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Hu-otawpntd yvoueva (semicrossed products)

‘Eotw duvapxd obotnue (X, ) 6mouv X cuunayrc Hausdorff xou
¢ : X — X ouveyric ouvdptnon. ©¢tw € = C(X) xau yio xdde
x € X avanapioté otov Hy 1= (2(Z):
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7y (f) = diag(f(¢"(x)) =

(6mou fe €, xp=¢"(x)). Enlone ypdopw:
[0 0 O
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Hu-otawpntd yvoueva (semicrossed products)

Opllewy H := Dxex Hx
7(f) := Oxex mx(f)
S = ®X€X SX
To Nui-oTawpewtéd YWOUEVO € X ¢ Zy eivon 1 xAetoT UTdAyeea
(Oy *-undhyePea) e A(H) mov tapdyetar ond T
{n(f): fe €} U{S}.
EXéyyeton 6tL ixavoroteltan ) ‘covariance relation’

n(f)S=Sxn(fo¢)
(onéte Sn(f)Sn(g) = S2?n(fod)n(g) = SPr((fod)g) x ).

‘Enetan 611 10 € Xg Zy ebvan 1) xheloth) Uxn Ohwv twy

N
‘tohuwvouwy’ Y, S"r(fy) pe ouvteheotéc mt(fy) and v €.
n=0



Y TowpwTd yvouevo (crossed products)

Av ¢ opolopop@Lopde propd va Béhe x&de Hy = (2(Z), xou
iy (f) =diag(f(¢"(x)),n € Z xo o1n ¥éon tou Sy to bilateral shift

(1) = ) o

To otowpntd Yvouevo € x g Z eivan 1 xhetoth *-undhyefpa Tng
PB(H) mouv napdyeton and ta {n(f): f € €} U{S}. Eivar n xhewoth

N
0N AoV TV ‘Tprywvopetexdy tohuwvipwy’ Y. S"r(f,) ue
n=—N

ovvtereotéc m(fy) and v €.



Ar’ tnv opyr: Dynamical Systems

A commutative dynamical system (CDS) is a pair (X, ¢) where
Xis aset(ex: XCR") and ¢ : X — X is a self-map.
So we have an action

ZinnX: 0=idn—¢":=¢o¢---0¢

orZnX(—n— ¢ 1op~1--.0¢~1) when ¢ is bijective (i.e. the
system is reversible).

When X is a compact or locally compact space and ¢ is
continuous then (X, ¢) is called a topological dynamical system
(TDS) (reversible TDS when ¢ is a homeomorphism).

When X is a measure space (or a probability space) and ¢ (and
its inverse, if it exists) is measurable and measure-preserving 2
then (X, ¢) is called a measurable dynamical system (MDS).

2more generally, measure-class preserving



Dynamical Systems

When we have more than one map on X, say {¢a, ¢p}, we
speak of a multivariable dynamical system.
Here we have an action

Iﬁ‘i ~ X
aba’b — 90 $a© P2 P 0 9
[Davidson-Katsoulis, Kakariadis-Katsoulis, ...]
(or an action Z2 ~ X if the maps commute (¢4 ¢p = 90 Pz).

More generally we could study a DS (X, G) where G is a group
of (bijective) maps g: X — X (i.e. the group law is given by
composition: gy o go).



Classical or commutative systems

From now on, let X be compact T, (for simplicity) (or even a
metric space) and ¢ : X — X continuous.

The action ¢ : X — X can be transferred to an action
o:C(X)—C(X):f—fog.

Advantage: C(X) is a linear algebra and « preserves its
structure. 3

Exercise
o is 1-1 iff ¢ is onto; a is onto iff ¢ is 1-1.

The action is transferred from the state space X to the
observables (functions on X):

(X,9) ~ (C(X), ).

3In the MDS case, transfer the action ¢ : X — X to an action
B LX) = L°(X):f—fo.



Quantum or non-commutative systems

(X,9) ~ (C(X), ).

Thus the action « is transferred from the state space to the
observables.

In Quantum Mechanics states correspond to unit vectors [or
rays...] in a Hilbert space H; the observables define self-adjoint
operators on H and the dynamics (for a reversible system)
define an action U; : H — H(t € R) -time development- on the
state space, where the U; preserve the linear structure and the
length: they are unitary operators.

