Notes on the irrational rotation nonselfadjoint algebras

Aristides Katavolos

(partly based on joint work with M. Anoussis and I.G. Todorov)

As before, ¹ fix $\theta \in \mathbb{R}$ s.t. $\frac{\theta}{2\pi}$ is irrational. Let $\mathcal{A} = C(\mathbb{T}), G = \mathbb{Z}$ and

 $(\alpha_n f)(z) = f(e^{in\theta}z) \quad (f \in \mathcal{A}, n \in \mathbb{Z}, z \in \mathbb{T}).$

The semicrossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_+$ is a closed subalgebra of the irrational rotation algebra $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$ (why?).²

Thus the representation $\pi \times \lambda : C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} \to \mathcal{B}(L^2(\mathbb{T}) \text{ restricts to an isometric representation of } C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_+ \text{ given by (flip)}^3$

$$(\pi \times \lambda)(\sum_{k=0}^{n} \delta_k \otimes f_k) = \sum_{k=0}^{n} V^k \pi(f_k)$$

where V is the generator λ_1 of $\{\lambda_n : n \in \mathbb{Z}_+\}$ given by

$$(Vg)(z) = g(e^{i\theta}z), \quad g \in L^2(\mathbb{T}).$$

The C*-algebra $C(\mathbb{T})$ is the closed algebra generated by ζ and $\overline{\zeta}$, where $\zeta(z) = z$; hence $\pi(C(\mathbb{T})) \subseteq \mathcal{B}(L^2(\mathbb{T}))$ is generated by $U := \pi(\zeta)$ and $U^* = \pi(\overline{\zeta})$. Therefore $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_+$ is generated by $\{U, U^*, V\}$ and the crossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} := \mathcal{A}_{\theta}$ is generated by $\{U, U^*, V, V^*\}$. They satisfy:

$$UV = e^{i\theta}VU$$
 (the Weyl relation).

For $\mu \in \mathbb{T}$, let $V_{\mu} : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ be given by $V_{\mu}f = f_{\mu}$ where $f_{\mu}(z) = f(\mu z)$. The map $\mu \to V_{\mu}$ is a SOT-continuous group homomorphism into

¹semiuv, March 29, 2015, compiled April 6, 2015

² This is non-trivial; one shows (see e.g. [2]) that the norm of the semicrossed product (defined as a sup over all covariant pairs (π, T) with T a contraction coincides with the (a priori smaller) norm of the crossed product, where the sup is taken over (π, U) with U unitary.

³This is a minor technicality.

the unitary group of $\mathcal{B}(L^2(\mathbb{T}))$; hence it is weak* continuous (because it takes values in a ball). Observe that $V_{e^{i\theta}} = V$. Note that $(\widehat{V_{\mu}f})(n) = \mu^n \widehat{f}(n)$. ⁴ More generally, if $a = (a_n)_{n \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, let D_a be given by $(\widehat{D_af})(n) = a_n \widehat{f}(n)$; thus D_a is the image, under conjugation by the Fourier transform, of the diagonal operator on $\ell^2(\mathbb{Z})$ given by $(x_j) \to (a_j x_j)$. Let $\mathcal{D} = \{D_a : a \in \ell^{\infty}(\mathbb{Z})\}$. This is a masa on $L^2(\mathbb{T})$ (being unit. equivalent to the diagonal masa on $\ell^2(\mathbb{Z})$.)

l_rotgen

Lemma 1. The weak* closed operator algebra on $L^2(\mathbb{T})$ generated by V coincides with \mathcal{D} . In particular, it contains V^* .

Proof. Since $\mu \to V_{\mu}$ is weak^{*} continuous and $\{e^{in\theta} : n \in \mathbb{N}\}$ is dense in \mathbb{T} , the weak^{*} closed algebra generated by the set $\{V^n : n \in \mathbb{N}\}$ equals $\{V_{\mu} : \mu \in \mathbb{T}\}$ and hence is selfadjoint. Since it is weak^{*} closed, it is equal to its bicommutant which is clearly \mathcal{D} .

Remark 2. By contrast, the weak* closed operator algebra on $L^2(\mathbb{T})$ generated by U is non-selfadjoint; it is equal to $\{M_f : f \in H^{\infty}(\mathbb{T})\}$. In fact, the weak* closed operator algebra generated by U and V does not contain U*. 5

Proof. Recall that $H^{\infty}(\mathbb{T}) = \{ f \in L^{\infty}(\mathbb{T}) : \hat{f}(k) = 0 \text{ for } k < 0 \}.$

It is well-known that the Cesaro means of the Fourier series of any $f \in L^{\infty}(\mathbb{T})$ converges to f in the weak-* topology on $L^{\infty}(\mathbb{T})$ induced by $L^{1}(\mathbb{T})$. Thus any $f \in H^{\infty}(\mathbb{T})$ is a weak-* limit of polynomials in ζ (analyic polynomials) and hence M_{f} is a weak-* limit of polynomials in U.

