Κατασκευές σταυρωτών γινομένων αλγεβρών τελεστών ΙΙ

Αριστείδης Κατάβολος

2 Δεκεμβρίου 2019

Ημι-σταυρωτά γινόμενα (semicrossed products)

Έστω δυναμικό σύστημα (X,ϕ) όπου X συμπαγής Hausdorff και $\phi:X\to X$ συνεχής συνάρτηση. Θέτω $\mathscr{C}:=C(X)$ και για κάθε $X\in X$ αναπαριστώ στον $H_X:=\ell^2(\mathbb{Z}_+)$:

$$\pi_{x}(f) = \operatorname{diag}(f(\phi^{n}(x))) = \begin{bmatrix} f(x) & 0 & 0 & 0 & \dots \\ 0 & f(x_{1}) & 0 & 0 & \dots \\ 0 & 0 & f(x_{2}) & 0 & \dots \\ 0 & 0 & 0 & f(x_{3}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

(όπου $f ∈ \mathscr{C}$, $x_n = \phi^n(x)$). Επίσης γράφω:

$$S_{x} = \left| egin{array}{ccccc} 0 & 0 & 0 & 0 & \dots \ 1 & 0 & 0 & 0 & \dots \ 0 & 1 & 0 & 0 & \dots \ 0 & 0 & 1 & 0 & \dots \ dots & dots & dots & dots & dots \end{array}
ight|.$$

Αθροίζω:

Ημι-σταυρωτά γινόμενα (semicrossed products)

Ορίζω
$$H := \bigoplus_{x \in X} H_x$$

$$\pi(f) := \bigoplus_{x \in X} \pi_x(f)$$

$$S := \bigoplus_{x \in X} S_x$$

Το ημι-σταυρωτό γινόμενο $\mathscr{C}\rtimes_{\phi}\mathbb{Z}_{+}$ είναι η κλειστή υπάλγεβρα (όχι *-υπάλγεβρα) της $\mathscr{B}(H)$ που παράγεται από τα $\{\pi(f): f\in\mathscr{C}\}\cup \{S\}.$

Ελέγχεται ότι ικανοποιείται η 'covariance relation'

$$\pi(f)S = S\pi(f \circ \phi)$$

(οπότε $S\pi(f)S\pi(g) = S^2\pi(f\circ\phi)\pi(g) = S^2\pi((f\circ\phi)g)$ κ.λπ.). Έπεται ότι το $\mathscr{C}\rtimes_{\phi}\mathbb{Z}_+$ είναι η κλειστή θήκη όλων των 'πολυωνύμων' $\sum_{n=0}^{N}S^n\pi(f_n)$ με συντελεστές $\pi(f_n)$ από την \mathscr{C} .

Παράδειγμα $X = \{x, y\}$

$$\pi(f) = \pi_{x}(f) \oplus \pi_{y}(f)$$

$$= \begin{bmatrix} f(x) & 0 & 0 & 0 \\ 0 & f(\phi(x)) & 0 & 0 \\ 0 & 0 & f(y) & 0 \\ 0 & 0 & 0 & f(\phi(y)) \end{bmatrix},$$
 $S = S_{x} \oplus S_{y}$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Αλλιώς:

Αλλιώς:

$$\pi'(f) = D(f) \oplus D(f \circ \phi) = \begin{bmatrix} f(x) & 0 \\ 0 & f(y) \end{bmatrix} \oplus \begin{bmatrix} f(\phi(x)) & 0 \\ 0 & f(\phi(y)) \end{bmatrix}$$
$$= \begin{bmatrix} f(x) & 0 & 0 & 0 \\ 0 & f(y) & 0 & 0 \\ 0 & 0 & f(\phi(x)) & 0 \\ 0 & 0 & 0 & f(\phi(y)) \end{bmatrix},$$

$$S = \left[\begin{array}{ccc} 0 & 0 \\ I & 0 \end{array} \right] = \left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right].$$

C*-dynamical systems

Definition

A C*-dynamical system (C*DS) is a pair consisting of a C*-algebra $\mathscr C$ (here unital, for simplicity) equipped with a *-endomorphism $\alpha:\mathscr C\to\mathscr C$. When α is bijective (i.e. an automorphism) we call $(\mathscr C,\alpha)$ reversible.

