Notes on the irrational rotation nonselfadjoint algebras

Aristides Katavolos
(partly based on joint work with M. Anoussis and I.G. Todorov)

As before, ${ }^{1}$ fix $\theta \in \mathbb{R}$ s.t. $\frac{\theta}{2 \pi}$ is irrational. Let $\mathcal{A}=C(\mathbb{T}), G=\mathbb{Z}$ and

$$
\left(\alpha_{n} f\right)(z)=f\left(e^{i n \theta} z\right) \quad(f \in \mathcal{A}, n \in \mathbb{Z}, z \in \mathbb{T})
$$

The semicrossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$is a closed subalgebra of the irrational rotation algebra $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$ (why?). ${ }^{2}$

Thus the representation $\pi \times \lambda: C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} \rightarrow \mathcal{B}\left(L^{2}(\mathbb{T})\right.$ restricts to an isometric representation of $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$given by (flip) ${ }^{3}$

$$
(\pi \times \lambda)\left(\sum_{k=0}^{n} \delta_{k} \otimes f_{k}\right)=\sum_{k=0}^{n} V^{k} \pi\left(f_{k}\right)
$$

where V is the generator λ_{1} of $\left\{\lambda_{n}: n \in \mathbb{Z}_{+}\right\}$given by

$$
(V g)(z)=g\left(e^{i \theta} z\right), \quad g \in L^{2}(\mathbb{T})
$$

The C^{*}-algebra $C(\mathbb{T})$ is the closed algebra generated by ζ and $\bar{\zeta}$, where $\zeta(z)=z$; hence $\pi(C(\mathbb{T})) \subseteq \mathcal{B}\left(L^{2}(\mathbb{T})\right)$ is generated by $U:=\pi(\zeta)$ and $U^{*}=$ $\pi(\bar{\zeta})$. Therefore $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$is generated by $\left\{U, U^{*}, V\right\}$ and the crossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}:=\mathcal{A}_{\theta}$ is generated by $\left\{U, U^{*}, V, V^{*}\right\}$. They satisfy:

$$
U V=e^{i \theta} V U \quad \text { (the Weyl relation). }
$$

For $\mu \in \mathbb{T}$, let $V_{\mu}: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ be given by $V_{\mu} f=f_{\mu}$ where $f_{\mu}(z)=$ $f(\mu z)$. The map $\mu \rightarrow V_{\mu}$ is a SOT-continuous group homomorphism into

[^0]the unitary group of $\mathcal{B}\left(L^{2}(\mathbb{T})\right)$; hence it is weak* continuous (because it takes values in a ball). Observe that $V_{e^{i \theta}}=V$. Note that $\left(\widehat{V_{\mu} f}\right)(n)=$ $\mu^{n} \widehat{f}(n)$. ${ }^{4}$ More generally, if $a=\left(a_{n}\right)_{n \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, let D_{a} be given by $\left(\widehat{D_{a} f}\right)(n)=a_{n} \widehat{f}(n)$; thus D_{a} is the image, under conjugation by the Fourier transform, of the diagonal operator on $\ell^{2}(\mathbb{Z})$ given by $\left(x_{j}\right) \rightarrow\left(a_{j} x_{j}\right)$. Let $\mathcal{D}=\left\{D_{a}: a \in \ell^{\infty}(\mathbb{Z})\right\}$. This is a masa on $L^{2}(\mathbb{T})$ (being unit. equivalent to the diagonal masa on $\ell^{2}(\mathbb{Z})$.)
l_rotgen Lemma 1. The weak* closed operator algebra on $L^{2}(\mathbb{T})$ generated by V coincides with \mathcal{D}. In particular, it contains V^{*}.

Proof. Since $\mu \rightarrow V_{\mu}$ is weak* continuous and $\left\{e^{i n \theta}: n \in \mathbb{N}\right\}$ is dense in \mathbb{T}, the weak* closed algebra generated by the set $\left\{V^{n}: n \in \mathbb{N}\right\}$ equals $\left\{V_{\mu}: \mu \in \mathbb{T}\right\}$ and hence is selfadjoint. Since it is weak* closed, it is equal to its bicommutant which is clearly \mathcal{D}.

