TRANSITION BETWEEN WAVE FUNCTIONS AND STATES (ctd)

Reference ($\$ 3.3$ "Alice and Bob meet Banach: The interface of asymptotic geometric analysis and quantum information theory")

In the context of chapter 3 of "Alice and Bob meet Banach: The interface of asymptotic geometric analysis and quantum information theory", we describe a physical system with a wave function $\psi \in H \otimes E$ where H is the Hilbert space that corresponds to the "world" we can perceive and measure and E the Hilbert space corresponding to the "environment" we have no access to. The probability that an "observable" quantity U will be in the eigenstate $u_{j} \otimes e_{k}$ (where $\left\{u_{j}\right\}$ and $\left\{e_{k}\right\}$ are orthonormal bases of H and E respectively) will be $|<\psi| u_{j} \otimes e_{k}>\left.\right|^{2}$.

As we can only perform measurements in H we assume that there is a related quantity U_{H} which acts on H and we are interested in the probability that this quantity will be in the eigenstate u_{j}.

We are interested in the corresponding to ψ state in H, that will give the same probability of measurement of U_{H} in u_{j} as U in all the states $\left\{u_{j} \otimes e_{k}\right\}_{\mathrm{k}=1 . . .}$, which is of course
$\sum_{k=1 . . .}|<\psi| u_{j} \otimes e_{k}>\left.\right|^{2}$. This state is defined in the book as the $H-$ marginal of ψ. In the case when $\psi=\xi \otimes \eta$ it is easy to see that the H -marginal of ψ is the expected η.

In the general case we write ψ as :
$\psi=\sum_{i=1}^{r} a_{i} \cdot \xi_{i} \otimes \eta_{i}$, the Schmidt decomposition of ψ and we look for the H-marginal of ψ.

We pick the orthonormal basis $\left\{\boldsymbol{\eta}_{\boldsymbol{k}}\right\}$ for \boldsymbol{E} and we denote by p_{j} the probability of measurement of U_{H} in u_{j} as U in all the states $\left\{u_{j} \otimes \eta_{k}\right\}_{\mathrm{k}=1 . . .}$ we find that:
$p_{j}=\sum_{k=1 . . .}|<\psi| u_{j} \otimes \eta_{k}>\left.\right|^{2}=$
$=\sum_{k=1 \ldots . .} \sum_{i=1}^{r} \sum_{l=1}^{r} a_{i}<\xi_{i} \otimes \eta_{i} \mid u_{j} \otimes \eta_{k}>$
. $a_{l} .<u_{j} \otimes \eta_{k} \mid \xi_{l} \otimes \eta_{l}>$
$=\sum_{k=1 \ldots} \sum_{i=1}^{r} \sum_{l=1}^{r} a_{i}<\xi_{i} \mid u_{j}>. \delta_{i k} \cdot a_{l} .\left\langle u_{j}\right| \xi_{l}>. \delta_{k l}$
$=\sum_{i}\left|a_{i}\right|^{2} . \quad\left|<\xi_{i}\right| u_{j}>\left.\right|^{2}$
$=\operatorname{Tr}\left(\rho_{H} \cdot\left|u_{j}><u_{j}\right|\right)$
with $\rho_{H}=\sum_{i}\left|a_{i}\right|^{2} .\left|\xi_{i}><\xi_{i}\right|$
so that, as the book states, the "obvious" candidate for the H marginal of ψ, namely $\sum_{i} a_{i} \xi_{i}$ will not do and we need to introduce the operator formalism as a replacement to the wave-function formalism. A vector ψ is identified with an operator
$O_{\psi}: H \otimes E \rightarrow H \otimes E$ with
$O_{\psi}(\varphi)=\langle\varphi \mid \psi\rangle . \psi$. It is now a relatively easy matter to find the H-marginal of $\boldsymbol{O}_{\boldsymbol{\psi}}=\sum_{i}\left|a_{i}\right|^{2}$. | $\xi_{i}><\xi_{i} \mid$ as long as the relevant probabilities "when we are in a quantum state ρ_{H} (operator)" of obtaining a measurement corresponding to | $u_{j}>$ are given by
$p_{j}=\operatorname{Tr}\left(\rho_{H} \cdot\left|u_{j}><u_{j}\right|\right)$
(the trace is taken in H).
In this way of looking at probabilities we can reformulate the problem as follows: When we are in (general case) quantum state $\rho \in$ $\mathrm{D}(H \otimes E)$ can we find the H-marginal $\rho_{H} \in \mathrm{D}(H)$ s.t.
$\forall \mid u_{j}>\in H$
$\operatorname{Tr}\left(\rho_{H} \cdot\left|u_{j}><u_{j}\right|\right)=\operatorname{Tr}\left[\rho .\left(\left|u_{j}><u_{j}\right| \otimes 1_{E}\right)\right]$
(where the first trace is on H and the second on $H \otimes E$)

Partial Trace

Define a map $\operatorname{Tr}_{E}: \mathrm{B}(H \otimes E) \rightarrow \mathrm{B}(H)$
by $\operatorname{Tr}_{E}(\mathrm{~A} \otimes \mathrm{~B})=\operatorname{Tr}(\mathrm{B}) . \mathrm{A}$ and extend by linearity (need to check that it is well defined on the tensor product)

