Injective G-spaces

A.K.

Seminar, 12 May 2017

Definition 1

An object *I* of a category \mathscr{C} is called **injective** when every morphism into it extends, i.e. given objects $M \subseteq N$ and a morphism $\phi: M \to I$ there is a morphism $\tilde{\phi}: N \to I$ such that $\tilde{\phi}|_M = \phi$.

Write $I \in \text{Inj}(\mathscr{C})$.

Categories

 $E \subseteq \mathscr{B}(H_1), F \subseteq \mathscr{B}(H_2).$

$$E \xrightarrow{\phi} F \longrightarrow M_n(E) \xrightarrow{\phi_n} M_n(F) : \phi_n([a_{ij}]) = [\phi_n(a_{ij})].$$

- **1** \mathfrak{O} : operator spaces with completely bounded maps. $(\sup_n \|\phi_n\| < \infty)$
- 2 \mathfrak{O}_1 : operator spaces with complete contractions. $(\forall n, \|\phi_n\| \leq 1)$
- **3** \mathfrak{S} : operator systems (selfadjoint, unital) with completely positive maps. $(\forall n, \phi_n \ge 0)$
- G₁: operator systems with *unital* completely positive (ucp) maps.

In the category of Banach spaces with linear contractions, \mathbb{C} is injective (Hahn-Banach). Also $\ell^{\infty}(\Gamma)$ is injective for any Γ .

In the category \mathfrak{S} of operator systems with completely positive maps, $\mathscr{B}(H)$ is injective (Arveson).

G-(operator) systems or G-spaces

Fix a group G. Let $E \subseteq \mathscr{B}(H_1), F \subseteq \mathscr{B}(H_2)$ be operator systems s.t. $G \curvearrowright E$ and $G \curvearrowright F$ by ucp maps. A G-morphism or G-map $E \xrightarrow{\phi} F$ is a ucp map s.t.

$$s \cdot \phi(x) = \phi(s \cdot x)$$
 for all $x \in E, s \in G$.

Let $G\mathfrak{S}_1$: operator systems with unital completely positive (ucp) *G*-maps.

In the category $G\mathfrak{S}_1$, the space $\ell^{\infty}(G)$ with $(s \cdot x)(t) := x(s^{-1}t)$ for $x \in \ell^{\infty}(G)$ is G-injective (Hamana).

More generally, if $V \in \text{Inj}(\mathfrak{S}_1)$ then $\ell^{\infty}(G, V) \in \text{Inj}(G\mathfrak{S}_1)$ with $(s \cdot x)(t) := x(s^{-1}t)$ for $x \in \ell^{\infty}(G, V)$. In particular, $\ell^{\infty}(G, \mathscr{B}(H)) \in \text{Inj}(G\mathfrak{S}_1)$. On the other hand, \mathbb{C} with the trivial *G*-action $(s \cdot \lambda := \lambda)$, is *G*-injective iff *G* is amenable!

Definition 2

Given a *G*-space *F* we say that (E, κ) is **an injective envelope** of *F*, provided that

- i) *E* is injective in $G\mathfrak{S}_1$,
- ii) $\kappa: F \to E$ is a 1-1 ucp *G*-map,

iii) if E_1 is *G*-injective with $\kappa(F) \subseteq E_1 \subseteq E$, then $E_1 = E$.

So (E, κ) is a 'minimal' *G*-injective extension of *E*.

Let $F \subseteq \mathscr{B}(H)$ be a *G*-space. Embed *F* into $W := \ell^{\infty}(G, \mathscr{B}(H))$ by $j : F \to W$ where $j(x)(s) := s^{-1} \cdot x, x \in F, s \in G$ (note *j* is a *G*-map).

A map $\varphi : W \to W$ is **an** *F*-**map** if φ is a ucp *G*-map and $\varphi(x) = x$ for all x in *F*.

An *F*-map φ such that $\varphi \circ \varphi = \varphi$ is called an *F*-**projection**. Thus, an *F*-projection φ is a ucp projection onto $E = \varphi(W)$, with $F \subseteq E$, but we do not demand F = E.

We define a partial order on *F*-projections by setting $\psi \prec \phi$ provided that $\psi \circ \phi = \psi = \phi \circ \psi$.

Given an *F*-map φ , we define an *F*-seminorm $p_{\varphi} = \|\cdot\|_{\varphi}$ on *W* by setting $p_{\phi}(x) = \|x\|_{\phi} = \|\varphi(x)\|$.

Existence of a G-Injective envelope (M. Hamana)

Let $W \in \text{Inj}(G\mathfrak{S}_1)$.

Proposition 3

If $\phi : W \to W$ is an idempotent *G*-map, then $\phi(W) \in \text{Inj}(G\mathfrak{S}_1)$.

NB. For the proof, embed $W \hookrightarrow \ell^{\infty}(G, \mathscr{B}(H))$ and use a compactness argument.

Proposition 4

Let $F \subseteq W$ be a G-space. Then there exist minimal F-seminorms on W.

Theorem 5

Let $F \subseteq W$ be a *G*-space. If $\varphi : W \to W$ is an *F*-map such that p_{φ} is a minimal *F*-seminorm, then φ is a minimal *F*-projection and the range $\varphi(W)$ of φ is a *G*-injective envelope of *F*.