Remark 2. By contrast, the weak* closed operator algebra on $L^{2}(\mathbb{T})$ generated by U is non-selfadjoint; it is equal to $\left\{M_{f}: f \in H^{\infty}(\mathbb{T})\right\}$. In fact, the weak* closed operator algebra generated by U and V does not contain U^{*}. 5

Proof. Recall that $H^{\infty}(\mathbb{T})=\left\{f \in L^{\infty}(\mathbb{T}): \hat{f}(k)=0\right.$ for $\left.k<0\right\}$.
It is well-known that the Cesaro means of the Fourier series of any $f \in L^{\infty}(\mathbb{T})$ converges to f in the weak-* topology on $L^{\infty}(\mathbb{T})$ induced by $L^{1}(\mathbb{T})$. Thus any $f \in H^{\infty}(\mathbb{T})$ is a weak-* limit of polynomials in ζ (analyic polynomials) and hence M_{f} is a weak-* limit of polynomials in U.

On the other hand, the weak-* continuous linear form $T \rightarrow\left\langle T \zeta^{0}, \zeta^{-1}\right\rangle$ annihilates all polynomials in U, V (since $\left\langle U^{k} V^{l} \zeta^{0}, \zeta^{-1}\right\rangle=\left\langle U^{k} \zeta^{0}, \zeta^{-1}\right\rangle=0$ when $k \geqslant 0$) but does not annihilate $U^{*}\left(\right.$ since $\left\langle U^{*} \zeta^{0}, \zeta^{-1}\right\rangle=1$).
p_nest Proposition 3. The w^{*}-closed subalgebra of $\mathcal{B}\left(L^{2}(\mathbb{T})\right.$ generated by $\{U, V\}$ is the nest algebra $\operatorname{Alg} \mathcal{N}$ of all operators $T \in \mathcal{B}\left(L^{2}(\mathbb{T})\right)$ leaving all elements of $\mathcal{N}=\left\{N_{n}: n \in \mathbb{Z}\right\}$ invariant, where $N_{n}=\left\{f \in L^{2}(\mathbb{T}): \hat{f}(k)=0, k<n\right\}$.

Proof. Clearly, U and V belong to $\operatorname{Alg} \mathcal{N}$, hence so does the weak* closed operator algebra that they generate.

By Lemma 1, the weak* closed algebra generated by V is equal to \mathcal{D}. On the other hand, if $a \in c_{00}(\mathbb{Z})$, the matrix of $U^{l} D_{a}$ with respect to the basis $\left\{\zeta^{k}\right\}_{k \in \mathbb{Z}}$ has the sequence a at the l-th diagonal below the main diagonal

[^1]and zeros elsewhere. It follows that all lower triangular matrix units belong to the weak* closed algebra generated by U and V, and hence it equals $\operatorname{Alg} \mathcal{N}$.
Remark 4. Observe that $\operatorname{Lat}\{U, V\}=\left\{\zeta^{k} H^{2}: k \in \mathbb{Z}\right\}$. Thus, every invariant subspace of $\{U, V\}$ is actually reduced by the semigroup generated by V; hence it is invariant under the "larger" semigroup generated by $\left\{U, V, V^{-1}\right\}$.

After Fourier transform $L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$:

$$
U \sim\left[\begin{array}{ccccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & 0 & 0 & 0 & 0 & 0 & \ldots \\
\cdots & 1 & 0 & 0 & 0 & 0 & \ldots \\
\cdots & 0 & 1 & 0 & 0 & 0 & \ldots \\
\cdots & 0 & 0 & 1 & 0 & 0 & \ldots \\
\cdots & 0 & 0 & 0 & 1 & 0 & \ldots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right], V \sim\left[\begin{array}{ccccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & \bar{\lambda}^{2} & 0 & 0 & 0 & 0 & \ldots \\
\cdots & 0 & \bar{\lambda} & 0 & 0 & 0 & \ldots \\
\cdots & 0 & 0 & \mathbf{1} & 0 & 0 & \ldots \\
\cdots & 0 & 0 & 0 & \lambda & 0 & \ldots \\
\cdots & 0 & 0 & 0 & 0 & \lambda^{2} & \ldots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

We write \mathcal{A}_{θ}^{+}and $\mathcal{A}_{\theta}^{++}$for the norm-closed subalgebras of \mathcal{A}_{θ} generated by $\left\{U, V, V^{*}\right\}$ and $\{U, V, I\}$ respectively.

