
TRANSITION  BETWEEN  WAVE FUNCTIONS  AND  STATES (ctd) 

Reference ($3.3  “Alice  and Bob meet Banach: The interface of 

asymptotic geometric analysis and quantum information theory”) 

 

 

In the context of chapter 3 of “Alice and Bob meet Banach: The interface 

of asymptotic geometric analysis and quantum information theory” ,we 

describe a physical system with a wave function ψ ∈ H ⊗ E  where H  is 

the Hilbert space that corresponds to the “world” we can perceive 

and measure and E  the Hilbert space corresponding to the 

“environment” we have no access to. The probability that  an 

“observable” quantity U will be in the eigenstate 𝑢𝑗⊗ 𝑒𝑘 (where 

{𝑢𝑗} and  {𝑒𝑘} are orthonormal bases of H  and E  respectively) will be  

∣< 𝜓 ∣ 𝑢𝑗 ⊗ 𝑒𝑘 >∣ 2   .  

As we can only perform measurements in H  we assume that there is 

a related quantity 𝑈𝐻 which acts on H  and we are interested in the 

probability that this quantity will be in the eigenstate 𝑢𝑗 . 

We are interested in the corresponding to ψ state in H  , that will give 

the same probability of measurement of  𝑈𝐻 in 𝑢𝑗  as U  in all the 

states {𝑢𝑗 ⊗ 𝑒𝑘}k=1… , which is of course                                            

∑ ∣< 𝜓 ∣ 𝑢𝑗 ⊗ 𝑒𝑘 >∣ 2𝑘=1… . This state is defined in the book as the H -

marginal of ψ .  In the case when ψ = ξ ⊗ η it is easy to see that the H 

-marginal of ψ is the expected η. 

In the general case we write ψ as : 

ψ= ∑ 𝑎𝑖 . 𝜉𝑖 ⊗ 𝜂𝑖 
𝑟
𝑖=1   , the Schmidt decomposition of ψ  and  we look 

for the H -marginal of ψ .  

We pick the orthonormal basis {𝜼𝒌} for E  and we denote by 𝑝𝑗  the 

probability of measurement of  𝑈𝐻 in 𝑢𝑗  as U  in all the states 

{𝑢𝑗 ⊗ 𝜂𝑘}k=1…  we find that : 

𝑝𝑗 =  ∑ ∣< 𝜓 ∣ 𝑢𝑗 ⊗ 𝜂𝑘 >∣ 2𝑘=1… = 



=∑ ∑ ∑ 𝑎𝑖 < 𝜉𝑖 ⊗ 𝜂𝑖 
𝑟
𝑙=1

𝑟
𝑖=1𝑘=1… ∣ 𝑢𝑗 ⊗ 𝜂𝑘 >  

. 𝑎𝑙 . <𝑢𝑗 ⊗ 𝜂𝑘 ∣ 𝜉𝑙 ⊗ 𝜂𝑙 > 

=∑ ∑ ∑ 𝑎𝑖 < 𝜉𝑖
𝑟
𝑙=1

𝑟
𝑖=1𝑘=1… ∣ 𝑢𝑗 >. 𝛿𝑖𝑘 . 𝑎𝑙 . <𝑢𝑗 ∣ 𝜉𝑙>.𝛿𝑘𝑙  

= ∑  ∣ 𝑎𝑖 ∣ 2 .   ∣<  𝜉𝑖 ∣ 𝑢𝑗 >∣  2𝑖       

=  Tr (𝜌𝐻 . ∣ 𝑢𝑗 > < 𝑢𝑗 ∣ ) 

with  𝜌𝐻 = ∑ ∣ 𝑎𝑖 ∣ 2 .   ∣  𝜉𝑖 > <  𝜉𝑖 ∣𝑖    

so that, as the book states,  the “obvious” candidate for the H -

marginal of ψ, namely  ∑ 𝑎𝑖  𝜉𝑖𝑖  will not do and we need to introduce  

the operator formalism as a replacement to the wave-function 

formalism.  A vector ψ is identified with an operator 

 𝑂ψ ∶  𝐻 ⊗  𝐸  →   H ⊗ E    with  

𝑂ψ ( φ) = < φ ∣ ψ> .  ψ .  It is now a relatively easy matter to find the 

H -marginal of 𝑶𝛙   =   ∑ ∣ 𝑎𝑖 ∣ 2 .   ∣  𝜉𝑖 > <  𝜉𝑖 ∣𝑖       as long as  the 

relevant probabilities “when we are in a quantum state 𝜌𝐻 

(operator)” of obtaining a measurement corresponding to ∣ 𝑢𝑗 > are 

given by  

𝑝𝑗  = Tr (𝜌𝐻 . ∣ 𝑢𝑗 > < 𝑢𝑗 ∣ ) 

(the trace is taken in H). 

In this way of looking  at probabilities we can reformulate the 

problem as follows: When we are in (general case) quantum state ρ ∈ 

D(H ⊗ E  ) can we find the H –marginal 𝜌𝐻 ∈ D(H ) s.t. 

