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Reminder

A : C*-algebra G : discrete group
t → αt : G→ Aut(A) group homomorphism
αt (a) = t ·a

A (discrete) C*-dynamical system is a triple (A,α,G) where
α : G→ Aut(A) is a group morphism into the group of
*-automorphisms of A.

Definition

A covariant representation of a C*-dynamical system
(A ,α,G) on a Hilbert space H is a pair (π,U : H) where π is a
*-representation of A on H, U is a unitary representation of G
on the same H and π and U are connected by the covariance
condition:

π(αg(a)) = Ugπ(a)U∗g (a ∈A ,g ∈G). (C)



Example

Let Ω be a locally compact Hausdorff space, G a group of
homeomorphisms of Ω, µ a G-invariant Borel measure on Ω
(thus µ(tS) = µ(S) for all t ∈G and S ⊆ Ω Borel).
Let A = C0(Ω) and αt (a) = a◦ t−1.
Represent A on H = L2(Ω,µ) as multiplication operators:

π(a)f = af (a ∈ A, f ∈ H).

Represent G on H by composition:

Ut f = f ◦ t−1

(the fact that each Ut is unitary follows from the fact that µ is
G-invariant).
The pair (π,U) is covariant.



The twisted convolution algebra

A⊗c00(G) = c00(G;A) = {f : G→ A : supp f finite}
This is the linear span of the functions a⊗ f ,a ∈ A, f ∈ c00(G)
where

(a⊗ f )(t) = af (t) ∈ A

It is also the linear span of the functions a⊗δs,a ∈ A,s ∈G
where

(a⊗δs)(t) =

{
a, t = s
0, t 6= s

So f = ∑
t

f (t)⊗δt .

Given covariant pair (π,U : H), define (π×U)(a⊗δs) = π(a)Us,
i.e.

(π×U)

(
∑
t

f (t)⊗δt

)
:= ∑

t
π(f (t))Ut ∈ B(H)



The twisted convolution algebra

Want to define *-algebra structure on A⊗c00(G) making π×U
a *-representation: covariance requires

π(a)Usπ(b)Ur = π(a)π(αs(b))UsUr , so

(a⊗δs)∗ (b⊗δr ) = (aαs(b))⊗δsr

i.e. (φ ∗ψ)(t) = ∑
sr=t

φ(s)αs(ψ(r))

= ∑
s∈G

φ(s)αs(ψ(s−1t)).

and
(π(a)Us)∗ = Us−1π(a∗) = π(αs−1(a∗))Us−1 , so

(a⊗δs)∗ = αs−1(a∗)⊗δs−1

i.e. φ
∗(t) = αt (φ

∗(t−1)) .



The (full) crossed product

Definition

The completion of the twisted convolution algebra
(A⊗c00(G),∗) with respect to

‖f‖ := sup{‖(π×U)(f )‖ : (π,U : H) covariant rep.} (*)

is called the (full) crossed product Aoα G.

It is a C*-seminorm, but why a norm?



Existence of covariant representations

For each *-rep π : A→B(H0) define
H = H0⊗ `2(G)∼= `2(G,Ho).
Define a representation π̃ of A on H by

π̃(a)(x⊗δs) = π(αs−1a)x⊗δs, i.e. π̃(a) = diag(π(αs−1a))

(π̃(a)ξ )(t) = π(αt−1(a))(ξ (t)) (a ∈ A,ξ ∈ `2(G,H0)). (1)

Define a unitary representation Λ of G on H by

Λs(x⊗δt ) = x⊗δst , i.e.

(Λsξ )(t) = ξ (s−1t) (s ∈G,ξ ∈ `2(G,Ho)). (2)

This is covariant; and if π is faithful on A, then π̃×Λ is faithful
on the convolution algebra A⊗c00(G).