Now \mathcal{N} becomes the \mathbb{Z}-ordered nest on $\ell^{2}(\mathbb{Z})$ with non-trivial elements $N_{m}, m \in \mathbb{Z}$ where $N_{m}=\left[e_{k}: k \geqslant m\right] ;$ thus $U\left(N_{m}\right)=N_{m+1} \subset N_{m}$ and $V\left(N_{m}\right)=N_{m}$. It follows that U, V and V^{*} lie in the nest algebra $\operatorname{Alg}(\mathcal{N})$ and so

$$
\mathcal{A}_{\theta}^{++} \subset \mathcal{A}_{\theta}^{+} \subseteq \mathcal{A}_{\theta} \cap \operatorname{Alg}(\mathcal{N}) .
$$

We have shown in Proposition 3 that the weak-* closure of $\mathcal{A}_{\theta}^{++}$is the whole of $\operatorname{Alg}(\mathcal{N})$, and so the same is true for the w^{*}-closure of \mathcal{A}_{θ}^{+}(but this might be obvious anyway). Thus

$$
W^{*}\left(\mathcal{A}_{\theta}^{++}\right)=W^{*}\left(\mathcal{A}_{\theta}^{+}\right)=\operatorname{Alg}(\mathcal{N}) .
$$

On the other hand, since \mathcal{A}_{θ} is an irreducible C*-algebra, its w* closure is $B(H)$.

For the proof of the following Proposition, we shall need a conditional expectation $\Psi: \mathcal{A}_{\theta} \rightarrow C^{*}(V)$. This is constructed as follows (see [1, Theorem VI.1.1] for more details):

There is a *-automorphism ρ_{t} of \mathcal{A}_{θ} given on the generators by $\rho_{t}(U)=$ $e^{i t} U$ and $\rho_{t}(V)=V$. Moreover for all $a \in \mathcal{A}_{\theta}$ the map $t \rightarrow \rho_{t}(a)$ is (norm-) continuous. Thus the integral

$$
\Psi(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \rho_{t}(a) d t
$$

exists. It is easy to see that Ψ is linear positive unital and $\|\Psi\|=1$.
On easily verifies that if $a=\sum_{k, l} c_{k, l} V^{k} U^{l}$ is a finite sum,

$$
\Psi(a)=\sum_{k, 0} c_{k, 0} V^{k} U^{0}
$$

It follows by continuity of Ψ that it is an idempotent mapping \mathcal{A}_{θ} onto the C^{*}-subalgebra $C^{*}(V)$ generated by V; it is a conditional expectation.

The following formula holds for all $a \in \mathcal{A}_{\theta}$

$$
\Psi(a)=\lim _{n} \frac{1}{2 n+1} \sum_{|k| \leqslant n} V^{k} a V^{-k} .
$$

This can be verified when a is a finite sum as above; ${ }^{6}$ hence it is valid on the whole of \mathcal{A}_{θ} by continuity.

Any $a \in \mathcal{A}_{\theta}$ has a formal expansion:

$$
a \sim \sum_{n \in \mathbb{Z}} \Psi\left(a U^{-n}\right) U^{n} .
$$

When $a=\sum_{k, l} c_{k, l} V^{k} U^{l}$ is a finite sum, one verifies that the above formula is in fact an equality.

For general $a \in \mathcal{A}_{\theta}$, the means of the partial sums sum $s_{k}(a)=\sum_{|n| \leqslant k} \Psi\left(a U^{-n}\right) U^{n}$ converge in norm to a. Indeed,

$$
\begin{aligned}
\sigma_{m}(a) & :=\frac{1}{m+1}\left(s_{0}(a)+\cdots+s_{m}(a)\right) \\
& =\sum_{|n| \leqslant m}\left(1-\frac{|n|}{m+1}\right) \Psi\left(a U^{-n}\right) U^{n} \\
& =\sum_{|n| \leqslant m}\left(1-\frac{|n|}{m+1}\right) \int_{0}^{2 \pi} \rho_{t}\left(a U^{-n}\right) \frac{d t}{2 \pi} U^{n} \\
& =\sum_{|n| \leqslant m}\left(1-\frac{|n|}{m+1}\right) \int_{0}^{2 \pi} \rho_{t}(a) e^{-i n t} \frac{d t}{2 \pi}=\int_{0}^{2 \pi} \rho_{t}(a) k_{n}(t) \frac{d t}{2 \pi}
\end{aligned}
$$