∀ ∣ 𝑢𝑗 > ∈ H                 

Tr (𝜌𝐻 . ∣ 𝑢𝑗 > < 𝑢𝑗 ∣ ) =  Tr [ ρ . (∣ 𝑢𝑗 > < 𝑢𝑗 ∣ ⊗  1𝐸 )] 

(where the first trace is on H  and the second on H ⊗ E  ) 

Partial Trace 

Define a map  𝑇𝑟𝐸  : B(H ⊗ E  ) →  B(H ) 



by  𝑇𝑟𝐸(A ⊗ B) = Tr(B) . A  and extend by linearity 

(need to check that it is well defined on the tensor product) 

Lemma 1 

For ρ = ∣ 𝜓 > < 𝜓 ∣   with  ψ =∑ 𝑎𝑖 . 𝜉𝑖 ⊗  𝜂𝑖 
𝑟
𝑖=1   , the Schmidt 

decomposition of ψ  , we have that  𝑇𝑟𝐸(ρ) = 𝜌𝐻 

Proof:   𝑇𝑟𝐸(ρ)  =  𝑇𝑟𝐸 ∑ ∑ 𝑎𝑖
𝑟
𝑙=1

𝑟
𝑖=1 𝑎𝑙 . ∣ 𝜉𝑖 ⊗ 𝜂𝑖 > < 𝜉𝑙 ⊗  𝜂𝑙 ∣    

= ∑ ∑ 𝑎𝑖
𝑟
𝑙=1

𝑟
𝑖=1 𝑎𝑙 . 𝑇𝑟𝐸  ∣ 𝜉𝑖 > < 𝜉𝑙 ⊗ ∣   𝜂𝑖 >< 𝜂𝑙 ∣    

= ∑ ∑ 𝑎𝑖
𝑟
𝑙=1

𝑟
𝑖=1 𝑎𝑙  . 𝑇𝑟(∣   𝜂𝑖 >< 𝜂𝑙 ∣) (∣ 𝜉𝑖 > < 𝜉𝑙)  ∣     

= ∑ ∑ 𝑎𝑖
𝑟
𝑙=1

𝑟
𝑖=1 𝑎𝑙  . 𝑇𝑟(∣   𝜉𝑖 > < 𝜉𝑙 ∣)  . 𝛿𝑖𝑙 

=  ∑ ∣ 𝑎𝑖 ∣ 2 .   ∣  𝜉𝑖 > <  𝜉𝑖 ∣𝑖   

=  𝜌𝐻 

Lemma 2  For ρ = ∣ 𝜓 > < 𝜓 ∣   with  ψ =∑ ∑ 𝑎𝑖𝑗
𝑑𝑖𝑚𝐸
𝑗=1 . 𝜉𝑖 ⊗  𝜂𝑗 

dim 𝐻
𝑖=1  

the decomposition of ψ in the orthonormal basis { 𝜉𝑖  ⊗ 𝜂𝑗 } 

we have that   𝑇𝑟𝐸(ρ)  = ∑ ∣  𝑤𝑗 > <  𝑤𝑗 ∣dim 𝐸
𝑗=1  

where   ∣  𝑤𝑗 > = ∑  𝑎𝑖𝑗   ∣ 𝜉𝑖 > dim 𝐻
𝑖=1 . Furthermore   𝑇𝑟𝐸(ρ)  ∈ D(𝐻 ). 

Proof : Using the  linearity of   𝑇𝑟𝐸   (assumed checked) 

 𝑇𝑟𝐸(ρ)=∑ ∑ ∑ ∑ 𝑎𝑖𝑗
𝑑𝑖𝑚𝐸
𝑙=1

𝑑𝑖𝑚𝐻
𝑘=1

𝑑𝑖𝑚𝐸
𝑗=1

𝑑𝑖𝑚𝐻
𝑖=1  . 𝑎𝑘𝑙  ̅̅ ̅̅ ̅  . ∣ 𝜉𝑖 ⊗ 𝜂𝑗 > <𝜉𝑘 ⊗ 𝜂𝑙 ∣ 

and  noting that 

  𝑇𝑟𝐸  (∣ 𝜉𝑖 ⊗ 𝜂𝑗 > <𝜉𝑘 ⊗ 𝜂𝑙 ∣ ) = ∣ 𝜉𝑖 > <𝜉𝑘 ∣  . 𝛿𝑗𝑙 

we get   

 𝑇𝑟𝐸(ρ) =  ∑ ∑ ∑    𝑎𝑖𝑗
𝑑𝑖𝑚𝐻
𝑘=1

𝑑𝑖𝑚𝐸
𝑗=1

𝑑𝑖𝑚𝐻
𝑖=1  . 𝑎𝑘𝑗 ̅̅ ̅̅ ̅  ∣ 𝜉𝑖 > <𝜉𝑘 ∣   

or   𝑻𝒓𝑬(ρ) =  ∑ ∣  𝒘𝒋 > <  𝒘𝒋 ∣𝐝𝐢𝐦 𝑬
𝒋=𝟏  

(as  <  𝑤𝑗 ∣ = ∑  𝑎𝑘𝑗 ̅̅ ̅̅ ̅  .  < 𝜉𝑘 ∣dim 𝐻
𝑘=1   ) 



The fact that  𝑇𝑟𝐸(ρ) is positive semidefinite is immediate from the 

fact that it is a sum of positive operators and  

Tr   (𝑇𝑟𝐸(ρ)) = ∑ ∑ ∑    𝑎𝑖𝑗
𝑑𝑖𝑚𝐻
𝑘=1

𝑑𝑖𝑚𝐸
𝑗=1

𝑑𝑖𝑚𝐻
𝑖=1  . 𝑎𝑘𝑗 ̅̅ ̅̅ ̅  Tr( ∣ 𝜉𝑖 > <𝜉𝑘 ∣  ) 

= ∑ ∑ ∑    𝑎𝑖𝑗
𝑑𝑖𝑚𝐻
𝑘=1

𝑑𝑖𝑚𝐸
𝑗=1

𝑑𝑖𝑚𝐻
𝑖=1  . 𝑎𝑘𝑗 ̅̅ ̅̅ ̅  𝛿𝑖𝑘 = 

=∑ ∑ ∣ 𝑎𝑖𝑗 ∣2𝑑𝑖𝑚𝐸
𝑗=1

𝑑𝑖𝑚𝐻
𝑖=1    

=   1           as     ψ     is unitary. 

 

 

 

 

 

    