Examples

- $\mathscr{C} = \mathbb{C}$, action α : trivial.
- $\mathscr{C} = \ell^{\infty} \hookrightarrow \mathscr{B}(\ell^2)$ as diagonal operators, action α : shift (?).
- $\mathscr{C} = C(\mathbb{T}) \hookrightarrow \mathscr{B}(L^2(\mathbb{T}))$ as multiplication operators, action α : (irrational) rotation. (• *But can consider non-commutative* \mathscr{C} .)

Definition

A covariant pair for the C*DS (\mathscr{C}, α) is a pair (π, U) consisting of a *-representation $\pi : \mathscr{C} \to \mathscr{B}(H)$ and a unitary U on the same space H satisfying the covariance condition

$$\pi(x)U = U\pi(\alpha(x))$$
 for all $x \in \mathscr{C}$. (lcov)

Existence of covariant representations

May assume $\mathscr{C} \subseteq \mathscr{B}(H_0)$. There always exists a covariant representation (π, U) which is faithful on \mathscr{A}_0 .

Idea: 'Enlarge' the space (if necessary) to accomodate a U so that $\pi(\alpha(c)) = U^*\pi(c)U \ \forall c \in \mathscr{C}$ holds. Consider

$$\begin{split} H &= \ell^2(\mathbb{Z}) \otimes H_0 := \{ (\xi(n))_{n \in \mathbb{Z}} : \xi(n) \in H_0 \ \forall n, \ \sum_n \|\xi(n)\|_{H_0}^2 < \infty \} \\ &\langle (\xi(n)), (\eta(n)) \rangle := \sum_n \langle \xi(n), \eta(n) \rangle_{H_0} \end{split}$$

and $U_0: H \rightarrow H$:

$$U_0: (\dots, \xi(-2), \xi(-1), \underline{\xi(0)}, \xi(1), \xi(2), \dots)$$

$$\to (\dots, \xi(-3), \xi(-2), \underline{\xi(-1)}, \xi(0), \xi(1), \dots)$$

Existence of covariant representations

Represent as matrices with entries in $\mathcal{B}(H_0)$,

The reduced C*-crossed product

We proved that the seminorm

$$\left\| \sum_{k} u^k c_k \right\|_r := \left\| (U_0 \times \pi_0) \left(\sum_{k} u^k c_k \right) \right\|_{\mathscr{B}(H)} = \left\| \sum_{k} U_0^k \pi_0(c_k) \right\|_{\mathscr{B}(H)}$$

is in fact a norm on \mathcal{A}_0 , and is clearly an algebra seminorm satisfying the C*-condition. Therefore the completion of \mathcal{A}_0 in this norm is a C*-algebra.

Definition

The C*-reduced crossed product $\mathscr{C}\rtimes_{\alpha,r}\mathbb{Z}$ associated to the C*DS (\mathscr{C},α) is the completion of \mathscr{A}_0 in the norm $\|\cdot\|_r$. Equivalently, it is the concrete C*-subalgebra of $\mathscr{B}(H_0\otimes \ell^2(\mathbb{Z}))$ generated by $\pi_0(\mathscr{C})$ and U_0 ; it is the closure of \mathscr{A}_0 in the norm of $\mathscr{B}(H)$.

Examples

- $\mathscr{C} = \mathbb{C}$, action α : trivial:
- \mathscr{A}_0 : trigonometric polynomials, $\mathscr{C} \rtimes_{\alpha,r} \mathbb{Z} = C(\mathbb{T})$.
- $\mathscr{C} = \ell^{\infty} \hookrightarrow \mathscr{B}(\ell^2)$ as diagonal operators, action α : shift. $\mathscr{C} \rtimes_{\alpha,r} \mathbb{Z} \hookrightarrow \mathscr{B}(\ell^2)$ is called the uniform Roe algebra.
- $\mathscr{C} = C(\mathbb{T}) \hookrightarrow \mathscr{B}(L^2(\mathbb{T}))$ as multiplication operators, action α : irrational rotation. $\mathscr{C} \rtimes_{\alpha,r} \mathbb{Z} = C^*(U,V)$ ("universal") where U,V unitaries satisfying $VU = \lambda UV$ (Weyl).