[^2]where k_{n} is Féjer's kernel. We all know that if f is continuous (even Banachspace valued), then $\int_{0}^{2 \pi} f(t) K_{n}(t) \frac{d t}{2 \pi} \rightarrow f(0)$ and so $\sigma_{n}(a) \rightarrow \rho_{0}(a)=a$.
Proposition 5. We have $\mathcal{A}_{\theta}^{+}=\mathcal{A}_{\theta} \cap \operatorname{Alg}(\mathcal{N})$. In other words \mathcal{A}_{θ}^{+}is a nest subalgebra of a C^{*}-algebra.

Proof. Suppose that $a \in \mathcal{A}_{\theta} \cap \operatorname{Alg}(\mathcal{N})$, so $a\left(N_{m}\right) \subseteq N_{m}$ for all $m \in \mathbb{Z}$.
In order to show that $a \in \mathcal{A}_{\theta}^{+}$, it suffices by the discussion above to show that in the expansion $\sum_{n \in \mathbb{Z}} \psi\left(a U^{-n}\right) U^{n}$ the terms $\psi\left(a U^{-n}\right) U^{n}$ vanish when $n<0$.
Claim. Since $a\left(N_{m}\right) \subseteq N_{m}$, the same holds for each monomial $\psi\left(a U^{-n}\right) U^{n}$. Proof. Recall that $\psi\left(a U^{-n}\right)$ is the limit of convex sums of terms $V^{k} a U^{-n} V^{-k}$ for which we have

$$
\begin{aligned}
V^{k} a U^{-n} V^{-k}\left(N_{m}\right) & =V^{k} a U^{-n}\left(N_{m}\right) \subseteq V^{k} a\left(N_{m-n}\right) \\
& \subseteq V^{k}\left(N_{m-n}\right)=N_{m-n}
\end{aligned}
$$

and therefore $\psi\left(a U^{-n}\right)\left(N_{m}\right) \subseteq N_{m-n}$ so that $\psi\left(a U^{-n}\right) U^{n}\left(N_{m}\right) \subseteq \psi\left(a U^{-n}\right) N_{m+n} \subseteq N_{m}$ as claimed.

Now $\psi\left(a U^{-n}\right) \in C^{*}(V)$; write $\psi\left(a U^{-n}\right)=f_{n}(V)$ for some continuous function f_{n} on the spectrum of V (which is actually the whole of \mathbb{T}; why?).

By the Claim, for each $m \in \mathbb{Z}$, we have $f_{n}(V) U^{n} e_{m} \in N_{m}$ and so $\left\langle f_{n}(V) U^{n} e_{m}, e_{m+p}\right\rangle=0$ when $p<0$. But $f_{n}(V) U^{n} e_{m}=f_{n}(V) e_{n+m}=$ $f_{n}\left(\beta^{n+m}\right) e_{n+m}$ (where we write $\beta=e^{i \theta}$) and so we obtain

$$
0=\left\langle f_{n}(V) U^{n} e_{m}, e_{m+p}\right\rangle=\left\langle f_{n}\left(\beta^{m+n}\right) e_{m+n}, e_{m+p}\right\rangle=f_{p}\left(\beta^{m+p}\right) .
$$

Since this holds for all $m \in \mathbb{Z}$ and θ is irrational and f_{p} is continuous, it follows that f_{p} must vanish identically. Thus $f_{p}(V)=\psi\left(a U^{-p}\right)=0$ for all $p<0$, and so $a \sim \sum_{n \geqslant 0} \psi\left(a U^{-n}\right) U^{n}$ is in \mathcal{A}_{θ}^{+}.
Proposition 6. The inclusion $\mathcal{A}_{\theta}^{++} \subset \mathcal{A}_{\theta}^{+}$is proper.
Proof. If $p(U, V)=\sum_{k, l \geqslant 0} c_{k, l} U^{k} V^{l}$ is a polynomial in $\mathcal{A}_{\theta}^{++}$, then the diagonal of $V^{*}-p(U, V)$ is the operator $V^{*}-\sum_{l \geqslant 0} c_{0, l} V^{n}$ whose norm is at least 1. Thus $\left\|V^{*}-p(U, V)\right\| \geqslant 1$ for every polynomial in $\mathcal{A}_{\theta}^{++}$, showing that V^{*} is (in \mathcal{A}_{θ}^{+}but) not in $\mathcal{A}_{\theta}^{++}$.

