Poisson, without walks

Introduction Let! G be a locally compact Hausdorff topological group? and x4 a Borel proba-
bility measure on G.
A function f: G — C is said to be p-harmonic if it satisfies the equation

£(t) = /G F(ts)du(s) .

In other words, if it is a fized point of the map P : f — Pf where

(PF)(H) = /G £(ts)du(s)

Considering this map to be defined on L>°(G), we observe that it is a linear, contractive, positive
(i.e. f>0= Pf>0) and unital map (ie. P1=1):

P L®(G) — L®(G).

Furthermore, it is continuous with respect to the weak* topology that L°°(G) has as the Banach
space dual of L1(G).
The space of bounded harmonic functions is the set of fixed points of this map:

HP :={feL>™): Pf=f}

It is therefore a linear space, containing the unit of L>°(G), which is closed under complex conju-
gation (f € H;° = f € H;°) and closed in the weak® topology. However, it is not closed under
(pointwise) products.

Claim H° is the range of a contractive, unital projection E : L°°(G) — L*(G).

The idea is the following: For each n € Z,, the map P": L>(G) — L*°(G) (where P = I,
P2 =PoP,...) leaves the linear space H® (elementwise) fixed, hence so do the averages

E, = nil(I+P+P2+---+P”).
Now it is a fact that the space B(L*(G)) := {T : L*°(G) — L*°(Q) : linear, continuous} has a cer-
tain linear space topology 7 in which its unit ball is compact. ® A compactness argument (Markov-
Kakutani, [I, Theorem 10.1]) shows that if K is the T-closed convex hull of {I, P,...P",...} and
E €, En(K), then EP = PE = E.

This map E : L>(G) — L*(G) is also linear, contractive, positive and unital (but not necessar-
ily weak™® continuous). Now since PE=E, each Ef in the range of F is u-harmonic. And conversely,
if f € H;°, then f is fixed by P, hence by every convex combination of powers of P, hence by E,
which is a 7-limit of such combinations. Thus,

H® = E(L®(G)).
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2 possibly it is enough to assume G is a Hausdorff topological semigroup
3 T is the weak™ topology of B(L>(G)) as the dual of a certain Banach space.



Now we define a new product f x g on H;° by

fxg=E(fg), fgeH;.

It is a non-trivial fact (special case of the Choi-Effros theorem see later) that this product is
associative and satisfies the C*-property, || f* x fll. = | fll -

Since the new product is obviously commutative, the structure (H;°, *, x, [|-[|,,) is an abelian
C*-algebra; since moreover (H:°, |-||,,) is a dual Banach space, it follows from Sakai’s Theorem
that this C*-algebra is in fact a von Neumann algebra.

But an abelian Neumann algebra is in fact isometrically *-isomorphic to L (2, v) for an ap-
propriate measure space (£, v).

We conclude that there exists a measure space ({2,7) and a linear onto isometry

f—>f:Hg°—>L°°(Q,1/)

which send constants to constants, nonnegative functions to nonnegative functions and satisfies

— ~

fxg=71-g

Continuous harmonic functions *

A bounded function f : G — C is continuous if lims_,. | f(sz) — f(z)| = 0 for every z € G. We say
that f is left uniformly continuous (luc) if lims_ | f(sx) — f(x)] = O uniformly in z € G, ie. if
limsse || Lsf — flloo = 0 where Lsf(z) = f(sz). We denote by A the algebra C?, (G) of bounded
left uniformly continuous functions f : G — C.

For a Borel probability measure p on G, write
H,={feA:Pf=f}CHF
A topological space X is a G-space if there exists a continuous map
GxX—X:(s58 —s-¢&

which is (jointly) continuous and satisfies s- (¢ - &) = (st) - £ and e - & = £. We write G ~ X.
The action of G on X induces a map s — L ° of G to operators on C*(X) given by

(Ls)(E) = f(s )

Note that each L is a linear isometry, which is onto because L,-1Ls = I. Also, it is easy to check
that
Ly =L,Ls forall s,teq.

The main result we wish to prove is the following
Theorem 1 There exists a compact Hausdorff G-space 11, and a linear unital onto isometry
T:C(1,) = H,

which is equivariant, i.e. satisfies T o Ly = Lo T for all s € G.

* Our approach is based on [3]
Sthis is not an action: the map s — L reverses products; usually one defines (\sf)(t) = f(s~'t), and this does
give an action.