The reduced C*-crossed product

Definition

The C*-reduced crossed product $\mathscr{C} \rtimes_{\alpha,r} \mathbb{Z}$ associated to the C*DS (\mathscr{C},α) is the completion of \mathscr{A}_0 in the norm $\|\cdot\|_r$. Equivalently, it is the concrete C*-subalgebra of $\mathscr{B}(H)$ generated by $\pi_0(\mathscr{C})$ and U_0 ; it is the closure of \mathscr{A}_0 in the norm of $\mathscr{B}(H)$.

Fact The reduced crossed product $\mathscr{C}\rtimes_{\alpha,r}\mathbb{Z}$ does not depend on the way \mathscr{C} is represented: if the identity representation $\mathscr{C}\to\mathscr{B}(H_0)$ is replaced by *any faithful* representation $\pi_1:\mathscr{C}\to\mathscr{B}(H_1)$ then the resulting norm $\|\cdot\|_{1,r}$ coincides with $\|\cdot\|_r$ on \mathscr{A}_0 .

The full C*-crossed product

... but recall that we wanted the full crossed product to 'encode' all covariant pairs (U,π) , so we defined, for $p \in \mathcal{A}_0$,

$$\|p\|_* = \sup\{\|(U \times \pi)(p)\| : \text{all covariant pairs } (\pi, U)\}.$$

(Recall
$$(U \times \pi) (\sum_k u^k c_k) = \sum_k U^k \pi(c_k)$$

Since clearly $\|\sum_k u^k c_k\|_r \le \|\sum_k u^k c_k\|_*$, we have also shown that the seminorm $\|\cdot\|_*$ is also a norm on \mathscr{A}_0 .

Definition

The full crossed product $\mathscr{C} \rtimes_{\alpha} \mathbb{Z}$ of the C*DS (\mathscr{C}, α) is the completion of the covariance algebra \mathscr{A}_0 in the norm $\|\cdot\|_*$.

Corollary (Universal property)

There is a bijective correspondence between covariant pairs (π, U) and representations of the C^* -algebra $\mathscr{C} \rtimes_{\alpha} \mathbb{Z}$.

The full C*-crossed product

Since $\|\sum_k u^k c_k\|_r \leq \|\sum_k u^k c_k\|_*$, the identity map

$$(\mathscr{A}_0, \|\cdot\|_*) \longrightarrow (\mathscr{A}_0, \|\cdot\|_r)$$

is contractive, hence extends to a contraction (and also a *-morphism)

$$\lambda: \mathscr{C} \rtimes_{\alpha} \mathbb{Z} \longrightarrow \mathscr{C} \rtimes_{\alpha,r} \mathbb{Z}$$

which is onto (why?).

But is this map 1-1 on the full crossed product? In general, not necessarily (for example, when we have an action of \mathbb{F}_2 instead of \mathbb{Z}).

But in the case of \mathbb{Z} , the answer is YES!

Injectivity of λ

If $a \in \mathcal{C} \rtimes_{\alpha} \mathbb{Z}$ and $\lambda(a) = 0$, need to show a = 0. In case $a = \sum_{k} u^{k} c_{k}$ is in \mathcal{A}_{0} , we have

$$0 = \lambda(a) = \sum_{k} U_0^k \pi_0(c_k) \stackrel{inj}{\Rightarrow} c_k = 0 \ \forall k \Rightarrow a = 0$$

(inj): Το έχουμε δείξει.

But how to find the 'Fourier coefficients' c_k for general $a \in \mathcal{A} := \mathcal{C} \rtimes_{\alpha} \mathbb{Z}$?

