Poisson, without walks

Introduction Let $^{1} G$ be a locally compact Hausdorff topological group ${ }^{2}$ and μ a Borel probability measure on G.

A function $f: G \rightarrow \mathbb{C}$ is said to be μ-harmonic if it satisfies the equation

$$
f(t)=\int_{G} f(t s) d \mu(s)
$$

In other words, if it is a fixed point of the map $P: f \rightarrow P f$ where

$$
(P f)(t)=\int_{G} f(t s) d \mu(s)
$$

Considering this map to be defined on $L^{\infty}(G)$, we observe that it is a linear, contractive, positive (i.e. $f \geq 0 \Rightarrow P f \geq 0$) and unital $\operatorname{map}($ i.e. $P \mathbf{1}=\mathbf{1})$:

$$
P: L^{\infty}(G) \rightarrow L^{\infty}(G)
$$

Furthermore, it is continuous with respect to the weak* topology that $L^{\infty}(G)$ has as the Banach space dual of $L^{1}(G)$.

The space of bounded harmonic functions is the set of fixed points of this map:

$$
H_{\mu}^{\infty}:=\left\{f \in L^{\infty}(G): P f=f\right\}
$$

It is therefore a linear space, containing the unit of $L^{\infty}(G)$, which is closed under complex conjugation $\left(f \in H_{\mu}^{\infty} \Rightarrow \bar{f} \in H_{\mu}^{\infty}\right)$ and closed in the weak* topology. However, it is not closed under (pointwise) products.

Claim H_{μ}^{∞} is the range of a contractive, unital projection $E: L^{\infty}(G) \rightarrow L^{\infty}(G)$.
The idea is the following: For each $n \in \mathbb{Z}_{+}$, the map $P^{n}: L^{\infty}(G) \rightarrow L^{\infty}(G)$ (where $P^{0}=I$, $\left.P^{2}=P \circ P, \ldots\right)$ leaves the linear space H_{μ}^{∞} (elementwise) fixed, hence so do the averages

$$
E_{n}:=\frac{1}{n+1}\left(I+P+P^{2}+\cdots+P^{n}\right)
$$

Now it is a fact that the space $\mathcal{B}\left(L^{\infty}(G)\right):=\left\{T: L^{\infty}(G) \rightarrow L^{\infty}(G)\right.$: linear, continuous $\}$ has a certain linear space topology \mathcal{T} in which its unit ball is compact. ${ }^{3}$ A compactness argument (MarkovKakutani, [1, Theorem 10.1]) shows that if K is the \mathcal{T}-closed convex hull of $\left\{I, P, \ldots P^{n}, \ldots\right\}$ and $E \in \bigcap_{n} E_{n}(K)$, then $E P=P E=E$.

This map $E: L^{\infty}(G) \rightarrow L^{\infty}(G)$ is also linear, contractive, positive and unital (but not necessarily weak* continuous). Now since $\mathrm{PE}=\mathrm{E}$, each $E f$ in the range of E is μ-harmonic. And conversely, if $f \in H_{\mu}^{\infty}$, then f is fixed by P, hence by every convex combination of powers of P, hence by E, which is a \mathcal{T}-limit of such combinations. Thus,

$$
H_{\mu}^{\infty}=E\left(L^{\infty}(G)\right)
$$

[^0]Now we define a new product $f \times g$ on H_{μ}^{∞} by

$$
f \times g=E(f g), \quad f, g \in H_{\mu}^{\infty} .
$$

It is a non-trivial fact (special case of the Choi-Effros theorem see later) that this product is associative and satisfies the C^{*}-property, $\left\|f^{*} \times f\right\|_{\infty}=\|f\|_{\infty}$.

Since the new product is obviously commutative, the structure $\left(H_{\mu}^{\infty}, *, \times,\|\cdot\|_{\infty}\right)$ is an abelian C*-algebra; since moreover $\left(H_{\mu}^{\infty},\|\cdot\|_{\infty}\right)$ is a dual Banach space, it follows from Sakai's Theorem that this C*-algebra is in fact a von Neumann algebra.

But an abelian Neumann algebra is in fact isometrically *-isomorphic to $L^{\infty}(\Omega, \nu)$ for an appropriate measure space (Ω, ν).