Again we may transfer the action from the state space to the
(possibly non-commutative) C*-algebra ¢ C %(H) generated
by the observables:
U:HoH  ~ o C—%:T—U ' TU
Schrédinger picture Heisenberg picture



C*

-dynamical systems

Definition

A C*-dynamical system (C*DS) is a pair consisting of a
C*-algebra ¢ (here unital, for simplicity) equipped with a
*-endomorphism «a : ¢ — %. When « is bijective (i.e. an
automorphism) we call (¢, ) reversible.

Example

Let € C #(H) be a C*-subalgebra and U € #(H) an isometry
such that U*¢’U C €. Then o(x) = U*xU is a *-endomorphism;
if U is unitary (U~' = U*) then o € Aut(%).

We say that a is spatial, implemented by U.

Question

More generally, given a (C*DS) (¥, a), can we find a
*-representation n : ¢ — #(H) and U € #(H) so that:

n(o(c)) =U'n(c)U Vecee? (cov)



An example

Let ¥ = C(X) and let ¢ be a homeomorphism. Suppose X
supports a prob. measure u which is ¢-invariant, i.e.
w(¢~"(E)) = u(E) for every Borel E C X. Let H=L?(X,u) and
represent ¢ by defining n(f),f € C(X) as follows:

n(f)E=f & eH.
The operator U defined on H by

UEg)=¢og™
is unitary (Exercise!), and
a(a(f)) U E = Usr(f)E forall € € H.
Proof:
r(a(fU & 25 Eog ™5 a(f)(E09) = (fop)(E09)
)& " 1e 5 (#6)09 = (fop)(E 09)

4Suppose u(U) > 0 for every open U C X to make r injective.

()




‘Eva cuyxexpLuévo TapddeLyuo

Eow X =T ={e':tc[0,2n]} xu ¢(e") =&+ érou 6/2n
dppnroc. Oétouue H = L2(T, ) (uétpo Lebesgue).

H avonopdotaon m napdyeton an’ Ty emdva tou m(§) (6mou
C(e")=em). Av ¢ € C(X) eivon 1 ouvdptnon {(e) = e, ypdopw

n(§) =V, dnhadh:
(VEN(2)=2E(2) EeHp,z=¢€"€T.

O V eivau unitary. Eniong o unitary tekeotic U optleton and
(UE)(2)=E(Az) (6mou A =€)

H covariance condition ypdgpeton 1od0vopa

VU=AUV

(~ n oxéon Weyl tnc KBavtounyovixic).



The full or universal C*-crossed product

ldea: Given (¢, ), to form a ‘larger’ C*-algebra o7 =€ x4 Z
containing ¥ as well as a unitary element u in such a way that
the covariance condition o(c) = u*cu holds in <.

We will define a *-algebra <%, define a suitable C*-norm on it
and complete to get <.

(a) The covariance algebra. First form the linear space < of
all ‘Laurent polynomials’ p in one variable u with coefficients in
C:

n
pu)=Y ufc, e

k=-n

Make <% into a *-algebra:

(pq)(u) = (Zukck) (Zumdm> =Y ukeudm =7
k m k,m



(a) The covariance algebra .«

Want a(c) = u*cu or cu = ua(c), hence cu™ = u™a™(c). So
define multiplication by

<Z ukck> (Z u’”dm> =Y KMo (e )dm =Y u"Y a™(Cr-m)dm
k m k,m n m

Similarly, want cu~* = u=%a~*(c) so define

<Zk:ukck> Z(u o) = chu*k Zu*ka*" ci)=Y u"a"(c’,)

n



(b) Covariant representations

Want to represent <% by bounded operators on Hilbert space.
Observe that any *-representation

p: ol — B(H)

defines, by restriction, a representation p; : ¢ — %#(H) and a
unitary V € #(H) such that

b (z ) Y VEpe(x).
k k
Note that the covariance condition

pc(X)V =Vpe(a(x)) forall xe@®

holds.



(b) Covariant representations and repr. of .

Conversely, suppose given & : ¢ — %#(H) and U € #(H) (same
H!) satisfying the covariance condition

n(x)U = Un(o(x)) forall xe%. (Icov)
This is the left covariance condition. Then we define

Uxm:ady— B(H)
U><7L' (ZU Ck> :Z (Ck)

It can be readily verified that this (clearly linear) map is in fact a
*-representation of <4 on H.



