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von Neumann algebras

If ¥ C #(H), its commutant .’ consists of all T € Z(H)
satisfying TS = ST for all S € .¥. ltis clear that .’ is always a
unital algebra, closed in the weak operator topology (WOT): that
is, if ;e " and (Tix,y) — (Tx,y) forall x,y e H,then T € ..
Also, if .7 is selfadjoint, so is ..

A von Neumann algebra is a selfadjoint unital subalgebra of
2%(H) which is closed in the WOT topology.

Theorem (von Neumann’s bicommutant theorem)

If o7 C B(H) is a selfadjoint unital algebra and T € %(H), the
following are equivalent:

(@ Tedd.

(b) For each & € 2, the operator T is in the closed linear span
of {Ax : Ac o}.

(c) T is in the WOT-closure of <7 .



The von Neumann algebra of a group

Let ' G be a countable (discrete) group. (Think of Z or F».)

H=G)={f:G—C: Y |f(t)]? <e}.
teG

Then 72(G) has ON basis {§; : t € G}.
For s € G define a map

AS : 51‘ — 531‘

and extend linearly. This is an ¢ isometry, so extends to
As : 12(G) — 2(G). But it is onto because AsA; = Agt SO
AsAg-1 = I, hence unitary.

For fe 2(G), (Asf)(t)=f(s71t).
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The von Neumann algebra of a group

Definition
The von Neumann algebra generated by the set of unitaries

{A+: te G}
is called the von Neumann algebra vN(G) = Z2(G) of the group.

Note that

VN(G) =span{A; : t € G}Wor

by the bicommutant theorem (because this span is a unital
*-algebra).



The von Neumann algebra of a group

If Ae B(H) is a finite sum

A=Y fa(u)hy

ueG

then its matrix

s = (A8, 8s) = Y fa(u) (Sur, 8s) = fa(st™")

ueG

is ‘constant along diagonals’. This formula remains true for any
A€ VN(G); now fy € £2(G) (because Ade = Y, fa(u)d, € 2(G)).
The map A — fa is linear, 1-1, contractive, dense range, but not
onto ¢2(G). (Consider e.g. Z.)



The commutant

The commutant ((£(G))’ of Z(G)
(Z(GQ)) :={TeB(H): TA= ATVAc Z(G)}

is Z(@), the von Neumann algebra generated by all right
translations p;, t € G where (p:f)(s) = f(st), f € H. is this OK?

Proof. Note that

Ps(Atdu) = ps(6tu) = Stw)s
At(psbu) = At(Sus) = 61(us)
SO PsAt = Atps.

Thus At € (Z(G)) and so Z(G) C (#Z(G))'. Conversely, ~~



The commutant

take T € (#Z(G))'. To show T € Z(G).
Let x = T8, € /2(G).
Given y € H, we define

xxy =) x(9)y(h)n

h7g

as a formal series. Then

(x*y)(k Zx (h)Sgn(k) = Zx y(g 'k)=Y x(kh
h

Since clearly ¥4 |y(9~"k)[> = nly(h)|? = |ly||5 and similarly
Yrlx(kh~ )2 = ||x]|[3, it follows that for all k € G,

(oxy)(K) < lIxlzllyll - forall ke G. (1)



The commutant

Note that for all g, h € G,
(X* 69)(h) = <X* 597 5h> = <Pg(X)a 6h> = <Pg(T5e)75h>
= (T(pgBe);0n) = (T dg,n)

Thus, for fixed h € G, the mappings y — (x*y)(h) and

y — (Ty,dy) agree when y runs through the orthonormal basis
{84 : g € G}. Since they are both continuous and linear, they
must agree on H, and so for all y € H we have

(xxy)(h)=(Ty,8s)  or (xxy)(h)=(Ty)(h)

forall he G, thatis Ty = xx y for all y € H. It follows that
T € Z(G). Indeed, for all X € Z(G)' and all t € G,

XT&:X X*6t <ZX 531) :ZX(S)X631

—ZX X)LS(S;‘ ZX 7[,5 XS[ X*(Xﬁt): TX(ST



The trace is the linear functional 7 defined on vN(G) by
T(A) = (Ade,8e) for all Ac vN(G).

It is a WOT-continuous state, it is faithful because

T(A*A)=0 <= Al =0 <= A% =Api0e =0 <— A=0

(8¢ separates vN(G)) and it is a trace, i.e.

1(AB) = 1(BA)  forall A BecvN(G).

(enough to check this when A = A¢, B = A;: obvious!).



Example of a non-type | factor: vN(F»)

The centre Z(G)N (£ (G)) consists of all (if any!) Ae Z(G)
such that f4 is constant on conjugacy classes

Ci={sts™':s¢c G}.

Example But when G = F,, all C;(t # e) are infinite; and since
fa € (2(F,), it must be constant!

Conclusion: vN(Fy) is a factor, like B(H).

But it has a finite faithful trace, with 7(vN(G)4) = [0, 1], unlike
B(¢?).

For example, if u € vN(G) is isometric, it is unitary.



€ group-measure space construction

on Neumann

Let (X,., 1) be a countably separated measure space.
Let G be a countable group acting on X by measure-class
preserving bijections {¢; : t € G}.

So can define

Ur: L2(p) — L2(n) : Uef = ri(fodr)

duo ¢
du
Represent L~(u) and Gon H = L?(u) ® L?(G) ~ L2(X x G) by

where r; = > 0 u-a.e. (makes U; isometric).

ﬂ(f):Mf®l and W;=U;M

Define the crossed product & = L*(u) x G by t

of = {a(f), We: fe L°(0).t€ GY = (L a(f) Wy fx € L=, b € G}
k



Examples of factors

Assumptions on action:

(1) The action of Gon (X, ) is called an (essentially) free
action if for each t € G, t # e, the fixed point set

Ft = {XEXZ¢1(X):X} has u(Ft) =0.

(2) The action of G on (X, ) is called ergodic if

fel™(n),fogy=FfvteG = f=cst

(Equiv: (almost) invariant measurable sets are null or conull)

Proposition

Under these two assumptions </ is a factor (trivial centre).



Examples of factors

(/) Let X = Z with counting measure, G=7Z and ¢5(k) =k +n
(: transitive action); then:

o ~ B(3(7)).
(In) (Variation of (1)): Now X = G = Z;, (finite cyclic group);
obtain
o =~ B(3(Zn)) ~ Mp.

(Ily) Let (X,u) = (T, m), let G=Z and ¢p(2) = €™ z where
0 ¢ Q (:G preserves a finite measure).

</ has a normal faithful finite trace t with 7(#(</)) =[0,1].
(IL.) Let (X,u)=(R,m),let G=Q and ¢q(x)=x+q (: G
preserves only an infinite but o-finite measure).

</ has a normal faithful semifinite trace © with

(2 (<)) =[0,°.

(I (X,u)=(R,m), let G= {¢nq: n€7Z,q € Q} where, for a
fixed a> 1, ¢nq(x) = a"’x+q (: G preserves no o-finite
measure).
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