We conclude that there exists a measure space (Ω, ν) and a linear onto isometry

$$
f \rightarrow \hat{f}: H_{\mu}^{\infty} \rightarrow L^{\infty}(\Omega, \nu)
$$

which send constants to constants, nonnegative functions to nonnegative functions and satisfies $\widehat{f \times g}=\hat{f} \cdot \hat{g}$.

Continuous harmonic functions ${ }^{4}$

A bounded function $f: G \rightarrow \mathbb{C}$ is continuous if $\lim _{s \rightarrow e}|f(s x)-f(x)|=0$ for every $x \in G$. We say that f is left uniformly continuous (luc) if $\lim _{s \rightarrow e}|f(s x)-f(x)|=0$ uniformly in $x \in G$, i.e. if $\lim _{s \rightarrow e}\left\|L_{s} f-f\right\|_{\infty}=0$ where $L_{s} f(x)=f(s x)$. We denote by \mathcal{A} the algebra $C_{\text {luc }}^{b}(G)$ of bounded left uniformly continuous functions $f: G \rightarrow \mathbb{C}$.

For a Borel probability measure μ on G, write

$$
H_{\mu}:=\{f \in \mathcal{A}: P f=f\} \subseteq H_{\mu}^{\infty}
$$

A topological space X is a G-space if there exists a continuous map

$$
G \times X \rightarrow X:(s, \xi) \rightarrow s \cdot \xi
$$

which is (jointly) continuous and satisfies $s \cdot(t \cdot \xi)=(s t) \cdot \xi$ and $e \cdot \xi=\xi$. We write $G \curvearrowright X$.
The action of G on X induces a map $s \rightarrow L_{s}{ }^{5}$ of G to operators on $C^{b}(X)$ given by

$$
\left(L_{s} f\right)(\xi):=f(s \cdot \xi)
$$

Note that each L_{s} is a linear isometry, which is onto because $L_{s^{-1}} L_{s}=I$. Also, it is easy to check that

$$
L_{s t}=L_{t} L_{s} \quad \text { for all } s, t \in G .
$$

The main result we wish to prove is the following
Theorem 1 There exists a compact Hausdorff G-space Π_{μ} and a linear unital onto isometry

$$
T: C\left(\Pi_{\mu}\right) \rightarrow H_{\mu}
$$

which is equivariant, i.e. satisfies $T \circ L_{s}=L_{s} \circ T$ for all $s \in G$.

[^1]In fact, we will also prove that T 'comes from' integration against a suitable measure:
Proposition 2 There exists a Borel probability measure ν on the space Π_{μ} so that T is given by

$$
T(\hat{f})(s)=\int_{\Pi_{\mu}} \hat{f}(s \cdot \xi) d \nu(\xi) \quad \text { for all } \hat{f} \in C\left(\Pi_{\mu}\right), s \in G
$$

Proof See later.
This is the Poisson formula, which expresses every harmonic function $f=T(\hat{f})$ on G as the integral of a function \hat{f} defined on the Poisson boundary of (G, μ).

Proposition 3 (Uniqueness) The space Π_{μ} is essentially unique, in the following sense:
If K is a compact Hausdorff G-space and $T^{\prime}: C\left(\Pi_{\mu}\right) \rightarrow H_{\mu}$ is a linear onto equivariant isometry, then there exists a homeomorphism $\phi: K \rightarrow \Pi_{\mu}$ making the actions $G \curvearrowright K$ and $G \curvearrowright \Pi_{\mu}$ conjugate, that is

$$
s \cdot \xi=s \cdot \phi(\xi) \quad \text { for all } \xi \in K, s \in G
$$

Proof Consider the composition

$$
\Phi: C\left(\Pi_{\mu}\right) \xrightarrow{T} H_{\mu} \xrightarrow{T^{\prime}} C(K) .
$$

This is a unital onto isometry. The classical Banach-Stone Theorem [1, Theorem VI.2.1] states that Φ must be of the from $\Phi(f)=f \circ \phi$ where $\phi: K \rightarrow \Pi_{\mu}$ is a homeomorphism.