Lemma 1

For $\rho=|\psi><\psi|$ with $\psi=\sum_{i=1}^{r} a_{i} . \xi_{i} \otimes \eta_{i}$, the Schmidt decomposition of ψ, we have that $\operatorname{Tr}_{E}(\rho)=\rho_{H}$

Proof: $\operatorname{Tr}_{E}(\rho)=\operatorname{Tr}_{E} \sum_{i=1}^{r} \sum_{l=1}^{r} a_{i} a_{l} .\left|\xi_{i} \otimes \eta_{i}><\xi_{l} \otimes \eta_{l}\right|$
$=\sum_{i=1}^{r} \sum_{l=1}^{r} a_{i} a_{l} \cdot \operatorname{Tr}_{E}\left|\xi_{i}><\xi_{l} \otimes\right| \quad \eta_{i}><\eta_{l} \mid$
$=\sum_{i=1}^{r} \sum_{l=1}^{r} a_{i} a_{l} \cdot \operatorname{Tr}\left(\left|\eta_{i}><\eta_{l}\right|\right)\left(\mid \xi_{i}><\xi_{l}\right) \mid$
$=\sum_{i=1}^{r} \sum_{l=1}^{r} a_{i} a_{l} \cdot \operatorname{Tr}\left(\left|\quad \xi_{i}><\xi_{l}\right|\right) . \delta_{i l}$
$=\sum_{i}\left|a_{i}\right|^{2} .\left|\xi_{i}><\xi_{i}\right|$
$=\rho_{H}$
Lemma 2 For $\rho=|\psi><\psi|$ with $\psi=\sum_{i=1}^{\operatorname{dim} H} \sum_{j=1}^{\operatorname{dim} E} a_{i j} \cdot \xi_{i} \otimes \eta_{j}$
the decomposition of ψ in the orthonormal basis $\left\{\xi_{i} \otimes \eta_{j}\right\}$
we have that $\operatorname{Tr}_{E}(\rho)=\sum_{j=1}^{\operatorname{dim} E}\left|w_{j}><w_{j}\right|$
where $\left|w_{j}>=\sum_{i=1}^{\operatorname{dim} H} a_{i j}\right| \xi_{i}>$. Furthermore $\operatorname{Tr}_{E}(\rho) \in \mathrm{D}(H)$.
Proof: Using the linearity of Tr_{E} (assumed checked)
$\operatorname{Tr}_{E}(\rho)=\sum_{i=1}^{\operatorname{dim} H} \sum_{j=1}^{\operatorname{dim} E} \sum_{k=1}^{\operatorname{dim} H} \sum_{l=1}^{\operatorname{dim} E} a_{i j} \cdot \overline{a_{k l}} .\left|\xi_{i} \otimes \eta_{j}><\xi_{k} \otimes \eta_{l}\right|$
and noting that

$$
\operatorname{Tr}_{E}\left(\left|\xi_{i} \otimes \eta_{j}><\xi_{k} \otimes \eta_{l}\right|\right)=\left|\xi_{i}><\xi_{k}\right| \cdot \delta_{j l}
$$

we get

$$
\begin{aligned}
& \operatorname{Tr}_{E}(\rho)=\sum_{i=1}^{\operatorname{dim} H} \sum_{j=1}^{\operatorname{dim} E} \sum_{k=1}^{\operatorname{dim} H} a_{i j} \cdot \overline{a_{k j}}\left|\xi_{i}><\xi_{k}\right| \\
& \text { or } \boldsymbol{T r}_{\boldsymbol{E}}(\boldsymbol{\rho})=\sum_{\boldsymbol{j}=\mathbf{1}}^{\operatorname{dim} E}\left|\boldsymbol{w}_{\boldsymbol{j}}><\boldsymbol{w}_{\boldsymbol{j}}\right| \\
& \text { (as }<w_{j}\left|=\sum_{k=1}^{\operatorname{dim} H} \overline{a_{k J}} \cdot<\xi_{k}\right| \text {) }
\end{aligned}
$$

The fact that $\operatorname{Tr}_{E}(\rho)$ is positive semidefinite is immediate from the fact that it is a sum of positive operators and
$\operatorname{Tr}\left(\operatorname{Tr}_{E}(\rho)\right)=\sum_{i=1}^{\operatorname{dim} H} \sum_{j=1}^{\operatorname{dim} E} \sum_{k=1}^{\operatorname{dim} H} a_{i j} \cdot \overline{a_{k j}} \operatorname{Tr}\left(\left|\xi_{i}><\xi_{k}\right|\right)$
$=\sum_{i=1}^{\operatorname{dim} H} \sum_{j=1}^{\operatorname{dim} E} \sum_{k=1}^{\operatorname{dim} H} a_{i j} \cdot \overline{a_{k j}} \delta_{i k}=$
$=\sum_{i=1}^{\operatorname{dim} H} \sum_{j=1}^{\operatorname{dim} E}\left|a_{i j}\right|^{2}$
$=1$ as ψ is unitary.

