Κατασκευές σταυρωτών γινομένων (crossed products) αλγεβρών τελεστών

Αριστείδης Κατάβολος

Παράδειγμα

Αναπαριστώ 1 τον ℓ^∞ ως διαγώνιους τελεστές $H:=\ell^2(\mathbb{Z}_+)$:

$$D(c) := \left| egin{array}{ccccc} c_0 & 0 & 0 & 0 & \dots \ 0 & c_1 & 0 & 0 & \dots \ 0 & 0 & c_2 & 0 & \dots \ 0 & 0 & 0 & c_3 & \dots \ dots & dots & dots & dots & dots \end{array}
ight|, \; c \in \ell^{\infty},$$

και θεωρώ τον

$$S = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

¹cros2019, 1 Δεχεμβρίου 2019

Παράδειγμα

$$D(c) + SD(a) + S^2D(b) := \left[egin{array}{ccccc} c_0 & 0 & 0 & 0 & \dots \ a_0 & c_1 & 0 & 0 & \dots \ b_0 & a_1 & c_2 & 0 & \dots \ 0 & b_1 & a_2 & c_3 & \dots \ dots & dots & dots & dots & dots & dots \end{array}
ight].$$

Ποιά είναι η [κλειστή] γραμμική θήκη της άλγεβρας των «πολυωνύμων» $\sum_{k=0}^N S^k D(c_k);$

Ημι-σταυρωτά γινόμενα (semicrossed products)

Έστω δυναμικό σύστημα (X,ϕ) όπου X συμπαγής Hausdorff και $\phi:X\to X$ συνεχής συνάρτηση. Θέτω $\mathscr{C}:=C(X)$ και για κάθε $x\in X$ αναπαριστώ στον $H_X:=\ell^2(\mathbb{Z}_+)$:

$$\pi_{x}(f) = \operatorname{diag}(f(\phi^{n}(x))) = \begin{bmatrix} f(x) & 0 & 0 & 0 & \dots \\ 0 & f(x_{1}) & 0 & 0 & \dots \\ 0 & 0 & f(x_{2}) & 0 & \dots \\ 0 & 0 & 0 & f(x_{3}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

(όπου $f \in \mathscr{C}$, $x_n = \phi^n(x)$). Επίσης γράφω:

$$S_{x} = \left[egin{array}{ccccc} 0 & 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array}
ight].$$

Αθροίζω:

Ημι-σταυρωτά γινόμενα (semicrossed products)

Ορίζω
$$H := \bigoplus_{x \in X} H_x$$

$$\pi(f) := \bigoplus_{x \in X} \pi_x(f)$$

$$S := \bigoplus_{x \in X} S_x$$

Το ημι-σταυρωτό γινόμενο $\mathscr{C}\rtimes_{\phi}\mathbb{Z}_{+}$ είναι η κλειστή υπάλγεβρα (όχι *-υπάλγεβρα) της $\mathscr{B}(H)$ που παράγεται από τα $\{\pi(f): f\in\mathscr{C}\}\cup \{S\}.$

 E λέγχεται ότι ικανοποιείται η 'covariance relation'

$$\pi(f)S = S\pi(f \circ \phi)$$

(οπότε $S\pi(f)S\pi(g) = S^2\pi(f\circ\phi)\pi(g) = S^2\pi((f\circ\phi)g)$ κ.λπ.). Έπεται ότι το $\mathscr{C}\rtimes_{\phi}\mathbb{Z}_+$ είναι η κλειστή θήκη όλων των 'πολυωνύμων' $\sum_{n=0}^{N}S^n\pi(f_n)$ με συντελεστές $\pi(f_n)$ από την \mathscr{C} .

$\overline{\Sigma}$ ταυρωτά γινόμενα (crossed products)

Αν ϕ ομοιομορφισμός μπορώ να βάλω κάθε $H_X:=\ell^2(\mathbb{Z})$, και $\pi_X(f)=\mathrm{diag}(f(\phi^n(x)),n\in\mathbb{Z})$ και στη θέση του S_X το bilateral shift

$$\pi_{X}(f) = \begin{bmatrix} \ddots & & & & \\ & f(x_{-1}) & & & \\ & f(x_{1}) & & \\ & & \ddots & \end{bmatrix} S_{X} = \begin{bmatrix} \ddots & & & & \\ \ddots & 0 & & & \\ & 1 & 0 & & \\ & & 1 & 0 & \\ & & & \ddots & \end{bmatrix}.$$

Το σταυρωτό γινόμενο $\mathscr{C}\rtimes_\phi\mathbb{Z}$ είναι η κλειστή *-υπάλγεβρα της $\mathscr{B}(H)$ που παράγεται από τα $\{\pi(f):f\in\mathscr{C}\}\cup\{S\}$. Είναι η κλειστή θήκη όλων των 'τριγωνομετρικών πολυωνύμων' $\sum\limits_{n=-N}^N S^n\pi(f_n)$ με συντελεστές $\pi(f_n)$ από την \mathscr{C} .