Now for all $\xi \in K, f \in C\left(\Pi_{\mu}\right)$ and $s \in G$ we have, by the definitions of ϕ and L_{s},

$$
\begin{aligned}
& \left(L_{s} \Phi(f)\right)(\xi)=\Phi(f)(s \cdot \xi)=f(\phi(s \cdot \xi)) \\
& \left(\Phi\left(L_{s} f\right)\right)(\xi)=\left(L_{s} f\right)(\phi(\xi))=f(s \cdot \phi(\xi))
\end{aligned}
$$

But, since T and T^{\prime} are equivariant, Φ must be equivariant, i.e. $L_{s}(\Phi(f))=\Phi\left(L_{s}(f)\right)$; therefore

$$
\begin{aligned}
f(\phi(s \cdot \xi)) & =f(s \cdot \phi(\xi)) \quad \text { for all } f \in C\left(\Pi_{\mu}\right) \\
\text { hence } \quad \phi(s \cdot \xi) & =s \cdot \phi(\xi)
\end{aligned}
$$

since continuous functions separate points of compact (Hausdorff) spaces.
The proof of Theorem 1 will consist in two main steps: first we will show that H_{μ} is the range of a contractive, positive, unital projection E, and then we will use this to construct a different product on H_{μ} which will give it the structure of an abelian unital C^{*}-algebra; now Gelfand theory shows that this C^{*}-algebra must be of the form $C\left(\Pi_{\mu}\right)$ for a certain compact Hausdorff space Π_{μ}.

Proposition $4 H_{\mu}$ is the range of a contractive, unital projection $E: C_{l u c}^{b}(G) \rightarrow C_{l u c}^{b}(G)$ mapping non-negative functions to non-negative functions (hence real-valued functions to real-valued functions).

Proof First note that the map P given by

$$
(P f)(t)=\int_{G} f(t s) d \mu(s)
$$

maps the algebra $\mathcal{A}:=C_{l u c}^{b}(G)$ into itself.
Indeed, we have

Claim 1 If $f \in \mathcal{A}$, then $L_{t} f \in \mathcal{A}$ for all $t \in G$.
Proof If $x \in G$, since $L_{t^{-1}}$ is an isometry,

$$
\begin{aligned}
\left\|L_{x}\left(L_{t} f\right)-L_{t} f\right\|_{\infty} & =\left\|L_{t^{-1}}\left(L_{x}\left(L_{t} f\right)-L_{t} f\right)\right\|_{\infty} \\
& \left.\left.=\|\left(L_{t^{-1}} L_{x} L_{t}\right)(f)-f\right)\left\|_{\infty}=\right\| L_{t x t^{-1}}(f)-f\right) \|_{\infty} \rightarrow 0
\end{aligned}
$$

as $x \rightarrow e$, because $t x t^{-1} \rightarrow e$.
Claim 2 If $f \in \mathcal{A}$, then $\operatorname{Pf} \in \mathcal{A}$.
Indeed,

$$
\begin{aligned}
\left|L_{x}(P f)(t)-(P f)(t)\right| & \leq \int\left|\left(L_{x t} f\right)(s)-\left(L_{t} f\right)(s)\right| d \mu(s) \\
& \leq\left\|L_{x t} f-L_{t} f\right\|_{\infty}=\left\|L_{t} L_{x} f-L_{t} f\right\|_{\infty}=\left\|L_{t}\left(L_{x} f-f\right)\right\|_{\infty}=\left\|L_{x} f-f\right\|_{\infty}
\end{aligned}
$$

for all $t \in G$ and so $\left\|L_{x}(P f)-P f\right\|_{\infty} \rightarrow 0$ as $x \rightarrow e$.
As in the case of H_{μ}^{∞}, the averages $\left(E_{n}\right)$ of $\left(P^{n}\right)$ leave H_{μ} invariant. The idea is to transfer the action from \mathcal{A} to its dual, where the weak* compactness of the unit ball will allow the use of fixed point techniques.

Since every $f \in \mathcal{A}$ is continuous, hence Borel, and bounded, the measure μ induces a continuous linear form $\hat{\mu} \in \mathcal{A}^{*}$ by

$$
\langle\hat{\mu}, f\rangle:=\int_{G} f d \mu \quad(f \in \mathcal{A})
$$

We write the defining formula for P in the form

$$
(P f)(t)=\left\langle\hat{\mu}, L_{t} f\right\rangle
$$

More generally, for all $\alpha \in \mathcal{A}^{*}$ we may form $\left\langle\alpha, L_{t} f\right\rangle$ (since $L_{t} f \in \mathcal{A}$) and this gives a function of t, which we denote by $\alpha \cdot f$, that is

