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von Neumann algebras

If S ⊆B(H), its commutant S ′ consists of all T ∈B(H)
satisfying TS = ST for all S ∈S . It is clear that S ′ is always a
unital algebra, closed in the weak operator topology (WOT): that
is, if Ti ∈S ′ and 〈Tix ,y〉 → 〈Tx ,y〉 for all x ,y ∈ H, then T ∈S .
Also, if S is selfadjoint, so is S ′.

A von Neumann algebra is a selfadjoint unital subalgebra of
B(H) which is closed in the WOT topology.

Theorem (von Neumann’s bicommutant theorem)

If A ⊆B(H) is a selfadjoint unital algebra and T ∈B(H), the
following are equivalent:
(a) T ∈A ′′.
(b) For each ξ ∈H , the operator T is in the closed linear span
of {Ax : A ∈A }.
(c) T is in the WOT-closure of A .



The von Neumann algebra of a group

Let 1 G be a countable (discrete) group. (Think of Z or F2.)

H = `2(G) = {f : G→ C : ∑
t∈G
|f (t)|2 < ∞} .

Then `2(G) has ON basis {δt : t ∈G}.
For s ∈G define a map

λs : δt → δst

and extend linearly. This is an `2 isometry, so extends to
λs : `

2(G)→ `2(G). But it is onto because λsλt = λst so
λsλs−1 = I, hence unitary.

For f ∈ `2(G), (λsf )(t) = f (s−1t).
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The von Neumann algebra of a group

Definition

The von Neumann algebra generated by the set of unitaries

{λt : t ∈G}

is called the von Neumann algebra vN(G) = L (G) of the group.

Note that
vN(G) = span{λt : t ∈G}wot

by the bicommutant theorem (because this span is a unital
*-algebra).



The von Neumann algebra of a group

If A ∈ B(H) is a finite sum

A = ∑
u∈G

fA(u)λu

then its matrix

as,t = 〈Aδt ,δs〉= ∑
u∈G

fA(u)〈δut ,δs〉= fA(st−1)

is ‘constant along diagonals’. This formula remains true for any
A ∈ vN(G); now fA ∈ `2(G) (because Aδe = ∑u fA(u)δu ∈ `2(G)).
The map A→ fA is linear, 1-1, contractive, dense range, but not
onto `2(G). (Consider e.g. Z.)



The commutant

The commutant (L (G))′ of L (G)

(L (G))′ := {T ∈ B(H) : TA = AT ∀A ∈L (G)}

is R(G), the von Neumann algebra generated by all right
translations ρt , t ∈G where (ρt f )(s) = f (st), f ∈ H. is this OK?

Proof. Note that

ρs(λtδu) = ρs(δtu) = δ(tu)s

λt(ρsδu) = λt(δus) = δt(us)

so ρsλt = λtρs.

Thus λt ∈ (R(G))′ and so L (G)⊆ (R(G))′. Conversely, 



The commutant

take T ∈ (R(G))′. To show T ∈L (G).
Let x = T δe ∈ `2(G).
Given y ∈ H, we define

x ∗y = ∑
h,g

x(g)y(h)δgh

as a formal series. Then

(x ∗y)(k)=∑
h,g

x(g)y(h)δgh(k)=∑
g

x(g)y(g−1k)=∑
h

x(kh−1)y(h).

Since clearly ∑g |y(g−1k)|2 = ∑h |y(h)|2 = ‖y‖22 and similarly
∑h |x(kh−1)|2 = ‖x‖22, it follows that for all k ∈G,

|(x ∗y)(k)| ≤ ‖x‖2 ‖y‖2 for all k ∈G. (1)



The commutant

Note that for all g,h ∈G,

(x ∗δg)(h) =
〈
x ∗δg ,δh

〉
=
〈
ρg(x),δh

〉
=
〈
ρg(T δe),δh

〉
=
〈
T (ρgδe),δh

〉
=
〈
T δg ,δh

〉
Thus, for fixed h ∈G, the mappings y → (x ∗y)(h) and
y → 〈Ty ,δh〉 agree when y runs through the orthonormal basis
{δg : g ∈G}. Since they are both continuous and linear, they
must agree on H, and so for all y ∈ H we have