π̃×Λ is faithful on A⊗c00(G)

Indeed, if f = ∑t f (t)⊗δt ∈ A⊗c00(G), then, for each x ∈ H0,

(π̃×Λ)(f )(x⊗δ1) =

(
∑
t

π̃(f (t))Λt

)
(x⊗δ1)

= ∑
t

π̃(f (t))(x⊗δt )

= ∑
t

π(αt−1(f (t)))x⊗δt

⇒ ‖(π̃×Λ)(f )(x⊗δ1)‖2 = ∑
t
‖π(αt−1(f (t)))x‖2 (3)

hence if (π̃×Λ)(f ) = 0 then for each x ∈ H0 and t ∈G we have
π(αt−1(f (t)))x = 0 and so each f (t) vanishes since π ◦αt−1 is
injective.



Existence of covariant representations

Thus (*) defines a norm ‖·‖ on A⊗c00(G).
The completion of A⊗c00(G) with respect to the (a priori
smaller) norm

‖f‖r := ‖(π̃×Λ)(f )‖

is called the reduced crossed product Aor G.
It coincides with AoG when G is abelian, or compact, but not
necessarily when G = F2.



Example

If G = Z, A = C and α is the trivial action, then the unitary
V := Λ1 is just the bilateral shift on `2(Z), which is unitarily
equivalent to multiplication by z on L2(T). If π is the identity
representation of C as operators on C, then the representation
π̃×Λ extends to a faithful representation of Aoid Z on L2(T).
If φ = ∑φk ⊗δk is in coo(Z), then (π̃×Λ)(φ) = ∑φkV k is the
operator of multiplication by the function ∑φkzk , whose norm is
precisely the supremum norm of the function.
Since such functions are dense in C(T), it follows that C×id Z is
isometrically isomorphic to C(T).
The dense subalgebra `1(Z) of C×id Z is mapped by π̃×Λ to
the Wiener algebra, that is the algebra of all f ∈ C(T) whose
Fourier series is absolutely convergent.



Fourier coefficients

For φ = ∑t φt ⊗δt ∈ A⊗c00(G) call φt the t-th Fourier
coefficient of φ .
Fix a faithful rep. π0 of A. Note that by (3),
‖π0(αt−1(φt ))‖ ≤ ‖(π̃0×Λ)(φ)‖ for each t ∈G. Now

‖φs‖A = ‖π0(αs−1(φs))‖
≤ sup{‖(π×U)(φ)‖ : π×U covariant pair}= ‖φ‖ .

Hence the map

Es : A⊗c00(G)→ A : φ → φs

is contractive, so extends to a contraction

Es : Aoα G→ A.

Clearly if a ∈ Aoα G has (π̃0×Λ)(a) = 0 then each Es(a) = 0.
Hence if the “Fourier transform” is injective, the reduced
crossed product coincides with the full crossed product.



Abelian groups

For G abelian, let Γ = Ĝ = {γ : G→ T : cts homom.} be the dual
group. For γ ∈ Γ, let

θγ (∑
g

φg⊗δg) = ∑
g

φg⊗ γ(g)δg .

Each θγ extends to an isometric *-automorphism of A×αG and

Et (B)⊗δt =
∫

Γ
θγ (B)γ(t−1)dγ ∀B ∈A ×α G, ∀ t ∈G. (*)

Let ξ be a continuous linear form on A ×α G. Let
f (γ) = ξ (θγ (B)); its Fourier transform is

f̂ (t) =
∫

Γ
f (γ)γ(t−1)dγ = ξ (Et (B)⊗δt ).

So if each Et (B) is zero, then f̂ = 0 and so f = 0; therefore
B = 0.



Abelian groups

Note that θγ (a⊗δe) = a when a ∈A hence Ee(a⊗δe) = a by
(∗).
Identify A with its image {a⊗δe : a ∈A } in A ×α G. The map

Ee : A ×α G→A

is a contractive projection, and

Ee(aBc) = Ee(aBc)⊗δe =
∫

Γ
θγ (aBc)γ(e−1)dγ =

∫
Γ

aθγ (B)cdγ

= a(Ee(B))c

conditional expectation. Also, faithful:

0 = Ee(B∗B) =
∫

Γ
θγ (B∗B)dγ ⇒ B∗B = 0⇒ B = 0

because γ → θγ (B∗B) is nonneg. and continuous.