And secondly, if all Fourier coefficients of some $a \in \mathcal{A}$ are 0, does it follow that a = 0?

Fourier coefficients

For $k \in \mathbb{Z}$, define

$$E_k: \mathscr{A}_0 \to \mathscr{C}: \sum_n u^n c_n \to c_k.$$

Clearly linear. Also $\|\cdot\|_*$ -contractive: for $\xi, \eta \in H_0$ of norm one,

$$\begin{aligned} \langle c_m \xi, \eta \rangle_{H_0} &= \left\langle \sum_k U_0^k \pi_0(c_k) (e_0 \otimes \xi), (e_m \otimes \eta) \right\rangle_H \\ \Rightarrow \left| \langle c_m \xi, \eta \rangle_{H_0} \right| &\leq \left\| \sum_k U_0^k \pi_0(c_k) \right\|_{\mathscr{B}(H)} = \left\| \sum_n u^n c_n \right\|_r \leq \left\| \sum_n u^n c_n \right\|_* \\ \Rightarrow \left\| E_m(a) \right\|_{\mathscr{C}} &= \left\| c_m \right\|_{\mathscr{C}} \leq \left\| a \right\|_r \leq \left\| a \right\|_* \quad \forall a \in \mathscr{A}_0 \end{aligned}$$

Fourier coefficients

Thus E_k extends to a linear contraction on the $\|\cdot\|_*$ -completion:

$$E_k: \mathscr{C} \rtimes_{\alpha} \mathbb{Z} \to \mathscr{C}$$

But if $\lambda(a) = 0$, i.e. $\|\lambda(a)\|_r = 0$ then $\|E_k(a)\|_{\mathscr{C}} \le \|\lambda(a)\|_r = 0$ for all $k \in \mathbb{Z}$. So all we have to prove is the

Claim If $E_k(a) = 0$ for all $k \in \mathbb{Z}$ then a = 0.

: injectivity of the 'Fourier transform'!

Locating $E_k(a)$

Define *dual or gauge* action (of \mathbb{T}) first on \mathscr{A}_0 : for $e^{it} \in \mathbb{T}$, let

$$\theta_t\left(\sum_n u^n c_n\right) = \sum_n (e^{it}u)^n c_n$$

Claim. Each θ_t extends to an isometric *-automorphism of $\mathscr{C} \rtimes_{\alpha} \mathbb{Z}$.

Proof For each *-rep $\rho = U \times \pi$ of \mathscr{A}_0 , $\rho \circ \theta_t$ is another. Hence $\|\rho(\theta_t(a))\| \leq \|a\|_*$ when $a \in \mathscr{A}_0$. Taking sup, $\|\theta_t(a)\|_* \leq \|a\|_*$.

Thus θ defines an action of the group \mathbb{T} on $\mathscr{C} \rtimes_{\alpha} \mathbb{Z}$.

The group $\{\theta_t:e^{it}\in\mathbb{T}\}$ is called the dual automorphism group.

Now we calculate, first when $a \in \mathcal{A}_0$ and then for general $a \in \mathcal{A}$,

$$\frac{1}{2\pi}\int_0^{2\pi}\theta_t(a)e^{-imt}dt=u^mE_m(a).$$

Finally...

Proposition

Each $a \in \mathscr{C} \rtimes_{\alpha} \mathbb{Z}$ belongs to the $\|\cdot\|_*$ -closed linear span of

$$\{u^k E_k(a) : k \in \mathbb{Z}\}.$$

Proof ... Hahn-Banach and injectivity of the usual Fourier transform on $C(\mathbb{T})$!

So, if all $E_k(a)$ vanish, then a must vanish. We have shown that if $a \in \mathscr{A}$ and $\|a\|_r = 0$, then a = 0. Therefore the map

$$\lambda: \mathscr{C} \rtimes_{\alpha} \mathbb{Z} \longrightarrow \mathscr{C} \rtimes_{\alpha,r} \mathbb{Z}$$

is injective, hence an isometric isomorphism!

¡Muchas gracias, hasta la proxima!