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Overview

In the paper MIP*=RE, Ji, Natarajan, Vidick, Wright and Yuen,
prove that Connes’ Embedding Problem has a negative answer.
Their proof actually shows that Tsirelson’s Problem is false, which
by work of Junge et al, Fritz and Ozawa has been shown to be
equivalent to Kirchberg’s Problem, which by work of Kirchberg is
equivalent to Connes’ Embedding Problem.
Their paper is 160+ pages and the other results to get from their
work to the Connes’ embedding problem via this route is also quite
daunting.
Their proof uses some deep results from complexity theory, Turing
machines, and a compression algorithm to prove the existence of a
synchronous game with certain properties.
In this talk we outline a somewhat shorter route, given the
existence of this game, based on work with several coauthors.
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We don’t claim that this is a better route, because it leaves out a
lot of very nice results, just shorter. At the same time it introduces
some different results.
The remaining challenge to finding a proof that can be digested in
a few settings is to find another way to prove the existence of the
game implicitly constructed in MIP*=RE.
Our hope is that perhaps a more robust theory of synchronous
games could clarify some of these constructions.
I feel that the theory of synchronous games and their algebras has
a place in the field of operator algebras alongside of the algebras
affiliated with other objects, like groups, goupoids, quantum
groups, graphs, etc.
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From CEP to TP

Connes’ Embedding Problem(CEP): Does every separable
II1-factor (M, tr) embed in a trace preserving manner into an
ultrapower (Rω, τω) of the hyperfinite II1-factor (R, τ).
Kirchberg’s Problem(KP): Is there a unique C*-norm on
C ∗(F∞)⊗ C ∗(F∞), i.e., is
C ∗(F∞)⊗min C

∗(F∞) = C ∗(F∞)⊗max C
∗(F∞)?

In 1993, Kirchberg proved that CEP and KP are equivalent.
Tsirelson’s Problem(s): Do several different models for the
conditional probability densities produced by entangled quantum
measurements coincide?(Definitions later)
In 2010, M. Junge, M. Navascues, C. Palazuelos, D. Perez-Garcia,
V. B. Scholz, R. F. Werner and separately, T. Fritz, proved that
KP true implied that two of Tsirelson’s models coincided. Later,
Ozawa proved the converse.
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Whether or not these two particular models give rise to the same
sets of densities has come to be known as Tsirelson’s
Problem(TP).
Thus, it was known that CEP ⇐⇒ KP ⇐⇒ TP.
In January of 2020, in the paper MIP*=RE, Ji, Natarajan, Vidick,
Wright and Yuen, prove that TP is false, and hence, all three are
false.
Our route: 1) syncTP ⇐⇒ CEP(bypassing KP)
2) Their synchronous game shows syncTP is false. In fact, we will
show why this could be potentially easier to show.
3) Every synchronous game has an affiliated *-algebra and it is this
algebra of their game that fails to be embeddable in Connes’ sense.
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Quantum Correlations: Tsirelson and Connes

Suppose that Alice and Bob each have n quantum experiments
and each experiment has k outcomes. We let p(a, b|x , y) denote
the conditional probability that Alice gets outcome a and Bob gets
outcome b given that they perform experiments x and y
respectively. If we assume that the labs are separate but that they
share an entangled state, then there are several possible models for
describing the set of all such tuples.
One model is that Alice and Bob have finite dimensional state
spaces HA and HB . For each experiment x , Alice has projections
{Ex ,a, 1 ≤ a ≤ k} such that

∑
a Ex ,a = IA. Similarly, for each y ,

Bob has projections {Fy ,b : 1 ≤ b ≤ k} such that
∑

b Fy ,b = IB .
They share an entangled state(i.e., a unit vector) ψ ∈ HA ⊗HB

and
p(a, b|x , y) = 〈Ex ,a ⊗ Fy ,bψ|ψ〉.
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We let Cq(n, k) = {p(a, b|x , y) : obtained as above } ⊆ Rn2m2
.