Απ΄ την αρχή: Dynamical Systems

A commutative dynamical system (CDS) is a pair (X, ϕ) where X is a set (ex: $X \subseteq \mathbb{R}^n$) and $\phi : X \to X$ is a self-map. So we have an action

$$\mathbb{Z}_+ \curvearrowright X: \ 0 \to id, n \to \phi^n := \phi \circ \phi \cdots \circ \phi$$

or $\mathbb{Z} \curvearrowright X$ $(-n \to \phi^{-1} \circ \phi^{-1} \cdots \circ \phi^{-1})$ when ϕ is bijective (i.e. the system is *reversible*).

When X is a compact or locally compact space and ϕ is continuous then (X, ϕ) is called a topological dynamical system (TDS) (reversible TDS when ϕ is a homeomorphism).

When X is a measure space (or a probability space) and ϕ (and its inverse, if it exists) is *measurable and measure-preserving* ² then (X, ϕ) is called a measurable dynamical system (MDS).

²more generally, measure-class preserving

Dynamical Systems

When we have more than one map on X, say $\{\phi_a, \phi_b\}$, we speak of a *multivariable dynamical system*. Here we have an action

$$\mathbb{F}_+^2 \curvearrowright X$$

$$aba^2b \to \phi_b \circ \phi_a \circ \phi_a \circ \phi_b \circ \phi_a$$

[Davidson-Katsoulis, Kakariadis-Katsoulis, ...] (or an action $\mathbb{Z}_+^2 \curvearrowright X$ if the maps commute $(\phi_a \circ \phi_b = \phi_b \circ \phi_a)$.

More generally we could study a DS (X,G) where G is a *group* of (bijective) maps $g:X\to X$ (i.e. the group law is given by composition: $g_1\circ g_2$).

Classical or commutative systems

From now on, let X be compact T_2 (for simplicity) (or even a metric space) and $\phi: X \to X$ continuous.

The action $\phi: X \to X$ can be transferred to an action

$$\alpha: C(X) \rightarrow C(X): f \rightarrow f \circ \phi.$$

Advantage: C(X) is a *linear algebra* and α preserves its structure. ³

Exercise

 α is 1-1 iff ϕ is onto; α is onto iff ϕ is 1-1.

The action is transferred from the state space *X* to the observables (functions on *X*):

$$(X,\phi) \rightsquigarrow (C(X),\alpha).$$

³In the MDS case, transfer the action $\phi: X \to X$ to an action $\beta: L^{\infty}(X) \to L^{\infty}(X): f \to f \circ \phi$.

Quantum or non-commutative systems

$$(X,\phi) \rightsquigarrow (C(X),\alpha).$$

Thus the action α is transferred from the *state space* to the *observables*.

In Quantum Mechanics *states* correspond to unit vectors [or rays...] in a Hilbert space H; the *observables* define self-adjoint operators on H and the *dynamics* (for a reversible system) define an action $U_t: H \to H(t \in \mathbb{R})$ -time development- on the state space, where the U_t preserve the linear structure and the length: they are unitary operators.

Again we may transfer the action from the state space to the (possibly non-commutative) C*-algebra $\mathscr{C} \subseteq \mathscr{B}(H)$ generated by the observables:

$$U_t: H \to H$$
 \leadsto $\alpha_t: \mathscr{C} \to \mathscr{C}: T \to U_t^{-1} T U_t$
Schrödinger picture Heisenberg picture

C*-dynamical systems

Definition

A C*-dynamical system (C*DS) is a pair consisting of a C*-algebra $\mathscr C$ (here unital, for simplicity) equipped with a *-endomorphism $\alpha:\mathscr C\to\mathscr C$. When α is bijective (i.e. an automorphism) we call $(\mathscr C,\alpha)$ reversible.

