

Proofs of the Theorem

Since c is independent of λ the above argument shows that if two λ’s that
belong to C are within c of each other and one is in the resolvent set of
the restriction then the other is also in the resolvent set of the restriction.
Therefore, if we divide the arc C into subarcs of length less than c , then
the subarc containing b has the other endpoint in the resolvent set of the
restriction, and so on.
The last subarc contains a and so a is also in the resolvent set of the
restriction which is a contradiction.
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A ”Generalization”

A ”Generalization”

Theorem

Let A,B : X → X be bounded linear operators such that

σap(B) ⊆ σap(A)

and D be a connected component of ρ(A).
If

D ∩ σ(B) 6= ∅ ,

then
D ⊆ σ(B) .

This ”generalization” is mentioned by P. Halmos in [07, Problem 201].
The proofs by Parrott and Yannakakis and D. can be used to prove it.
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Other Similar Results

Other Similar Results

Similar results hold if A is a closed densely defined operator [11] as well as
if instead of A|M we take the operator AM : X/M → X/M [05].
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