$$
(\alpha \cdot f)(t):=\left\langle\alpha, L_{t} f\right\rangle
$$

Claim 3 If $f \in \mathcal{A}$, then $\alpha \cdot f \in \mathcal{A}$ for all $\alpha \in \mathcal{A}^{*}$.
Indeed,

$$
\begin{aligned}
\left|L_{x}(\alpha \cdot f)(t)-(\alpha \cdot f)(t)\right| & \leq\left|\left\langle\alpha, L_{x t} f-L_{t} f\right\rangle\right| \leq\|\alpha\|\left\|L_{x t} f-L_{t} f\right\|_{\infty} \\
& =\|\alpha\|\left\|L_{t} L_{x} f-L_{t} f\right\|_{\infty}=\|\alpha\|\left\|L_{x} f-f\right\|_{\infty}
\end{aligned}
$$

for all $t \in G$ and so $\left\|L_{x}(\alpha \cdot f)-\alpha \cdot f\right\|_{\infty} \rightarrow 0$ as $x \rightarrow e$.
In particular,

$$
(P f)(t)=\left\langle\hat{\mu}, L_{t} f\right\rangle=(\hat{\mu} \cdot f)(t)
$$

Claim 4 For any $f \in \mathcal{A}, \alpha \in \mathcal{A}^{*}$ and $s \in G$ we have

$$
\begin{equation*}
\alpha \cdot\left(L_{s} f\right)=L_{s}(\alpha \cdot f) \tag{1}
\end{equation*}
$$

Indeed, since $L_{t}\left(L_{s}\right) f=L_{s t} f$,

$$
\begin{gathered}
\left(\alpha \cdot\left(L_{s} f\right)\right)(t)=\left\langle\alpha, L_{t}\left(L_{s}\right) f\right\rangle=\left\langle\alpha, L_{s t} f\right\rangle \\
L_{s}(\alpha \cdot f)(t)=(\alpha \cdot f)(s t)=\left\langle\alpha, L_{s t} f\right\rangle
\end{gathered}
$$

Recall the definition of convolution of two measures on G :

$$
\int f d(\mu * \nu):=\iint f(t s) d \mu(t) d \nu(s), \quad f \in C_{c}(G)
$$

When $f \in \mathcal{A}$, we may write this in the form

$$
\begin{aligned}
\langle\hat{\mu} * \hat{\nu}, f\rangle & =\iint\left(L_{t} f\right)(s) d \mu(t) d \nu(s)=\int\left(\int\left(L_{t} f\right)(s) d \nu(s)\right) d \mu(t) \\
& =\int\left\langle\hat{\nu}, L_{t} f\right\rangle d \mu(t)=\int(\hat{\nu} \cdot f)(t) d \mu(t) \\
& =\langle\hat{\mu}, \hat{\nu} \cdot f\rangle
\end{aligned}
$$

It is therefore natural to define, for $\alpha, \beta \in \mathcal{A}^{*}$, a 'convolution' $\alpha * \beta$ by:

$$
\begin{equation*}
\langle\alpha * \beta, f\rangle=\langle\alpha, \beta \cdot f\rangle \quad f \in \mathcal{A} \tag{2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
(\alpha * \beta) \cdot f=\alpha \cdot(\beta \cdot f) \quad f \in \mathcal{A} \tag{3}
\end{equation*}
$$

Indeed,

$$
((\alpha * \beta) \cdot f)(s)=\left\langle\alpha * \beta, L_{s} f\right\rangle=\left\langle\alpha, \beta \cdot\left(L_{s} f\right)\right\rangle \stackrel{(1)}{=}\left\langle\alpha, L_{s}(\beta \cdot f)\right\rangle=(\alpha \cdot(\beta \cdot f))(s)
$$

This implies associativity of $*$:

$$
\begin{equation*}
(\alpha * \beta) * \gamma=\alpha *(\beta * \gamma) \tag{4}
\end{equation*}
$$

Indeed, for all $f \in \mathcal{A}$,

$$
\langle(\alpha * \beta) * \gamma, f\rangle=\langle\alpha * \beta, \gamma \cdot f\rangle=\langle\alpha, \beta \cdot(\gamma \cdot f)\rangle \stackrel{(3)}{=}\langle\alpha,(\beta * \gamma) \cdot f)\rangle=\langle\alpha *(\beta * \gamma), f\rangle
$$

It is immediate from the definition that the linear map $\mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \alpha \rightarrow \alpha * \beta$ is weak ${ }^{*}$-continuous for all $\beta \in \mathcal{A}^{*}$.

