
Poisson, without walks

Introduction Let1 G be a locally compact Hausdorff topological group2 and µ a Borel proba-
bility measure on G.

A function f : G→ C is said to be µ-harmonic if it satisfies the equation

f(t) =

∫
G
f(ts)dµ(s) .

In other words, if it is a fixed point of the map P : f → Pf where

(Pf)(t) =

∫
G
f(ts)dµ(s) .

Considering this map to be defined on L∞(G), we observe that it is a linear, contractive, positive
(i.e. f ≥ 0⇒ Pf ≥ 0) and unital map ( i.e. P1 = 1):

P : L∞(G)→ L∞(G).

Furthermore, it is continuous with respect to the weak* topology that L∞(G) has as the Banach
space dual of L1(G).

The space of bounded harmonic functions is the set of fixed points of this map:

H∞µ := {f ∈ L∞(G) : Pf = f}.

It is therefore a linear space, containing the unit of L∞(G), which is closed under complex conju-
gation (f ∈ H∞µ ⇒ f̄ ∈ H∞µ ) and closed in the weak* topology. However, it is not closed under
(pointwise) products.

Claim H∞µ is the range of a contractive, unital projection E : L∞(G)→ L∞(G).

The idea is the following: For each n ∈ Z+, the map Pn : L∞(G)→L∞(G) (where P 0 = I,
P 2 = P ◦ P, . . . ) leaves the linear space H∞µ (elementwise) fixed, hence so do the averages

En :=
1

n+ 1
(I + P + P 2 + · · ·+ Pn).

Now it is a fact that the space B(L∞(G)) := {T : L∞(G)→ L∞(G) : linear, continuous} has a cer-
tain linear space topology T in which its unit ball is compact. 3 A compactness argument (Markov-
Kakutani, [1, Theorem 10.1]) shows that if K is the T -closed convex hull of {I, P, . . . Pn, . . . } and
E ∈

⋂
nEn(K), then EP = PE = E.

This map E : L∞(G)→ L∞(G) is also linear, contractive, positive and unital (but not necessar-
ily weak* continuous). Now since PE=E, each Ef in the range of E is µ-harmonic. And conversely,
if f ∈ H∞µ , then f is fixed by P , hence by every convex combination of powers of P , hence by E,
which is a T -limit of such combinations. Thus,

H∞µ = E(L∞(G)).

1nowalk, January 3, 2017, revised January 10, 2017
2 possibly it is enough to assume G is a Hausdorff topological semigroup
3 T is the weak* topology of B(L∞(G)) as the dual of a certain Banach space.

1



Now we define a new product f × g on H∞µ by

f × g = E(fg), f, g ∈ H∞µ .

It is a non-trivial fact (special case of the Choi-Effros theorem see later) that this product is
associative and satisfies the C*-property, ‖f∗ × f‖∞ = ‖f‖∞.

Since the new product is obviously commutative, the structure (H∞µ , ∗,×, ‖·‖∞) is an abelian
C*-algebra; since moreover (H∞µ , ‖·‖∞) is a dual Banach space, it follows from Sakai’s Theorem
that this C*-algebra is in fact a von Neumann algebra.

But an abelian Neumann algebra is in fact isometrically *-isomorphic to L∞(Ω, ν) for an ap-
propriate measure space (Ω, ν).

We conclude that there exists a measure space (Ω, ν) and a linear onto isometry

f → f̂ : H∞µ → L∞(Ω, ν)

which send constants to constants, nonnegative functions to nonnegative functions and satisfies

f̂ × g = f̂ · ĝ.

Continuous harmonic functions 4

A bounded function f : G→ C is continuous if lims→e |f(sx)− f(x)| = 0 for every x ∈ G. We say
that f is left uniformly continuous (luc) if lims→e |f(sx) − f(x)| = 0 uniformly in x ∈ G, i.e. if
lims→e ‖Lsf − f‖∞ = 0 where Lsf(x) = f(sx). We denote by A the algebra Cbluc(G) of bounded
left uniformly continuous functions f : G→ C.

For a Borel probability measure µ on G, write

Hµ := {f ∈ A : Pf = f} ⊆ H∞µ

A topological space X is a G-space if there exists a continuous map

G×X → X : (s, ξ)→ s · ξ

which is (jointly) continuous and satisfies s · (t · ξ) = (st) · ξ and e · ξ = ξ. We write Gy X.
The action of G on X induces a map s→ Ls

5 of G to operators on Cb(X) given by

(Lsf)(ξ) := f(s · ξ).