Universal property

There exists a C*-algebra B satisfying

(a) There exist embeddings iA : A →B ( a *-representation,
necessarily 1-1) and iG : G→U (B) (a - necessarily injective-
group homomorphism into the unitary group U (B) of B)
satisfying
iA(αs(x)) = iG(s)iA(x)iG(s)∗ for all x ∈A ,s ∈G;
(b) for every covariant representation (π,U;H) of (A ,G,α),
there is a non-degenerate representation π×U of B with
π = (π×U)◦ iA and U = (π×U)◦ iG;
(c) the linear span of {iA(x)iG(s) : x ∈A ,s ∈G} is dense in B.

This C*-algebra B is unique (up to *-isomorphism) and is the
crossed product A oα G.



Example: The irrational rotation algebra

Fix θ ∈ R s.t. θ

2π
is irrational and write λ = eiθ . Let

A = C(T), G = Z and

(αnf )(z) = f (λ
nz) (f ∈A ,n ∈ Z,z ∈ T).

The crossed product C(T)oα Z := Aθ is called the irrational
rotation algebra.
The reduced representation on H = L2(T)⊗ `2(Z):

(π̃×Λ)

(
∑
|k |≤n

fk ⊗δk

)
=

(
∑
|k |≤n

π̃(fk )Λk

)
where π : C(T)→ B(L2(T)) : π(f )g = fg (g ∈ L2(T))

(see (1) and (2)) is faithful on C(T)oα Z since Z is abelian.



The irrational rotation algebra

But the representation on L2(T) given by

(π×λ )

(
∑
|k |≤n

fk ⊗δk

)
=

(
∑
|k |≤n

π(fk )λk

)

(where λk = Uk with U(δk ) = δk+1 the bilateral shift) is also
faithful because Lebesgue measure is ergodic for the irrational
rotation.
So we have two isometric representations of the same C*
algebra, Aθ .



The irrational rotation algebra

But if we take w* closures:

((π̃×Λ)(Aθ ))
w∗

= L∞(T)ōαZ

the weak-* crossed product, which we have seen is a type II1
factor.
On the other hand

((π×λ )(Aθ ))
w∗

= B(L2(T))

(because π×λ is irreducible - ergodicity) so we get a type I1
factor.
These two von Neumann algebras cannot be isomorphic (not
even algebraically) for example because in B(L2(T)) the
unilateral shift S satisfies S∗S = I 6= SS∗ whereas in L∞(T)ōαZ
the relation s∗s = I implies ss∗ = I.



Semicrossed products

Generalisations:
•A is now an operator algebra (preferably unital), i.e. a norm
closed subalgebra of a C*-algebra, not necessarily selfadjoint
(for example, the upper triangular matrices on `2 or the disk
algebra A(D)).
•G is replaced by a unital sub-semigroup G+ of a group G
(preferably abelian)
• the action α is now a homomorphism α : G+→ End(A )
where End(A ) consists of all homomorphisms A →A which
are completely contractive.
(On a C*-algebra, every *-homomorphism is completely
contractive)
The triple (A ,α,G+) is called a semigroup dynamical system.



Semicrossed products

Restrict to abelian G.
A covariant representation (π,T ;H) of (A ,α,G+) is:

π : A →B(H) compl. contractive representation
T : G+→B(H) contactions s.t. Ts+t = TsTt .

π(f )Ts = Tsπ(αs(f )), f ∈A ,s ∈G+ (covariance).

The covariance algebra c00(G+,α,A ) is c00(G+)⊗A as a
linear space with

(δt ⊗ f )∗ (δs⊗g) = δt+s⊗αs(f )g.