Claim 5 If $\nu \in M(G)$, the map $\mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \alpha \rightarrow \hat{\nu} * \alpha$ is weak ${ }^{-}$continuous.
Proof Let $f \in \mathcal{A}$. By the definition of \mathcal{A}, the map $s \rightarrow L_{s} f: G \rightarrow \mathcal{A}$ is $\|\cdot\|_{\infty}$-continuous and therefore ν-integrable; thus there exists an element of \mathcal{A}, which we denote $f \cdot \hat{\nu}$, defined by

$$
f \cdot \hat{\nu}:=\int_{G} L_{s} f d \nu(s)
$$

and of course, for every $\alpha \in \mathcal{A}^{*}$, since $\int_{G} L_{s} f d \nu(s)$ is a norm limit of linear combinations of translates of f,

$$
\langle a, f \cdot \hat{\nu}\rangle=\int_{G}\left\langle\alpha, L_{s} f\right\rangle d \nu(s)
$$

Thus,

$$
\langle a, f \cdot \hat{\nu}\rangle=\int_{G}(\alpha \cdot f)(s) d \nu(s)=\langle\hat{\nu}, \alpha \cdot f\rangle \stackrel{(2)}{=}\langle\hat{\nu} * \alpha, f\rangle .
$$

Therefore, if $\alpha_{i} \rightarrow \alpha$ in the weak*-topology, then for all $f \in \mathcal{A}$,

$$
\left\langle\hat{\nu} * \alpha_{i}, f\right\rangle=\left\langle a_{i}, f \cdot \hat{\nu}\right\rangle \rightarrow\langle a, f \cdot \hat{\nu}\rangle=\langle\hat{\nu} * \alpha, f\rangle
$$

which proves the Claim.
Now let $L_{0} \subseteq \mathcal{A}^{*}$ be the convex hull of $\left\{\hat{\mu}, \hat{\mu}^{2}, \hat{\mu}^{3}, \ldots\right\}$ and let L be its weak* closure: a compact convex subset of the unit ball of \mathcal{A}^{*}.

Observe that $\hat{\mu}$ is a state on \mathcal{A}, that is, a linear functional that takes nonnegative functions to nonnegative functions and the constant function 1 to 1 . The same is true for $\hat{\mu}^{2}, \hat{\mu}^{3}, \ldots$ (since $\left\langle\hat{\mu}^{2}, f\right\rangle=\langle\hat{\mu}, \hat{\mu} \cdot f\rangle$ etc.) and therefore (since the set of states is convex and weak* closed in \mathcal{A}^{*}) for any element of the set L.

Write S for the linear map

$$
\mathcal{A}^{*} \rightarrow \mathcal{A}^{*}: \alpha \rightarrow \hat{\mu} * \alpha .
$$

By Claim $5, S$ is weak* continuous. Since $S\left(L_{0}\right) \subseteq L_{0}$, it follows that $S(L) \subseteq L$.
By the Markov-Kakutani theorem [1, Theorem 10.1], S has a fixed point, say $\beta \in L$.
Observe that β is idempotent, i.e. $\beta * \beta=\beta$. Indeed β is a weak*-limit of a net $\left(\beta_{i}\right)$ of convex combinations of elements $\hat{\mu}^{n}$ of L_{0}. But $\hat{\mu} * \beta=S(\beta)=\beta$; furthermore,

$$
(\hat{\mu} * \hat{\mu}) * \beta \stackrel{(4)}{=} \hat{\mu} *(\hat{\mu} * \beta)=\hat{\mu} * \beta=\beta
$$

and, inductively, $\left(\hat{\mu}^{n}\right) * \beta=\beta$ for all $n \in \mathbb{N}$. By linearity, $\beta_{i} * \beta=\beta$ for all i and so $\beta * \beta=$ $\lim _{i}\left(\beta_{i} * \beta\right)=\beta$ by weak* continuity of the map $\alpha \rightarrow \alpha * \beta$ (Claim 5).
Conclusion of the proof We claim that the map

$$
E: \mathcal{A} \rightarrow \mathcal{A}: f \rightarrow \beta \cdot f
$$

satisfies the requirements of the proposition.
First, since β is in the unit ball of \mathcal{A}^{*}, we have