(x ∗y)(h) = 〈Ty ,δh〉 or (x ∗y)(h) = (Ty)(h)

for all h ∈G, that is Ty = x ∗y for all y ∈ H. It follows that
T ∈L (G). Indeed, for all X ∈L (G)′ and all t ∈G,

XT δt = X (x ∗δt) = X
(

∑
s

x(s)δst

)
= ∑

s
x(s)Xδst

= ∑
s

x(s)Xλsδt = ∑
s

x(s)λs(Xδt) = x ∗ (Xδt) = TXδt .



The trace

The trace is the linear functional τ defined on vN(G) by

τ(A) = 〈Aδe,δe〉 for all A ∈ vN(G).

It is a WOT-continuous state, it is faithful because
τ(A∗A) = 0 ⇐⇒ Aδe = 0 ⇐⇒ Aδt = Aρtδe = 0 ⇐⇒ A = 0
(δe separates vN(G)) and it is a trace, i.e.

τ(AB) = τ(BA) for all A,B ∈ vN(G).

(enough to check this when A = λs,B = λt : obvious!).



Example of a non-type I factor: vN(F2)

The centre L (G)∩ (L (G))′ consists of all (if any!) A ∈L (G)
such that fA is constant on conjugacy classes
Ct = {sts−1 : s ∈G}.
Example But when G = F2, all Ct (t 6= e) are infinite; and since
fA ∈ `2(F2), it must be constant!
Conclusion: vN(F2) is a factor, like B(H).
But it has a finite faithful trace, with τ(vN(G)+) = [0,1], unlike
B(`2).
For example, if u ∈ vN(G) is isometric, it is unitary.



The group-measure space construction
(Murray - von Neumann)

Let (X ,S ,µ) be a countably separated measure space.
Let G be a countable group acting on X by measure-class
preserving bijections {φt : t ∈G}.
So can define

Ut : L2(µ)→ L2(µ) : Ut f = rt(f ◦φt)

where rt =

√
dµ ◦φt

dµ
> 0 µ-a.e. (makes Ut isometric).

Represent L∞(µ) and G on H = L2(µ)⊗L2(G)' L2(X ×G) by

π(f ) = Mf ⊗ I and Wt = Ut ⊗λt

Define the crossed product A = L∞(µ)oG by t

A = {π(f ),Wt : f ∈L∞(µ), t ∈G}′′= {∑
k

π(fk )Wtk : fk ∈ L∞, tk ∈G}
w∗



Examples of factors

Assumptions on action:

(1) The action of G on (X ,µ) is called an (essentially) free
action if for each t ∈G, t 6= e, the fixed point set
Ft := {x ∈ X : φt(x) = x} has µ(Ft) = 0.
(2) The action of G on (X ,µ) is called ergodic if

f ∈ L∞(µ), f ◦φt = f ∀t ∈G ⇒ f = cst .

(Equiv: (almost) invariant measurable sets are null or conull)

Proposition

Under these two assumptions A is a factor (trivial centre).



Examples of factors

(I) Let X = Z with counting measure, G = Z and φn(k) = k +n
(: transitive action); then:

A 'B(`2(Z)).

(In) (Variation of (I)): Now X = G = Zn (finite cyclic group);
obtain

A 'B(`2(Zn))'Mn.

(II1) Let (X ,µ) = (T,m), let G = Z and φn(z) = e2π inθ z where
θ /∈Q (:G preserves a finite measure).
A has a normal faithful finite trace τ with τ(P(A )) = [0,1].
(II∞) Let (X ,µ) = (R,m), let G =Q and φq(x) = x +q (: G
preserves only an infinite but σ -finite measure).
A has a normal faithful semifinite trace τ with
τ(P(A )) = [0,∞].
(III) (X ,µ) = (R,m), let G = {φn,q : n ∈ Z,q ∈Q} where, for a
fixed a > 1, φn,q(x) = anx +q (: G preserves no σ -finite
measure).
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