Example

Let $\mathscr{C} \subseteq \mathscr{B}(H)$ be a C*-subalgebra and $U \in \mathscr{B}(H)$ an isometry such that $U^*\mathscr{C}U \subseteq \mathscr{C}$. Then $\alpha(x) = U^*xU$ is a *-endomorphism; if U is unitary $(U^{-1} = U^*)$ then $\alpha \in Aut(\mathscr{C})$. We say that α is *spatial*, *implemented* by U.

Question

More generally, given a (C*DS) (\mathcal{C}, α) , can we find a *-representation $\pi : \mathcal{C} \to \mathcal{B}(H)$ and $U \in \mathcal{B}(H)$ so that:

$$\pi(\alpha(c)) = U^*\pi(c)U \quad \forall c \in \mathscr{C}$$
? (cov)

An example

Let $\mathscr{C}=C(X)$ and let ϕ be a homeomorphism. Suppose X supports a prob. measure μ which is ϕ -invariant, i.e. $\mu(\phi^{-1}(E))=\mu(E)$ for every Borel $E\subseteq X$. Let $H=L^2(X,\mu)$ and represent \mathscr{C} by defining $\pi(f), f\in C(X)$ as follows: ⁴

$$\pi(f)\xi=f\xi\quad \xi\in H.$$

The operator *U* defined on *H* by

$$U(\xi) = \xi \circ \phi^{-1}$$

is unitary (Exercise!), and

$$\pi(\alpha(f))U^*\xi=U^*\pi(f)\xi$$
 for all $\xi\in H$.

Proof:

$$\pi(\alpha(f))U^*: \xi \xrightarrow{U^*} \xi \circ \phi \xrightarrow{\pi(\alpha(f))} \alpha(f)(\xi \circ \phi) = (f \circ \phi)(\xi \circ \phi)$$

$$U^*\pi(f): \xi \xrightarrow{\pi(f)} f\xi \xrightarrow{U^*} (f\xi) \circ \phi = (f \circ \phi)(\xi \circ \phi)$$

⁴Suppose $\mu(U) > 0$ for every open $U \subseteq X$ to make π injective.

Ένα συγκεκριμένο παράδειγμα

Έστω $X = \mathbb{T} = \{e^{it}: t \in [0,2\pi]\}$ και $\phi(e^{it}) = e^{i(t+\theta)}$ όπου $\theta/2\pi$ άρρητος. Θέτουμε $H = L^2(\mathbb{T},\mu)$ (μέτρο Lebesgue). Η αναπαράσταση π παράγεται απ΄ την εικόνα του $\pi(\zeta)$ (όπου $\zeta(e^{it}) = e^{it}$). Αν $\zeta \in C(X)$ είναι η συνάρτηση $\zeta(e^{it}) = e^{it}$, γράφω $\pi(\zeta) = V$, δηλαδή:

$$(V\xi)(z)=z\xi(z)\quad \xi\in H_2, z=e^{it}\in\mathbb{T}.$$

Ο V είναι unitary. Επίσης ο unitary τελεστής U ορίζεται από

$$(U\xi)(z) = \xi(\bar{\lambda}z)$$
 (όπου $\lambda = e^{i\theta}$)

Η covariance condition γράφεται ισοδύναμα

$$VU = \lambda UV$$

 $(\sim η σχέση Weyl της Κβαντομηχανικής).$

The full or universal C*-crossed product

Idea: Given (\mathscr{C}, α) , to form a 'larger' C*-algebra $\mathscr{A} = \mathscr{C} \rtimes_{\alpha} \mathbb{Z}$ containing \mathscr{C} as well as a unitary element u in such a way that the covariance condition $\alpha(c) = u^*cu$ holds in \mathscr{A} .

We will define a *-algebra \mathcal{A}_0 , define a suitable C*-norm on it and complete to get \mathcal{A} .

(a) The covariance algebra. First form the linear space \mathcal{A}_0 of all 'Laurent polynomials' p in one variable u with coefficients in \mathscr{C} :

$$p(u) = \sum_{k=-n}^{n} u^{k} c_{k}, \qquad c_{k} \in \mathscr{C}.$$

Make \mathcal{A}_0 into a *-algebra:

$$(pq)(u) = \left(\sum_{k} u^{k} c_{k}\right) \left(\sum_{m} u^{m} d_{m}\right) = \sum_{k,m} u^{k} c_{k} u^{m} d_{m} = ?$$