In more detail, for each $n \in \mathbb{Z}$ (writing $\beta=e^{i \theta}$ again)

$$
\begin{aligned}
\left\langle\left(V^{*}-p(U, V)\right) e_{n}, e_{n}\right\rangle & =\left\langle V^{*} e_{n}, e_{n}\right\rangle-\sum_{k, l \geqslant 0} c_{k, l}\left\langle U^{k} V^{l} e_{n}, e_{n}\right\rangle \\
& =\left\langle\bar{\beta}^{n} e_{n}, e_{n}\right\rangle-\sum_{k, l \geqslant 0} c_{k, l}\left\langle U^{k} \beta^{l n} e_{n}, e_{n}\right\rangle \\
& =\bar{\beta}^{n}-\sum_{k, l \geqslant 0} c_{k, l} \beta^{l n}\left\langle e_{n+k}, e_{n}\right\rangle=\bar{\beta}^{n}-\sum_{l \geqslant 0} c_{0, l} \beta^{l n}
\end{aligned}
$$

and thus

$$
\left\|V^{*}-p(U, V)\right\| \geqslant \sup _{n}\left|\left\langle\left(V^{*}-p(U, V)\right) e_{n}, e_{n}\right\rangle\right|=\sup _{n}\left|\bar{\beta}^{n}-\sum_{l \geqslant 0} c_{0, l} \beta^{l n}\right|
$$

But since $\left\{\beta^{n}: n \in \mathbb{Z}\right\}$ is dense in \mathbb{T}, the last supremum is the same as $\sup \left\{\left|\bar{z}-\sum_{l \geqslant 0} c_{0, l} z^{l}\right|: z \in \mathbb{T}\right\}$. But this is at least 1. ${ }^{7}$ Therefore finally

$$
\left\|V^{*}-p(U, V)\right\| \geqslant 1
$$

for any polynomial $p(U, V)$, and so V^{*} is not in the closure $\mathcal{A}_{\theta}^{++}$of such polynomials.

References

[1] Kenneth R. Davidson. C^{*}-algebras by example, volume 6 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.
[2] Justin Peters. Semicrossed products of C^{*}-algebras. J. Funct. Anal. 59(3):498-534, 1984.

```
\({ }^{7}\) The functions \(\zeta_{k}(z)=z^{k}\) are orthonormal in \(L^{2}(\mathbb{T})\), and so
    \(\sup \left\{\left|\bar{z}-\sum_{l \geqslant 0} c_{0, l} z^{l}\right|: z \in \mathbb{T}\right\}^{2}=\left\|\zeta_{-1}-\sum_{l \geqslant 0} c_{0, l} \zeta_{l}\right\|_{\infty}^{2}\)
    \(\geqslant\left\|\zeta_{-1}-\sum_{l \geqslant 0} c_{0, l} \zeta_{l}\right\|_{2}^{2}=\left\|\zeta_{-1}\right\|_{2}^{2}+\sum_{l \geqslant 0} c_{0, l}\left\|\zeta_{l}\right\|_{2}^{2} \geqslant 1\).
```


[^0]: ${ }^{1}$ semiuv, March 29, 2015, compiled April 6, 2015
 ${ }^{2}$ This is non-trivial; one shows (see e.g. [2]) that the norm of the semicrossed product (defined as a sup over all covariant pairs (π, T) with T a contraction coincides with the (a priori smaller) norm of the crossed product, where the sup is taken over (π, U) with U unitary.
 ${ }^{3}$ This is a minor technicality.

[^1]: ${ }^{4} f \rightarrow \hat{f}: L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$ is the Fourier transform.
 ${ }^{5}$ This also follows from Proposition 3, since U^{*} does not leave N_{m} invariant.

[^2]: ${ }^{6}$ use the fact that $\lim _{n} \frac{1}{2 n+1} \sum_{|k| \leqslant n} e^{i k s}=0$ unless $s=0$