Note that each Ls is a linear isometry, which is onto because Ls−1Ls = I. Also, it is easy to check
that

Lst = LtLs for all s, t ∈ G.

The main result we wish to prove is the following

Theorem 1 There exists a compact Hausdorff G-space Πµ and a linear unital onto isometry

T : C(Πµ)→ Hµ

which is equivariant, i.e. satisfies T ◦ Ls = Ls ◦ T for all s ∈ G.

4 Our approach is based on [3]
5this is not an action: the map s → Ls reverses products; usually one defines (λsf)(t) = f(s−1t), and this does

give an action.
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In fact, we will also prove that T ‘comes from’ integration against a suitable measure:

Proposition 2 There exists a Borel probability measure ν on the space Πµ so that T is given by

T (f̂)(s) =

∫
Πµ

f̂(s · ξ)dν(ξ) for all f̂ ∈ C(Πµ), s ∈ G.

Proof See later.

This is the Poisson formula, which expresses every harmonic function f = T (f̂) on G as the
integral of a function f̂ defined on the Poisson boundary of (G,µ).

Proposition 3 (Uniqueness) The space Πµ is essentially unique, in the following sense:
If K is a compact Hausdorff G-space and T ′ : C(Πµ)→ Hµ is a linear onto equivariant isometry,

then there exists a homeomorphism φ : K → Πµ making the actions Gy K and Gy Πµ conjugate,
that is

s · ξ = s · φ(ξ) for all ξ ∈ K, s ∈ G.

Proof Consider the composition

Φ : C(Πµ)
T−→ Hµ

T ′−→ C(K).

This is a unital onto isometry. The classical Banach-Stone Theorem [1, Theorem VI.2.1] states
that Φ must be of the from Φ(f) = f ◦ φ where φ : K → Πµ is a homeomorphism.

Now for all ξ ∈ K, f ∈ C(Πµ) and s ∈ G we have, by the definitions of φ and Ls,

(LsΦ(f))(ξ) = Φ(f)(s · ξ) = f(φ(s · ξ))
(Φ(Lsf))(ξ) = (Lsf)(φ(ξ)) = f(s · φ(ξ))

But, since T and T ′ are equivariant, Φ must be equivariant, i.e. Ls(Φ(f)) = Φ(Ls(f)); therefore

f(φ(s · ξ)) = f(s · φ(ξ)) for all f ∈ C(Πµ),

hence φ(s · ξ) = s · φ(ξ)

since continuous functions separate points of compact (Hausdorff) spaces. 2

The proof of Theorem 1 will consist in two main steps: first we will show that Hµ is the range
of a contractive, positive, unital projection E, and then we will use this to construct a different
product on Hµ which will give it the structure of an abelian unital C*-algebra; now Gelfand theory
shows that this C*-algebra must be of the form C(Πµ) for a certain compact Hausdorff space Πµ.

Proposition 4 Hµ is the range of a contractive, unital projection E : Cbluc(G) → Cbluc(G) map-
ping non-negative functions to non-negative functions (hence real-valued functions to real-valued
functions).

Proof First note that the map P given by

(Pf)(t) =

∫
G
f(ts)dµ(s)

maps the algebra A := Cbluc(G) into itself.
Indeed, we have
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Claim 1 If f ∈ A, then Ltf ∈ A for all t ∈ G.

Proof If x ∈ G, since Lt−1 is an isometry,

‖Lx(Ltf)− Ltf‖∞ = ‖Lt−1(Lx(Ltf)− Ltf)‖∞
= ‖(Lt−1LxLt)(f)− f)‖∞ = ‖Ltxt−1(f)− f)‖∞ → 0

as x→ e, because txt−1 → e. 2

Claim 2 If f ∈ A, then Pf ∈ A.

Indeed,

|Lx(Pf)(t)− (Pf)(t)| ≤
∫
|(Lxtf)(s)− (Ltf)(s)|dµ(s)

≤ ‖Lxtf − Ltf‖∞ = ‖LtLxf − Ltf‖∞ = ‖Lt(Lxf − f)‖∞ = ‖Lxf − f‖∞

for all t ∈ G and so ‖Lx(Pf)− Pf‖∞ → 0 as x→ e.
As in the case of H∞µ , the averages (En) of (Pn) leave Hµ invariant. The idea is to transfer the

action from A to its dual, where the weak* compactness of the unit ball will allow the use of fixed
point techniques.