In fact, we will also prove that T" ‘comes from’ integration against a suitable measure:

Proposition 2 There exists a Borel probability measure v on the space 11, so that T' is given by

T(f)(s)= | f(s-€)dv(€) forall f € C(IL,), s € G.

My
Proof See later.

This is the Poisson formula, which expresses every harmonic function f = T( f) on G as the
integral of a function f defined on the Poisson boundary of (G, u).

Proposition 3 (Uniqueness) The space I, is essentially unique, in the following sense:

If K is a compact Hausdorff G-space and T' : C(11,,) — H,, is a linear onto equivariant isometry,
then there exists a homeomorphism ¢ : K — 11, making the actions G ~ K and G ~ 11, conjugate,
that is

s-&=s5-9(&) forall €€ K, s €.

Proof Consider the composition
T T’
¢:C(11,) — H, — C(K).

This is a unital onto isometry. The classical Banach-Stone Theorem [I, Theorem VI.2.1] states
that ® must be of the from ®(f) = f o ¢ where ¢ : K — II, is a homeomorphism.
Now for all £ € K, f € C(Il,) and s € G we have, by the definitions of ¢ and L,

(Ls®(f))(§) = (f)(s-&) = fo(s - £))
(®(Ls f))(§) = (Lsf)(9(§)) = f(s - ¢(£))

But, since T and T are equivariant, ® must be equivariant, i.e. Ls(®(f)) = ®(Ls(f)); therefore

f(o(s-€)) = f(s-9(€)) forall fe C(IN,),
hence  ¢(s - &) = s ¢(¢)

since continuous functions separate points of compact (Hausdorff) spaces. O

The proof of Theorem 1 will consist in two main steps: first we will show that H), is the range
of a contractive, positive, unital projection F, and then we will use this to construct a different
product on H,, which will give it the structure of an abelian unital C*-algebra; now Gelfand theory
shows that this C*-algebra must be of the form C(II,) for a certain compact Hausdorff space II,,.

Proposition 4 H, is the range of a contractive, unital projection E : C? (G) — C? (G) map-
ping non-negative functions to non-negative functions (hence real-valued functions to real-valued

functions).

Proof First note that the map P given by
(PA©) = | 1(ts)du(s)

maps the algebra A := CP (G) into itself.

uc
Indeed, we have



Claim 1 If f € A, then Lyf € A for allt € G.

Proof If x € G, since L;-1 is an isometry,

[La(Lef) = Liflloo = 1 Le-1 (La(Lt f) — L f)ll oo
= [[(Li-1LaLe)(f) = Dlloo = [ Ltat—2(f) = Flloo = 0

as & — e, because txt~! — e. O
Claim 2 If f € A, then Pf € A.
Indeed,

Lz (PF)(E) = (PF)@)] S/I(thf)(S)—(Ltf)(S)!dM(S)
S Latf = Liflloe = I LtLaf = Liflloo = I Lt(Laf = oo = Iaf = fllo

for all t € G and so | Ly (Pf) — Pf|l., > 0asx —e.

As in the case of H}°, the averages (E,) of (P") leave H), invariant. The idea is to transfer the
action from A to its dual, where the weak* compactness of the unit ball will allow the use of fixed
point techniques.

Since every f € A is continuous, hence Borel, and bounded, the measure u induces a continuous
linear form i € A* by

@ f) = [ fan (£ e A,
We write the defining formula for P in the form
(PF)E) = (i, Le f) -

More generally, for all « € A* we may form (a, L, f) (since L;f € A) and this gives a function of
t, which we denote by «a - f, that is

(- f)(t) := (e, Le f) -

Claim 3 If f€ A, thena-f € A for alla € A* .

Indeed,
[Lo(a- [)(t) = (a- [)O] < [{o Latf — Lef) | < el | Latf — L fll o
= llal[ [|LiLe f = Liflloo = lall [ Lef = fllo

for all t € G and so || Ly(a- f) — - fl|,, > 0asz —e.
In particular,

(PE) = (i, Lef) = (- (D) -

Claim 4 For any f € A, a € A* and s € G we have

a'(Lsf):Ls(a'f)' (1)



Indeed, since L¢(Ls)f = Lt f,

(a- (Lsf))(t) = (o, Le(Ls) f) = (@, Lt f)
Ly(a- f)(t) = (- f)(st) = (@, Lt f) -

Recall the definition of convolution of two measures on G:

[ tiwsv)i= [[ sesurats). e cuo.