On the other hand, the weak-* continuous linear form $T \to \langle T\zeta^0, \zeta^{-1} \rangle$ annihilates all polynomials in U, V (since $\langle U^k V^l \zeta^0, \zeta^{-1} \rangle = \langle U^k \zeta^0, \zeta^{-1} \rangle = 0$ when $k \ge 0$) but does not annihilate U^* (since $\langle U^* \zeta^0, \zeta^{-1} \rangle = 1$).

p_nest

Proposition 3. The w*-closed subalgebra of $\mathcal{B}(L^2(\mathbb{T}))$ generated by $\{U, V\}$ is the nest algebra Alg \mathcal{N} of all operators $T \in \mathcal{B}(L^2(\mathbb{T}))$ leaving all elements of $\mathcal{N} = \{N_n : n \in \mathbb{Z}\}$ invariant, where $N_n = \{f \in L^2(\mathbb{T}) : \hat{f}(k) = 0, k < n\}$.

Proof. Clearly, U and V belong to Alg \mathcal{N} , hence so does the weak* closed operator algebra that they generate.

By Lemma 1, the weak* closed algebra generated by V is equal to \mathcal{D} . On the other hand, if $a \in c_{00}(\mathbb{Z})$, the matrix of $U^l D_a$ with respect to the basis $\{\zeta^k\}_{k\in\mathbb{Z}}$ has the sequence a at the *l*-th diagonal below the main diagonal

⁴ $f \to \hat{f} : L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ is the Fourier transform.

⁵ This also follows from Proposition 3, since U^* does not leave N_m invariant.

and zeros elsewhere. It follows that all lower triangular matrix units belong to the weak^{*} closed algebra generated by U and V, and hence it equals $\operatorname{Alg} \mathcal{N}$.

Remark 4. Observe that $Lat\{U, V\} = \{\zeta^k H^2 : k \in \mathbb{Z}\}$. Thus, every invariant subspace of $\{U, V\}$ is actually reduced by the semigroup generated by V; hence it is invariant under the "larger" semigroup generated by $\{U, V, V^{-1}\}$.

After Fourier transform $L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$:

	·	÷	÷	÷	÷	÷			[·	÷	÷	÷	÷	÷	
		0	0	0	0	0				$ar{\lambda}^2$	0	0	0	0	
		1	0	0	0	0				0	$ar{\lambda}$	0	0	0	
$U \sim$		0	1	0	0	0		, $V \sim$		0	0	1	0	0	
		0	0	1	0	0				0	0	0	λ	0	
		0	0	0	1	0				0	0	0	0	λ^2	
		÷	÷	÷	÷	÷	·.			÷	÷	÷	÷	÷	·.]

We write \mathcal{A}_{θ}^+ and $\mathcal{A}_{\theta}^{++}$ for the norm-closed subalgebras of \mathcal{A}_{θ} generated by $\{U, V, V^*\}$ and $\{U, V, I\}$ respectively.

Now \mathcal{N} becomes the \mathbb{Z} -ordered nest on $\ell^2(\mathbb{Z})$ with non-trivial elements $N_m, m \in \mathbb{Z}$ where $N_m = [e_k : k \ge m]$; thus $U(N_m) = N_{m+1} \subset N_m$ and $V(N_m) = N_m$. It follows that U, V and V^* lie in the nest algebra $Alg(\mathcal{N})$ and so

$$\mathcal{A}_{\theta}^{++} \subset \mathcal{A}_{\theta}^{+} \subseteq \mathcal{A}_{\theta} \cap Alg(\mathcal{N}).$$

We have shown in Proposition 3 that the weak-* closure of $\mathcal{A}_{\theta}^{++}$ is the whole of $Alg(\mathcal{N})$, and so the same is true for the w*-closure of \mathcal{A}_{θ}^{+} (but this might be obvious anyway). Thus

$$W^*(\mathcal{A}^{++}_{\theta}) = W^*(\mathcal{A}^{+}_{\theta}) = Alg(\mathcal{N}).$$

On the other hand, since \mathcal{A}_{θ} is an irreducible C*-algebra, its w* closure is B(H).