$$
|(E f)(t)|=\left|\left\langle\beta, L_{t} f\right\rangle\right| \leq\|\beta\|\left\|L_{t} f\right\| \leq\left\|L_{t} f\right\|=\|f\| \quad \text { for all } t,
$$

hence $\|E f\| \leq\|f\|$.
Secondly, since β is a state, $(E \mathbf{1})(t)=\left\langle\beta, L_{t} \mathbf{1}\right\rangle=\langle\beta, \mathbf{1}\rangle=1$ for all t, hence $E \mathbf{1}=\mathbf{1}$. Also, if $f \geq 0$ then $L_{t} f \geq 0$ and so $\left\langle\beta, L_{t} f\right\rangle \geq 0$, i.e. $(E f)(t) \geq 0$ for all t; thus $E f \geq 0$.
Thirdly, $E \circ E=E$. Indeed, for all $f \in \mathcal{A}$, since β is idempotent, if $\alpha \in \mathcal{A}^{*}$ we have $(\alpha * \beta) * \beta=$ $\alpha *(\beta * \beta)=\alpha * \beta$ and so

$$
\langle\alpha, E(E(f))\rangle=\langle\alpha, \beta \cdot(\beta \cdot f)\rangle=\langle(\alpha * \beta) * \beta, f)\rangle=\langle(\alpha * \beta, f)\rangle=\langle(\alpha, \beta \cdot f)\rangle=\langle\alpha, E(f)\rangle .
$$

Finally, we claim that $E(\mathcal{A})=H_{\mu}$.
Proof If $f \in E(\mathcal{A})$, writing $f=E(g)=\beta \cdot g$ for some $g \in \mathcal{A}$, we have

$$
\begin{aligned}
& \hat{\mu} \cdot f=\hat{\mu} \cdot(\beta \cdot g) \stackrel{(4)}{=}(\hat{\mu} * \beta) \cdot g \\
&=\beta \cdot g=f .
\end{aligned}
$$

This shows that $\hat{\mu} \cdot f=f$ so that f is harmonic.
Conversely suppose that $\hat{\mu} \cdot f=f$. Let $\beta=\lim _{i} \beta_{i}$ where $\beta_{i} \in L_{0}$. Since $\hat{\mu}^{n} \cdot f=f$ for all n, we have $f=\beta_{i} \cdot f$ for every i. Now for all $\nu \in M(G)$, Claim 5 shows that $\hat{\nu} * \beta=\lim \hat{\nu} * \beta_{i}$ in the weak* topology of \mathcal{A}^{*}, and therefore

$$
\langle\nu, \beta \cdot f\rangle=\langle\nu * \beta, f\rangle=\lim \left\langle\hat{\nu} * \beta_{i}, f\right\rangle=\lim \left\langle\hat{\nu}, \beta_{i} \cdot f\right\rangle=\langle\nu, f\rangle .
$$

In particular, for all $t \in G$, setting $\nu=\delta_{t}$ we obtain

$$
(\beta \cdot f)(t)=\left\langle\delta_{t}, \beta \cdot f\right\rangle=\left\langle\delta_{t}, f\right\rangle=f(t)
$$

and so $\beta \cdot f=f$.

References

[1] John B. Conway. A course in functional analysis, volume 96 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.
[2] Harry Furstenberg. Boundary theory and stochastic processes on homogeneous spaces. In Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), pages 193-229. Amer. Math. Soc., Providence, R.I., 1973.
[3] Alan L. T. Paterson. A non-probabilistic approach to Poisson spaces. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 93(3-4):181-188, 0011983.
[4] Bebe Prunaru. A poisson boundary for topological semigroups. Archiv der Mathematik, 102(5):449-454, 2014.

[^0]: ${ }^{1}$ nowalk, January 3, 2017, revised January 10, 2017
 ${ }^{2}$ possibly it is enough to assume G is a Hausdorff topological semigroup
 ${ }^{3} \mathcal{T}$ is the weak* topology of $\mathcal{B}\left(L^{\infty}(G)\right)$ as the dual of a certain Banach space.

[^1]: ${ }^{4}$ Our approach is based on [3]
 ${ }^{5}$ this is not an action: the map $s \rightarrow L_{s}$ reverses products; usually one defines $\left(\lambda_{s} f\right)(t)=f\left(s^{-1} t\right)$, and this does give an action.