When f € A, we may write this in the form

e d) = [[ (L @duteins Z/(/Mf ))wo

= [ Lty dute) = [ D) (©dute

=@ f).
It is therefore natural to define, for o, 3 € A*, a ‘convolution’ & * 3 by:
(ax B, f)=(a,8-f) feA (2)
Note that
(@xp)-f=a-(B-f) feA. (3)
Indeed,

(axB) - f)(s) = (@B, Lef) = (. B- (Lef)) = o Lo(B- 1)) = (- (B ))(s).
This implies associativity of x:
(axfB)xy=ax(Bx7). (4)
Indeed, for all f € A,
((axB) sy, f)=laxBy- 1) =(aB-(v- 1) L la,Bx7)- 1) = (ax(Bx), ) -

It is immediate from the definition that the linear map A* — A* : @ — a * (8 is weak*-continuous
for all g € A*.

Claim 5 Ifv € M(G), the map A* — A" : a — U x « is weak-* continuous.

Proof Let f € A. By the definition of A, the map s = Lysf : G — A is [|-|| ,-continuous and
therefore v-integrable; thus there exists an element of A, which we denote f - 7, defined by

f-v:= /GLsfdl/(s)



and of course, for every o € A*, since [, Lsfdv(s) is a norm limit of linear combinations of
translates of f,

(a,f - 9) = /G (@, Lo f) du(s)
Thus,

<a,f-l9>=/G(a-f)(8)dV(8)= oo )L owaf).

Therefore, if a; — « in the weak*-topology, then for all f € A,

<7>*aiaf> = <al7fﬁ> - <a’7fﬁ> = <l>*aaf>
which proves the Claim.

Now let Lo C A* be the convex hull of {j1, 4%, i,...} and let L be its weak* closure: a compact
convex subset of the unit ball of A*.

Observe that [i is a state on A, that is, a linear functional that takes nonnegative functions
to nonnegative functions and the constant function 1 to 1. The same is true for 2, i3,... (since
(i, f) = (i, i~ f) etc.) and therefore (since the set of states is convex and weak* closed in A*)
for any element of the set L.

Write S for the linear map

A" = A" ra— pxa.
By Claim 5, S is weak™ continuous. Since S(Lg) C Lo, it follows that S(L) C L.

By the Markov-Kakutani theorem [, Theorem 10.1], S has a fixed point, say 8 € L.

Observe that 8 is idempotent, i.e. % 3 = (. Indeed [ is a weak*-limit of a net (5;) of convex
combinations of elements i of Ly. But ji* = S(8) = ; furthermore,

(axi)« 8L fix (i B)=pxp=p

and, inductively, (") * § = (3 for all n € N. By linearity, §; * 5 = (3 for all i and so g =
lim; (3; * 8) = 8 by weak™ continuity of the map o — a %  (Claim 5).

Conclusion of the proof We claim that the map
E-A—-A:f—>pB-f

satisfies the requirements of the proposition.
First, since 8 is in the unit ball of A*, we have

(EL) O =B, Lf) | < ABINLefI] < N[ Lefll = LfI] for all £,

hence [|Ef|| < f]].

Secondly, since [ is a state, (F1)(t) = (8, L;1) = (8,1) =1 for all ¢, hence E1 = 1. Also, if f >0
then Lif > 0 and so (8, L+f) > 0, i.e. (Ef)(t) > 0 for all ¢; thus Ef > 0.

Thirdly, Eo E = E. Indeed, for all f € A, since § is idempotent, if & € A* we have (a* ) * 5 =
ax (B ) =axp and so

(a, B(E(f))) = (e, B+ (B~ f)) = ((ax B) % B, f)) = (% B, f)) = (@, B- [)) = (e, E(f)) -



Finally, we claim that E(A) = H,,.
Proof If f € E(A), writing f = E(g) = 8 - g for some g € A, we have
. . @ .
fi- f=p-(B-g)=(a*B)g
=p-g9=17

This shows that i - f = f so that f is harmonic.

Conversely suppose that i - f = f. Let § = lim; §; where §; € Lg. Since " - f = f for all n,
we have f = ;- f for every i. Now for all v € M(G), Claim 5 shows that o % 8 = lim ¥ * §; in the
weak™* topology of A*, and therefore

W,B-f)=(v=B,f)=lm (=G, f) =lim (0,8 - f) = (v, f) .
In particular, for all t € G, setting v = &, we obtain
(B- 1)) = (00, B~ f) = (o, f) = f(t)
and so B f = f. O
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