For the proof of the following Proposition, we shall need a conditional expectation $\Psi : \mathcal{A}_{\theta} \to C^*(V)$. This is constructed as follows (see [1, Theorem VI.1.1] for more details):

There is a *-automorphism ρ_t of \mathcal{A}_{θ} given on the generators by $\rho_t(U) = e^{it}U$ and $\rho_t(V) = V$. Moreover for all $a \in \mathcal{A}_{\theta}$ the map $t \to \rho_t(a)$ is (norm-) continuous. Thus the integral

$$\Psi(a) = \frac{1}{2\pi} \int_0^{2\pi} \rho_t(a) dt$$

exists. It is easy to see that Ψ is linear positive unital and $\|\Psi\| = 1$.

On easily verifies that if $a = \sum_{k,l} c_{k,l} V^k U^l$ is a finite sum,

$$\Psi(a) = \sum_{k,0} c_{k,0} V^k U^0$$

It follows by continuity of Ψ that it is an idempotent mapping \mathcal{A}_{θ} onto the C*-subalgebra $C^*(V)$ generated by V; it is a conditional expectation.

The following formula holds for all $a \in \mathcal{A}_{\theta}$

$$\Psi(a) = \lim_{n} \frac{1}{2n+1} \sum_{|k| \le n} V^{k} a V^{-k}$$

This can be verified when a is a finite sum as above; ⁶ hence it is valid on the whole of \mathcal{A}_{θ} by continuity.

Any $a \in \mathcal{A}_{\theta}$ has a formal expansion:

$$a \sim \sum_{n \in \mathbb{Z}} \Psi(aU^{-n})U^n.$$

When $a = \sum_{k,l} c_{k,l} V^k U^l$ is a finite sum, one verifies that the above formula is in fact an equality.

For general $a \in \mathcal{A}_{\theta}$, the means of the partial sums sum $s_k(a) = \sum_{|n| \leq k} \Psi(aU^{-n})U^n$ converge in norm to a. Indeed,

$$\begin{aligned} \sigma_m(a) &:= \frac{1}{m+1} (s_0(a) + \dots + s_m(a)) \\ &= \sum_{|n| \le m} \left(1 - \frac{|n|}{m+1} \right) \Psi(aU^{-n}) U^n \\ &= \sum_{|n| \le m} \left(1 - \frac{|n|}{m+1} \right) \int_0^{2\pi} \rho_t(aU^{-n}) \frac{dt}{2\pi} U^n \\ &= \sum_{|n| \le m} \left(1 - \frac{|n|}{m+1} \right) \int_0^{2\pi} \rho_t(a) e^{-int} \frac{dt}{2\pi} = \int_0^{2\pi} \rho_t(a) k_n(t) \frac{dt}{2\pi} \end{aligned}$$

⁶use the fact that $\lim_{n} \frac{1}{2n+1} \sum_{|k| \leq n} e^{iks} = 0$ unless s = 0

where k_n is Féjer's kernel. We all know that if f is continuous (even Banach-space valued), then $\int_0^{2\pi} f(t) K_n(t) \frac{dt}{2\pi} \to f(0)$ and so $\sigma_n(a) \to \rho_0(a) = a$.

Proposition 5. We have $\mathcal{A}_{\theta}^+ = \mathcal{A}_{\theta} \cap Alg(\mathcal{N})$. In other words \mathcal{A}_{θ}^+ is a nest subalgebra of a C^* -algebra.

Proof. Suppose that $a \in \mathcal{A}_{\theta} \cap Alg(\mathcal{N})$, so $a(N_m) \subseteq N_m$ for all $m \in \mathbb{Z}$.

In order to show that $a \in \mathcal{A}_{\theta}^+$, it suffices by the discussion above to show that in the expansion $\sum_{n \in \mathbb{Z}} \psi(aU^{-n})U^n$ the terms $\psi(aU^{-n})U^n$ vanish when n < 0.

Claim. Since $a(N_m) \subseteq N_m$, the same holds for each monomial $\psi(aU^{-n})U^n$. *Proof.* Recall that $\psi(aU^{-n})$ is the limit of convex sums of terms $V^k aU^{-n}V^{-k}$ for which we have

$$V^{k}aU^{-n}V^{-k}(N_{m}) = V^{k}aU^{-n}(N_{m}) \subseteq V^{k}a(N_{m-n})$$
$$\subseteq V^{k}(N_{m-n}) = N_{m-n}$$

and therefore $\psi(aU^{-n})(N_m) \subseteq N_{m-n}$ so that $\psi(aU^{-n})U^n(N_m) \subseteq \psi(aU^{-n})N_{m+n} \subseteq N_m$ as claimed.