(a) The covariance algebra \mathcal{A}_0

Want $\alpha(c) = u^*cu$ or $cu = u\alpha(c)$, hence $cu^m = u^m\alpha^m(c)$. So define multiplication by

$$\left(\sum_{k} u^{k} c_{k}\right) \left(\sum_{m} u^{m} d_{m}\right) = \sum_{k,m} u^{k+m} \alpha^{m}(c_{k}) d_{m} = \sum_{n} u^{n} \sum_{m} \alpha^{m}(c_{n-m}) d_{m}$$

Similarly, want $cu^{-k} = u^{-k}\alpha^{-k}(c)$ so define

$$\left(\sum_{k} u^{k} c_{k}\right)^{*} = \sum_{k} (u^{k} c_{k})^{*} = \sum_{k} c_{k}^{*} u^{-k} = \sum_{k} u^{-k} \alpha^{-k} (c_{k}^{*}) = \sum_{n} u^{n} \alpha^{n} (c_{-n}^{*})$$

(b) Covariant representations

Want to represent \mathcal{A}_0 by bounded operators on Hilbert space. Observe that any *-representation

$$\rho: \mathscr{A}_0 \to \mathscr{B}(H)$$

defines, by restriction, a representation $\rho_c: \mathscr{C} \to \mathscr{B}(H)$ and a unitary $V \in \mathscr{B}(H)$ such that

$$\rho\left(\sum_{k}u^{k}x_{k}\right)=\sum_{k}V^{k}\rho_{c}(x_{k}).$$

Note that the covariance condition

$$\rho_c(x)V = V\rho_c(\alpha(x))$$
 for all $x \in \mathscr{C}$

holds.

(b) Covariant representations and repr. of \mathcal{A}_0

Conversely, suppose given $\pi : \mathscr{C} \to \mathscr{B}(H)$ and $U \in \mathscr{B}(H)$ (same H!) satisfying the covariance condition

$$\pi(x)U = U\pi(\alpha(x))$$
 for all $x \in \mathscr{C}$. (lcov)

This is the *left covariance condition*. Then we define

$$U \times \pi : \mathscr{A}_0 \to \mathscr{B}(H)$$

$$(U \times \pi) \left(\sum_k u^k c_k\right) = \sum_k U^k \pi(c_k)$$

It can be readily verified that this (clearly linear) map is in fact a * -representation of \mathscr{A}_0 on H.

Covariant pairs

Definition

A covariant pair for the C*DS (\mathscr{C}, α) is a pair (π, U) consisting of a *-representation $\pi : \mathscr{C} \to \mathscr{B}(H)$ and a unitary U on the same space H satisfying the covariance condition

$$\pi(x)U = U\pi(\alpha(x))$$
 for all $x \in \mathscr{C}$. (lcov)

We have shown the

Proposition

There is a bijective correspondence between covariant representations (π, U) of (\mathscr{C}, α) and *-representations $U \times \pi$ of the covariance algebra \mathscr{A}_0 .

(c) Completing the covariance algebra

To obtain a C*-algebra, we need to complete \mathcal{A}_0 with respect to an algebra norm satisfying the C*-condition. To 'encode' all covariant pairs, define, for $p = \sum_k u^k c_k \in \mathcal{A}_0$

$$\begin{split} \|p\|_* &= \sup\{\|\rho(p)\| : \text{all *-reps. } (\rho, H) \text{ of } \mathscr{A}_0\} \\ &= \sup\{\|(U \times \pi)(p)\| : \text{all covariant pairs } (\pi, U)\}. \end{split}$$

This is finite, since every representation is $\|\cdot\|_1$ -contractive:

$$\left\| (U \times \pi) \left(\sum_{k} u^{k} c_{k} \right) \right\| \leq \sum_{k} \left\| U^{k} \pi(c_{k}) \right\| \leq \sum_{k} \left\| c_{k} \right\|$$

It is also easy to verify that it is an algebra *seminorm* and that it satisfies the C*-condition.

But are there any covariant representations?

We know (Gelfand-Naimark) that every C*-algebra $\mathscr C$ admits a faithful (i.e. 1-1) representation on some Hilbert space, so may assume $\mathscr C\subseteq \mathscr B(H_0)$. But is there always a covariant representation (π,U) which is faithful on $\mathscr A_0$?