Since every f ∈ A is continuous, hence Borel, and bounded, the measure µ induces a continuous
linear form µ̂ ∈ A∗ by

〈µ̂, f〉 :=

∫
G
fdµ (f ∈ A).

We write the defining formula for P in the form

(Pf)(t) = 〈µ̂, Ltf〉 .

More generally, for all α ∈ A∗ we may form 〈α,Ltf〉 (since Ltf ∈ A) and this gives a function of
t, which we denote by α · f , that is

(α · f)(t) := 〈α,Ltf〉 .

Claim 3 If f ∈ A, then α · f ∈ A for all α ∈ A∗ .

Indeed,

|Lx(α · f)(t)− (α · f)(t)| ≤ | 〈α,Lxtf − Ltf〉 | ≤ ‖α‖ ‖Lxtf − Ltf‖∞
= ‖α‖ ‖LtLxf − Ltf‖∞ = ‖α‖ ‖Lxf − f‖∞

for all t ∈ G and so ‖Lx(α · f)− α · f‖∞ → 0 as x→ e.
In particular,

(Pf)(t) = 〈µ̂, Ltf〉 = (µ̂ · f)(t) .

Claim 4 For any f ∈ A, α ∈ A∗ and s ∈ G we have

α · (Lsf) = Ls(α · f) . (1)
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Indeed, since Lt(Ls)f = Lstf ,

(α · (Lsf))(t) = 〈α,Lt(Ls)f〉 = 〈α,Lstf〉
Ls(α · f)(t) = (α · f)(st) = 〈α,Lstf〉 .

Recall the definition of convolution of two measures on G:∫
fd(µ ∗ ν) :=

∫∫
f(ts)dµ(t)dν(s), f ∈ Cc(G).

When f ∈ A, we may write this in the form

〈µ̂ ∗ ν̂, f〉 =

∫∫
(Ltf)(s)dµ(t)dν(s) =

∫ (∫
(Ltf)(s)dν(s)

)
dµ(t)

=

∫
〈ν̂, Ltf〉 dµ(t) =

∫
(ν̂ · f)(t)dµ(t)

= 〈µ̂, ν̂ · f〉 .

It is therefore natural to define, for α, β ∈ A∗, a ‘convolution’ α ∗ β by:

〈α ∗ β, f〉 = 〈α, β · f〉 f ∈ A. (2)

Note that

(α ∗ β) · f = α · (β · f) f ∈ A . (3)

Indeed,

((α ∗ β) · f)(s) = 〈α ∗ β, Lsf〉 = 〈α, β · (Lsf)〉 (1)
= 〈α,Ls(β · f)〉 = (α · (β · f))(s) .

This implies associativity of ∗:

(α ∗ β) ∗ γ = α ∗ (β ∗ γ). (4)

Indeed, for all f ∈ A,

〈(α ∗ β) ∗ γ, f〉 = 〈α ∗ β, γ · f〉 = 〈α, β · (γ · f)〉 (3)
= 〈α, (β ∗ γ) · f)〉 = 〈α ∗ (β ∗ γ), f〉 .

It is immediate from the definition that the linear map A∗ → A∗ : α→ α ∗ β is weak*-continuous
for all β ∈ A∗.

Claim 5 If ν ∈M(G), the map A∗ → A∗ : α→ ν̂ ∗ α is weak-* continuous.

Proof Let f ∈ A. By the definition of A, the map s → Lsf : G → A is ‖·‖∞-continuous and
therefore ν-integrable; thus there exists an element of A, which we denote f · ν̂, defined by

f · ν̂ :=

∫
G
Lsfdν(s)
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and of course, for every α ∈ A∗, since
∫
G Lsfdν(s) is a norm limit of linear combinations of

translates of f ,

〈a, f · ν̂〉 =

∫
G
〈α,Lsf〉 dν(s)

Thus,

〈a, f · ν̂〉 =

∫
G

(α · f)(s)dν(s) = 〈ν̂, α · f〉 (2)
= 〈ν̂ ∗ α, f〉 .

Therefore, if αi → α in the weak*-topology, then for all f ∈ A,

〈ν̂ ∗ αi, f〉 = 〈ai, f · ν̂〉 → 〈a, f · ν̂〉 = 〈ν̂ ∗ α, f〉

which proves the Claim.