Now $\psi(aU^{-n}) \in C^*(V)$; write $\psi(aU^{-n}) = f_n(V)$ for some continuous function f_n on the spectrum of V (which is actually the whole of \mathbb{T} ; why?).

By the Claim, for each $m \in \mathbb{Z}$, we have $f_n(V)U^n e_m \in N_m$ and so $\langle f_n(V)U^n e_m, e_{m+p} \rangle = 0$ when p < 0. But $f_n(V)U^n e_m = f_n(V)e_{n+m} = f_n(\beta^{n+m})e_{n+m}$ (where we write $\beta = e^{i\theta}$) and so we obtain

$$0 = \langle f_n(V)U^n e_m, e_{m+p} \rangle = \langle f_n(\beta^{m+n})e_{m+n}, e_{m+p} \rangle = f_p(\beta^{m+p}).$$

Since this holds for all $m \in \mathbb{Z}$ and θ is irrational and f_p is continuous, it follows that f_p must vanish identically. Thus $f_p(V) = \psi(aU^{-p}) = 0$ for all p < 0, and so $a \sim \sum_{n \ge 0} \psi(aU^{-n})U^n$ is in \mathcal{A}^+_{θ} . \Box

Proposition 6. The inclusion $\mathcal{A}_{\theta}^{++} \subset \mathcal{A}_{\theta}^{+}$ is proper.

Proof. If $p(U, V) = \sum_{k,l \ge 0} c_{k,l} U^k V^l$ is a polynomial in $\mathcal{A}_{\theta}^{++}$, then the diagonal of $V^* - p(U, V)$ is the operator $V^* - \sum_{l \ge 0} c_{0,l} V^n$ whose norm is at least 1. Thus $||V^* - p(U, V)|| \ge 1$ for every polynomial in $\mathcal{A}_{\theta}^{++}$, showing that V^* is (in \mathcal{A}_{θ}^+ but) not in $\mathcal{A}_{\theta}^{++}$.

In more detail, for each $n \in \mathbb{Z}$ (writing $\beta = e^{i\theta}$ again)

$$\begin{split} \langle (V^* - p(U, V))e_n, e_n \rangle &= \langle V^* e_n, e_n \rangle - \sum_{k,l \ge 0} c_{k,l} \left\langle U^k V^l e_n, e_n \right\rangle \\ &= \left\langle \bar{\beta}^n e_n, e_n \right\rangle - \sum_{k,l \ge 0} c_{k,l} \left\langle U^k \beta^{ln} e_n, e_n \right\rangle \\ &= \bar{\beta}^n - \sum_{k,l \ge 0} c_{k,l} \beta^{ln} \left\langle e_{n+k}, e_n \right\rangle = \bar{\beta}^n - \sum_{l \ge 0} c_{0,l} \beta^{ln} \end{split}$$

and thus

$$||V^* - p(U, V)|| \ge \sup_{n} |\langle (V^* - p(U, V))e_n, e_n \rangle| = \sup_{n} |\bar{\beta}^n - \sum_{l \ge 0} c_{0,l}\beta^{ln}|.$$

But since $\{\beta^n : n \in \mathbb{Z}\}$ is dense in \mathbb{T} , the last supremum is the same as $\sup\{|\bar{z} - \sum_{l \ge 0} c_{0,l} z^l| : z \in \mathbb{T}\}$. But this is at least 1.⁷ Therefore finally

$$\|V^* - p(U, V)\| \ge 1$$

for any polynomial p(U, V), and so V^* is not in the closure $\mathcal{A}_{\theta}^{++}$ of such polynomials.

References

- Kenneth R. Davidson. C*-algebras by example, volume 6 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.
- [2] Justin Peters. Semicrossed products of C*-algebras. J. Funct. Anal. 59(3):498–534, 1984.

$$\sup\{|\bar{z} - \sum_{l \ge 0} c_{0,l} z^{l}| : z \in \mathbb{T}\}^{2} = \left\|\zeta_{-1} - \sum_{l \ge 0} c_{0,l} \zeta_{l}\right\|_{\infty}^{2}$$
$$\geqslant \left\|\zeta_{-1} - \sum_{l \ge 0} c_{0,l} \zeta_{l}\right\|_{2}^{2} = \left\|\zeta_{-1}\right\|_{2}^{2} + \sum_{l \ge 0} c_{0,l} \left\|\zeta_{l}\right\|_{2}^{2} \ge 1.$$

⁷ The functions $\zeta_k(z) = z^k$ are orthonormal in $L^2(\mathbb{T})$, and so