To define a norm1, fix a family F of covariant pairs and put∥∥∥∥∥∑k δtk ⊗ fk

∥∥∥∥∥
F

:= sup


∥∥∥∥∥∑k Ttk π(fk )

∥∥∥∥∥
B(H)

: (π,T : H) ∈F


1on the quotient by ker‖·‖F , if necessary



Semicrossed products

To get an operator algebra structure need norms on n×n
matrices for all n ∈ N: Given Fk = [f (k)

i ,j ] ∈Mn(A ), for each

covariant rep. (π,T : H) get operator [Ttk π(f (k)
i ,j )] on Hn. Define

∥∥∥∥∥∑k δtk ⊗Fk

∥∥∥∥∥
n,F

:= sup


∥∥∥∥∥∑k [Ttk π(f (k)

i ,j )]

∥∥∥∥∥
B(Hn)

: (π,T : H) ∈F


Definition

The semicrossed product A oα G+ is the Hausdorff 2

completion of c00(G+,α,A ) with respect to ‖·‖F c where F c

denotes the family of all contractive covariant pairs.

When one restricts to the family F is of all isometric covariant
pairs, one obtains the isometric semicrossed product A ois

α G+.
2i.e. the completion of the quotient modulo the ideal ker‖·‖F c



Example: the irrational rotation

As before, fix θ ∈ R s.t. θ

2π
is irrational. Let A = C(T), G = Z

and
(αnf )(z) = f (einθ z) (f ∈A ,n ∈ Z,z ∈ T).

The semicrossed product C(T)oα Z+ is a closed subalgebra of
the irrational rotation algebra C(T)oα Z (why?).
Thus the representation π×λ : C(T)oα Z→B(L2(T) restricts
to an isometric representation of C(T)oα Z+ given by (flip)

(π×λ )(
n

∑
k=0

δk ⊗ fk ) =
n

∑
k=0

V k
π(fk )

where V is the generator λ1 of {λn : n ∈ Z+} given by
(Vg)(z) = g(eiθ z), g ∈ L2(T).



Example: the irrational rotation

The C*-algebra C(T) is the closed algebra generated by ζ and
ζ̄ , where ζ (z) = z; hence π(C(T)⊆B(L2(T)) is generated by
U := π(ζ ) and U∗. Therefore C(T)oα Z+ is generated by
{U,U∗,V} and C(T)oα Z = Aθ is generated by {U,U∗,V ,V ∗}.

UV = eiθ VU the Weyl relation.

Proposition

The w*-closed subalgebra of B(L2(T) generated by {U,V} is
the nest algebra AlgN of all operators T ∈B(L2(T)) leaving all
elements of N = {Nn : n ∈ Z} invariant, where
Nn = {f ∈ L2(T) : f̂ (k) = 0,k < n}.



Example: the irrational rotation

After Fourier transform L2(T)→ `2(Z):

U ∼



. . .
...

...
...

...
...

. . . 0 0 0 0 0 . . .

. . . 1 0 0 0 0 . . .

. . . 0 1 0 0 0 . . .

. . . 0 0 1 0 0 . . .

. . . 0 0 0 1 0 . . .
...

...
...

...
...

. . .


, V ∼



. . .
...

...
...

...
...

. . . λ̄ 2 0 0 0 0 . . .

. . . 0 λ̄ 0 0 0 . . .

. . . 0 0 1 0 0 . . .

. . . 0 0 0 λ 0 . . .

. . . 0 0 0 0 λ 2 . . .
...

...
...

...
...

. . .


Write A+

θ
and A++

θ
for the norm-closed subalgebras of Aθ

generated by {U,V ,V ∗} and {U,V , I} respectively.



Example: the irrational rotation

Note that U(Nm) = Nm+1 ⊂ Nm and V (Nm) = Nm.
It follows that U,V and V ∗ lie in the nest algebra AlgN and so

A++
θ
⊂ A+

θ
⊆ Aθ ∩AlgN .

We have shown that the weak-* closure of A++
θ

is the whole of
AlgN . Thus

W ∗(A++
θ

) = W ∗(A+
θ

) = AlgN .

Since Aθ is an irreducible C*-algebra, its w* closure is B(H).

Proposition

We have A+
θ

= Aθ ∩AlgN . In other words A+
θ

is a nest
subalgebra of a C*-algebra.