Now let L0 ⊆ A∗ be the convex hull of {µ̂, µ̂2, µ̂3, . . . } and let L be its weak* closure: a compact
convex subset of the unit ball of A∗.

Observe that µ̂ is a state on A, that is, a linear functional that takes nonnegative functions
to nonnegative functions and the constant function 1 to 1. The same is true for µ̂2, µ̂3, . . . (since〈
µ̂2, f

〉
= 〈µ̂, µ̂ · f〉 etc.) and therefore (since the set of states is convex and weak* closed in A∗)

for any element of the set L.
Write S for the linear map

A∗ → A∗ : α→ µ̂ ∗ α.

By Claim 5, S is weak* continuous. Since S(L0) ⊆ L0, it follows that S(L) ⊆ L.
By the Markov-Kakutani theorem [1, Theorem 10.1], S has a fixed point, say β ∈ L.
Observe that β is idempotent, i.e. β ∗ β = β. Indeed β is a weak*-limit of a net (βi) of convex

combinations of elements µ̂n of L0. But µ̂ ∗ β = S(β) = β; furthermore,

(µ̂ ∗ µ̂) ∗ β (4)
= µ̂ ∗ (µ̂ ∗ β) = µ̂ ∗ β = β

and, inductively, (µ̂n) ∗ β = β for all n ∈ N. By linearity, βi ∗ β = β for all i and so β ∗ β =
limi(βi ∗ β) = β by weak* continuity of the map α→ α ∗ β (Claim 5).

Conclusion of the proof We claim that the map

E : A → A : f → β · f

satisfies the requirements of the proposition.
First, since β is in the unit ball of A∗, we have

|(Ef)(t)| = | 〈β, Ltf〉 | ≤ ‖β‖ ‖Ltf‖ ≤ ‖Ltf‖ = ‖f‖ for all t,

hence ‖Ef‖ ≤ ‖f‖.
Secondly, since β is a state, (E1)(t) = 〈β, Lt1〉 = 〈β,1〉 = 1 for all t, hence E1 = 1. Also, if f ≥ 0
then Ltf ≥ 0 and so 〈β, Ltf〉 ≥ 0, i.e. (Ef)(t) ≥ 0 for all t; thus Ef ≥ 0.

Thirdly, E ◦E = E. Indeed, for all f ∈ A, since β is idempotent, if α ∈ A∗ we have (α ∗ β) ∗ β =
α ∗ (β ∗ β) = α ∗ β and so

〈α,E(E(f))〉 = 〈α, β · (β · f)〉 = 〈(α ∗ β) ∗ β, f)〉 = 〈(α ∗ β, f)〉 = 〈(α, β · f)〉 = 〈α,E(f)〉 .
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Finally, we claim that E(A) = Hµ.

Proof If f ∈ E(A), writing f = E(g) = β · g for some g ∈ A, we have

µ̂ · f =µ̂ · (β · g)
(4)
= (µ̂ ∗ β) · g

= β · g = f.

This shows that µ̂ · f = f so that f is harmonic.

Conversely suppose that µ̂ · f = f . Let β = limi βi where βi ∈ L0. Since µ̂n · f = f for all n,
we have f = βi · f for every i. Now for all ν ∈M(G), Claim 5 shows that ν̂ ∗ β = lim ν̂ ∗ βi in the
weak* topology of A∗, and therefore

〈ν, β · f〉 = 〈ν ∗ β, f〉 = lim 〈ν̂ ∗ βi, f〉 = lim 〈ν̂, βi · f〉 = 〈ν, f〉 .

In particular, for all t ∈ G, setting ν = δt we obtain

(β · f)(t) = 〈δt, β · f〉 = 〈δt, f〉 = f(t)

and so β · f = f . 2

References

[1] John B. Conway. A course in functional analysis, volume 96 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1990.

[2] Harry Furstenberg. Boundary theory and stochastic processes on homogeneous spaces. In
Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams
Coll., Williamstown, Mass., 1972), pages 193–229. Amer. Math. Soc., Providence, R.I., 1973.

[3] Alan L. T. Paterson. A non-probabilistic approach to Poisson spaces. Proceedings of the Royal
Society of Edinburgh: Section A Mathematics, 93(3-4):181–188, 001 1983.

[4] Bebe Prunaru. A poisson boundary for topological semigroups. Archiv der Mathematik,
102(5):449–454, 2014.

7


