TRANSITION BETWEEN WAVE FUNCTIONS AND STATES (ctd)

Reference (S3.3 “Alice and Bob meet Banach: The interface of
asymptotic geometric analysis and quantum information theory”)

In the context of chapter 3 of “Alice and Bob meet Banach: The interface
of asymptotic geometric analysis and quantum information theory” ,we
describe a physical system with a wave function y € HQ E where H is
the Hilbert space that corresponds to the “world” we can perceive
and measure and £ the Hilbert space corresponding to the
“environment” we have no access to. The probability that an
“observable” quantity U will be in the eigenstate u;&® e, (where

{u;}and {ey} are orthonormal bases of # and £ respectively) will be
<Y luy @ e >172 .

As we can only perform measurements in / we assume that there is
a related quantity Uy which acts on /A and we are interested in the
probability that this quantity will be in the eigenstate u;.

We are interested in the corresponding to { state in / , that will give
the same probability of measurement of Uy inu; as U in all the

states {u; @ ey}x=1.., Which is of course
Yr=1.. <Y lu; @ e, >| 2 This state is defined in the book as the H-

marginal of {. In the case when y = § @ 1 itis easy to see that the #
-marginal of  is the expected .

In the general case we write { as :

U=>i_,a;.&§ ® n; ,the Schmidt decomposition of  and we look
for the A -marginal of .

We pick the orthonormal basis {n,} for £ and we denote by p; the
probability of measurement of Uy inu; as U in all the states
{u; ® Nilk=1.. wefind that:

p] = 21(:1... |< IIJ I uj ® Nk >| 2—



=Yk=1.. D=1 21=14 <& 1 lu; ® ny >

a <u; Q@ M 1§ @ >

=Yk=1.. Di=1 2i=1 A < & 1 U >. 05 . ap . <u; | §>.0)
=Yila; 1% 1< &lu >l 72

=Tr(pg.lu ><u;l)

with py =Y 1a; 1%2. | §>< & |

so that, as the book states, the “obvious” candidate for the -
marginal of {5, namely ); a; &; will not do and we need to introduce
the operator formalism as a replacement to the wave-function
formalism. A vector { is identified with an operator

Opy:HQ®E - HRYE with

Oy (@) =<@I|Y>. . Itis now a relatively easy matter to find the
H-marginalof 0y, = ;1 q; |2, | §>< & | aslongas the
relevant probabilities “when we are in a quantum state py
(operator)” of obtaining a measurement corresponding to | u; > are

given by
pj=Tr(pH.|uj><uj 1)
(the trace is taken in H).

In this way of looking at probabilities we can reformulate the
problem as follows: When we are in (general case) quantum state p €
D(HQ E ) can we find the H-marginal py; € D(H) s.t.

V|u] >e H
Tr(pg -1y ><uy; 1)=Tr{p.(lyy><y |Q 1g)]
(where the first trace is on H and the second on HQ £')

Partial Trace

Defineamap Trz : B(HQ® £ ) — B(H)



by Trz(A @ B) = Tr(B).A and extend by linearity
(need to check that it is well defined on the tensor product)

Lemma 1

Forp=|y ><y | with ¢y =}_;a;.& & n; ,the Schmidt
decomposition of § , we have that Trz(p) = py

Proof: Trg(p) = Trg YiciXi=1a;a; 1 &R n, ><&E Q@ 1 |
=Yic1 =14 Trg 1 §><§ @1 ny ><my |
=di=1 2= aia-Tr(l n; ><n D& ><8§) |
iz 2= Tr(l §><& 1) .6y
=Yila 12 1 &>< &
= PH
Lemma2 Forp=|y ><y | with gy =XIPF Y% E g, & @ n;
the decomposition of s in the orthonormal basis { {; ® 7, }

we have that Trz(p) = X505 | wj > < w; |

where | w; >= ydimH a;; |¢&; >.Furthermore Trgz(p) € D(H).
Proof : Using the linearity of Tr; (assumed checked)
Trg(p)=YETH TETE TR S E a0y @ 16 Q@ 0 > <& Q@ ny |
and noting that

Trg (1§ ®@ n; ><&§E @ n 1) =18 > < |

we get
Tre(p) = THTH ZdlmEZdlmH ajj -, 1§ > <& |
or Trg(p)= Z}E‘i‘EI w;>< w; |

(as < wj =30t g . <& 1)



The fact that Try(p) is positive semidefinite is immediate from the
fact that it is a sum of positive operators and

Tr (Trg(p)) = TET RETE T ay; @y, Tr(1 &> <& | )

dlmH dlmE dimH —_— —
=Yi- Z k=1 Qij-QAg; Oik =

ZdlmH ZdlmE | a”

=1 as  isunitary.