Covariant pairs

Definition

A covariant pair for the C*DS (¢, o) is a pair (w, U) consisting
of a *-representation = : ¥ — #(H) and a unitary U on the
same space H satisfying the covariance condition

r(x)U = Un(o(x)) forall xe%. (Icov)

We have shown the
Proposition

There is a bijective correspondence between covariant
representations (r, U) of (¢,a) and *-representations U x &t of
the covariance algebra <.



(c) Completing the covariance algebra

To obtain a C*-algebra, we need to complete . with respect to
an algebra norm satisfying the C*-condition. To ‘encode’ all
covariant pairs, define, for p = ¥ u¥c €

Ipll, = sup{llp(p)I| - all *-reps. (p,H) of o4}
= sup{||(U x w)(p)|| : all covariant pairs (rx,U)}.

This is finite, since every representation is ||-||;-contractive:

H(Ux ) (Zukck)
K

It is also easy to verify that it is an algebra seminorm and that it
satisfies the C*-condition.

<Y [v*a@) | < Xl

But are there any covariant representations?



Existence of covariant representations

We know (Gelfand-Naimark) that every C*-algebra ¢ admits a
faithful (i.e. 1-1) representation on some Hilbert space, so may
assume ¢ C %A(Hp). But is there always a covariant
representation (xr, U) which is faithful on .%?

Idea: ‘Enlarge’ the space (if necessary) to accomodate a U so
that 7(a(c)) = U*n(c)U Ve € € holds.
Consider

H = (3(Z)® Ho := {(§()nez : §(n) € Ho ¥, Z||§ I, < o}
((&(m), (n(n)) 22;(5( ):1(N) p,
and Up: H— H:

Up: (....8(-2),6(-1),800) ¢(1).€(2)....)
= (..., &(=3),&(-2) =T g(0),¢(1),..)



Existence of covariant representations

Notation: for n € Z and & € Hy denote by e, ® & € H the function

&, m=n
0, m#n

Z—Hy:m— (ep®&)(m)= {
(note H=span{e,®& :ne€Z,& € Hy}). The map U is given by
Uo(en®&)=en1®&.
Also define the representation ny : ¢ — %(H) by
mo(c)(en® &) = en®a"(€)E

where ce ¢,& € Hy,n€ Z.



Existence of covariant representations

Representing these as matrices with entries in Z(Hp),

a'(c)
my(c) =diag(a"(c)) = [ ,
a(c)
0
- 1, ©
o = Ty O
14




Existence of covariant representations

We have

mo(c)Uo: en® 8 o, ent1®E Q) eni1@ a1 (c)E

D 6n 9 a(o(0))E 2 eni1 @ 0"((0)E

Uomo(a(c)) : en®&
hence

mp(c)Up = Ugmp(a(c)), equivalently mo(e(c)) = Uymp(c) Up.



Existence of covariant representations

Proposition

The representation Uy x my just constructed is injective on the
covariance algebra <.

Indeed, suppose (Up x 7o) (L4 ukck) =0, i.e. L Ukmo(ck) = 0.
Then for all £, € Hy and all m € Z we have

0= i Usmo(ck)(eo®E) =Y Ug(eo®a®(ck)é) = Y e ® a®(ck)é
k= oo K K

andso 0= <Zek®ck€79m®n> = (Cm& M) H,
K

which shows that ¢;; = 0 and so, since m is arbitrary, that
YiUuker=0inggp. O

Conclusion: Injective covariant representations exist!



The reduced C*-crossed product

Therefore the seminorm

ZUka = H(Uo X 71'0) <Z Uka>
k r

k

= ||} Ugmo(cx)
P

B(H) B(H)

is in fact a norm on %, and is clearly an algebra seminorm
satisfying the C*-condition. Therefore the completion of .« in
this norm is a C*-algebra.

Definition

The C*-reduced crossed product ¢ x4 r Z associated to the
C*DS (¥, a) is the completion of 2% in the norm ||-||,.
Equivalently, it is the concrete C*-subalgebra of #(H)
generated by mp (%) and Up; it is the closure of % in the norm
of Z(H).



	 µ (crossed products)
	Dynamical Systems
	C*-dynamical systems
	The full or universal C*-crossed product