Idea: 'Enlarge' the space (if necessary) to accomodate a U so that $\pi(\alpha(c)) = U^*\pi(c)U \ \forall c \in \mathscr{C}$ holds. Consider

$$H = \ell^2(\mathbb{Z}) \otimes H_0 := \{ (\xi(n))_{n \in \mathbb{Z}} : \xi(n) \in H_0 \ \forall n, \sum_n \|\xi(n)\|_{H_0}^2 < \infty \}$$
$$\langle (\xi(n)), (\eta(n)) \rangle := \sum_n \langle \xi(n), \eta(n) \rangle_{H_0}$$

and $U_0: H \rightarrow H$:

$$U_0: (\dots, \xi(-2), \xi(-1), \underline{\xi(0)}, \xi(1), \xi(2), \dots)$$

$$\to (\dots, \xi(-3), \xi(-2), \underline{\xi(-1)}, \xi(0), \xi(1), \dots)$$

Notation: for $n \in \mathbb{Z}$ and $\xi \in H_0$ denote by $e_n \otimes \xi \in H$ the function

$$\mathbb{Z} \to H_0: m \to (e_n \otimes \xi)(m) = \left\{ egin{array}{ll} \xi, & m = n \\ 0, & m
eq n \end{array} \right.$$

(note $H = \overline{\operatorname{span}}\{e_n \otimes \xi : n \in \mathbb{Z}, \xi \in H_0\}$). The map U_0 is given by

$$U_0(e_n\otimes\xi)=e_{n+1}\otimes\xi.$$

Also define the representation $\pi_0:\mathscr{C}\to\mathscr{B}(H)$ by

$$\pi_0(c)(e_n\otimes\xi)=e_n\otimes\alpha^n(c)\xi$$

where $c \in \mathscr{C}, \xi \in H_0, n \in \mathbb{Z}$.

Representing these as matrices with entries in $\mathcal{B}(H_0)$,

We have

$$\pi_0(c)U_0: e_n \otimes \xi \xrightarrow{U_0} e_{n+1} \otimes \xi \xrightarrow{\pi_0(c)} e_{n+1} \otimes \alpha^{n+1}(c)\xi$$

$$U_0\pi_0(\alpha(c)): e_n \otimes \xi \xrightarrow{\pi_0(\alpha(c))} e_n \otimes \alpha^n(\alpha(c))\xi \xrightarrow{U_0} e_{n+1} \otimes \alpha^n(\alpha(c))\xi$$
hence

$$\pi_0(c) \textit{U}_0 = \textit{U}_0 \pi_0(\alpha(c)), \quad \text{equivalently} \qquad \pi_0(\alpha(c)) = \textit{U}_0^* \pi_0(c) \textit{U}_0.$$

Proposition

The representation $U_0 \times \pi_0$ just constructed is injective on the covariance algebra \mathscr{A}_0 .

Indeed, suppose $(U_0 \times \pi_0) (\sum_k u^k c_k) = 0$, i.e. $\sum_k U_0^k \pi_0(c_k) = 0$. Then for all $\xi, \eta \in H_0$ and all $m \in \mathbb{Z}$ we have

$$0 = \sum_{k = -\infty}^{\infty} U_0^k \pi_0(c_k) (e_0 \otimes \xi) = \sum_k U_0^k (e_0 \otimes \alpha^0(c_k) \xi) = \sum_k e_k \otimes \alpha^0(c_k) \xi$$
 and so
$$0 = \left\langle \sum_k e_k \otimes c_k \xi, e_m \otimes \eta \right\rangle = \left\langle c_m \xi, \eta \right\rangle_{H_0}$$

which shows that $c_m = 0$ and so, since m is arbitrary, that $\sum_k u^k c_k = 0$ in \mathcal{A}_0 .

Conclusion: Injective covariant representations exist!

The reduced C*-crossed product

Therefore the seminorm

$$\left\|\sum_{k} u^{k} c_{k}\right\|_{r} := \left\|\left(U_{0} \times \pi_{0}\right)\left(\sum_{k} u^{k} c_{k}\right)\right\|_{\mathscr{B}(H)} = \left\|\sum_{k} U_{0}^{k} \pi_{0}(c_{k})\right\|_{\mathscr{B}(H)}$$

is in fact a norm on \mathcal{A}_0 , and is clearly an algebra seminorm satisfying the C*-condition. Therefore the completion of \mathcal{A}_0 in this norm is a C*-algebra.

Definition

The C*-reduced crossed product $\mathscr{C} \rtimes_{\alpha,r} \mathbb{Z}$ associated to the C*DS (\mathscr{C}, α) is the completion of \mathscr{A}_0 in the norm $\|\cdot\|_r$. Equivalently, it is the concrete C*-subalgebra of $\mathscr{B}(H)$ generated by $\pi_0(\mathscr{C})$ and U_0 ; it is the closure of \mathscr{A}_0 in the norm of $\mathscr{B}(H)$.