We let Cqc(n, k) denote the possibly larger set that we could
obtain if instead of requiring the common state space to be a
tensor product, we just required one common state space H, with
state ψ ∈ H and demanded that Ea,xFy ,b = Fy ,bExa,x for all
a, b, x , y , i.e., a commuting model.
Tsirelson was the first to examine these sets and study the relations
between them. In fact, he wondered if they could be equal.
We now know that Cq(n, k) is not closed(Slofstra,
Dykema-P-Prakash), while Cqc(n, k) is closed.
Let Cqa(n, k) denote the closure of Cq(n, k).

Tsirelson’s Problem(TP): Is Cqa(n, k) = Cqc(n, k),∀n, k?
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Theorem (JNPPSW, Ozawa)

Cqa(n, k) = Cqc(n, k),∀n, k if and only if
C ∗(F∞)⊗min C

∗(F∞) = C ∗(F∞)⊗max C
∗(F∞), i.e.,

TP ⇐⇒ KP.
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Synchronous Correlations

A correlation p(a, b|x , y) is called synchronous provided
p(a, b|x , x) = 0, ∀a 6= b, ∀x . We write
C s
q (n, k),C s

qa(n, k),C s
qc(n, k) for the subset of synchronous

correlations.

Theorem (P-Severini-Stahkle-Todorov-Winter)

p(a, b|x , y) ∈ C s
qc(n, k) iff there exists a C*-algebra A generated

by projections {Ex ,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k} satisfying∑k
a=1 Ex ,a = I ,∀x and a trace τ : A → C such that

p(a, b|x , y) = τ(Ex ,aEy ,b).

Moreover, p(a, b|x , y) ∈ C s
q (n, k) iff A can be taken to be finite

dimensional.
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Idea of proof: Given p(a, b|x , y) = 〈Ex ,aFy ,bψ|ψ〉 one uses
Cauchy-Schwarz and the synchronous condition to show that
Ex ,aψ = Fx ,aψ.
Hence, p(a, b|x , y) = 〈Ex ,aEy ,bψ|ψ〉.
Now one shows that the state on
A = C ∗({Ex ,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k}) induced by ψ is tracial.
This didn’t give a characterization of C s

qa(n, k).

Vern Paulsen UWaterloo



Theorem (Kim-P-Schafhauser)

Fix integers n, k ≥ 1. For
(
p(i , j |v ,w)

)
∈ Rn2k2

, the following are
equivalent:

1.
(
p(a, b|x , y)

)
∈ C s

qa(n, k);

2. (synchronous approximation) there are synchronous
correlations

(
pm(a, b|x , y)

)
∈ C s

q (n, k) with

pm(a, b|x , y)→ p(a, b|x , y) ∀ a, b, x , y ;

3. there exist projections Ex ,a ∈ Rω,
∑k

a=1 Ex ,a = I such that

p(a, b|x , y) = τω(Ex ,aEy ,b).

Proof uses results from the theory of amenable traces, especially
Kirchberg’s work.
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Theorem (Dykema-P(syncTP))

CEP has an affirmative answer if and only if
C s
qa(n, k) = C s

qc(n, k), ∀n, k , i.e., CEP ⇐⇒ syncTP.

A proof of this theorem does not need JNPPSW, Ozawa or KP.
But does use the equivalence of 1) and 2), along with Pisier’s
“linearization trick” to show that syncTP is equivalent to the
“matricial microstates conjecture” directly. This microstates
conjecture is one of the more immediate equivalences of CEP.
This proof is a remark in DP, because DP came before KPS, and
we remark that if only we knew the equivalence of 1) and 2) then
our proof gives the above theorem, without using these other
results.
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Finite Input-Output Games(Non-local Games)

These are games where two cooperating but non-communicating
players, Alice and Bob try to give correct answers to questions
posed by the Referee.
For each round of the game, the cooperating players each receive
an input, i.e., a question, from the Referee from some finite set of
inputs IA, IB .
They must each produce an output, i.e., an answer, belonging to
some finite set OA,OB .
The game G has rules given by a function

λ : IA × IB × OA × OB → {0, 1}

where λ(x , y , a, b) = 1 means that if Alice and Bob receive inputs
x , y , respectively and produce respective outputs a, b, then they
win. If λ(x , y , a, b) = 0, they lose.
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They both know the rule function and can create a strategy for
winning, but once the game starts Alice and Bob must produce
their outputs without knowing what input the other received and
without knowing what output the other produced. This is what is
meant by non-communicating.
A random strategy is identified with a conditional probability
density p(a, b|x , y).
A random strategy is called perfect if it has 0 probability of
producing a losing output, i.e.,

λ(x , y , a, b) = 0 =⇒ p(a, b|x , y) = 0.
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Synchronous games

A game is called synchronous if IA = IB , OA = OB and the rules
include the condition that whenever the players receive the same
input(question) they must produce the same output(answer). If
p(a, b|x , y) represents the probability that when receiving inputs
x , y the players produce outputs a, b, respectively, then to be a
perfect strategy it must satisfy,

∀x , p(a, b|x , x) = 0 whenever a 6= b

i.e., be a synchronous correlation.
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The *-algebra of a synchronous game

Let G = (I ,O, λ) be a synchronous game. By the *-algebra of the
game, A(G), we mean the ”universal” *-algebra generated by
projections {ex ,a : x ∈ I , a ∈ O} satisfying:

I ∀x ∈ I ,
∑

a∈O ex ,a = I ,
I λ(a, b, x , y) = 0 =⇒ ex ,aey ,b = 0

Theorem (Helton-Meyer-P-Satriano, KPS)

Let G be a synchronous game then:

I G has a perfect deterministic strategy iff there is a unital
*-homomorphism of A(G) into C,

I G has a perfect q-strategy iff there is a unital
*-homomorphism of A(G) into Mp for some p,

I G has a perfect qc-strategy iff there is a unital
*-homomorphism of A(G) into a tracial C*-algebra.

I G has a perfect qa-strategy iff there is a unital
*-homomorphism of A(G) into Rω.
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To prove this theorem one takes the perfect strategy p(a, b|x , y),
expresses it as a τ(Ex ,aEy ,b) for some C*-algebra and note that the
elements Ex ,a will satisfy the relations used to define A(G).

MIP*=RE proves the existence of a synchronous game with a
perfect qc-strategy but no perfect qa-strategy. Hence syncTP is
false.
Bonus: By our theory the *-algebra of this game has a trace but
that algebra cannot embed into Rω.
So one only needs to make the description of this game more
explicit to have a concrete algebra violating CEP.

Vern Paulsen UWaterloo



Values and Synchronous Values of Games

MIP*=RE uses the concept of the value of a game to get their
result. The synchronous theory could make this part simpler.
Given a game G, a distribution on the inputs π(x , y) and a
probabilistic strategy p(a, b|x , y) the expected probability of
winning the game is:

val(G, π, p) :=
∑

x ,y ,a,b

π(x , y)p(a, b|x , y)λ(x , y , a, b)

If we insist that π(x , y) > 0,∀x , y , then val(G, π, p) = 1 ⇐⇒ p is
a perfect strategy.
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For t = q, qa, qc we set

ωt(G, π) := sup{val(G, π, p) : p ∈ Ct}.
Note that since the closure of Cq is Cqa and Cqa ⊆ Cqc we have
that

ωq(G, π) = ωqa(G, π) ≤ ωqc(G, π).

MIP*=RE construct a synchronous game such that

ωq(G, π) < 1/2 < ωqc(G, π) = 1

and this separation of values gives their results.
Similarly, we set

ωs
t (G, π) := sup{val(G, π, p) : p ∈ C s

t }.

Then
ωs
q(G, π) = ωs

qa(G, π) ≤ ωs
qc(G, π),

and
ωs
t (G, π) ≤ ωt(G, π).
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Moreover, for synchronous games one can easily see that

ωqc(G, π) = 1 ⇐⇒ ωs
qc(G, π) = 1.

Thus, for the game in MIP*=RE we have that

ωs
q(G, π) ≤ ωq(G, π) < 1/2 < ωs

qc(G, π).

So it is potentially easier to show that

ωs
q(G, π) < 1/2 < ωs

qc(G, π)

for their game and this could yield some shortening of their proof.
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