Crossed products of Operator Algebras Seminar 2015

Aristides Katavolos

Reminder

A (discrete) **C*-dynamical system** is a triple (A, α, G) where $\alpha : G \rightarrow Aut(A)$ is a group morphism into the group of *-automorphisms of *A*.

Definition

A **covariant representation** of a C*-dynamical system (\mathscr{A}, α, G) on a Hilbert space *H* is a pair $(\pi, U : H)$ where π is a *-representation of \mathscr{A} on *H*, *U* is a unitary representation of *G* on the same *H* and π and *U* are connected by the *covariance condition*:

$$\pi(lpha_g(a)) = U_g \pi(a) U_g^* \qquad (a \in \mathscr{A}, g \in G).$$
 (C)

Example

Let Ω be a locally compact Hausdorff space, *G* a group of homeomorphisms of Ω , μ a *G*-invariant Borel measure on Ω (thus $\mu(tS) = \mu(S)$ for all $t \in G$ and $S \subseteq \Omega$ Borel). Let $A = C_0(\Omega)$ and $\alpha_t(a) = a \circ t^{-1}$. Represent *A* on $H = L^2(\Omega, \mu)$ as multiplication operators:

$$\pi(a)f = af$$
 $(a \in A, f \in H).$

Represent *G* on *H* by composition:

$$U_t f = f \circ t^{-1}$$

(the fact that each U_t is unitary follows from the fact that μ is *G*-invariant). The pair (π, U) is covariant.

The twisted convolution algebra

$$A \otimes c_{00}(G) = c_{00}(G; A) = \{f : G \rightarrow A : \operatorname{supp} f \text{ finite}\}$$

This is the linear span of the functions $a \otimes f, a \in A, f \in c_{00}(G)$ where

$$(a \otimes f)(t) = af(t) \in A$$

It is also the linear span of the functions $a \otimes \delta_s, a \in A, s \in G$ where

$$(a \otimes \delta_s)(t) = \begin{cases} a, t = s \\ 0, t \neq s \end{cases}$$

So $f = \sum_t f(t) \otimes \delta_t$.

Given covariant pair $(\pi, U : H)$, define $(\pi \times U)(a \otimes \delta_s) = \pi(a)U_s$, i.e.

$$(\pi imes U)\left(\sum_t f(t) \otimes \delta_t\right) := \sum_t \pi(f(t)) U_t \in B(H)$$

The twisted convolution algebra

Want to define *-algebra structure on $A \otimes c_{00}(G)$ making $\pi \times U$ a *-representation: covariance requires

$$\pi(a)U_{s}\pi(b)U_{r} = \pi(a)\pi(\alpha_{s}(b))U_{s}U_{r}, \text{ so}$$

$$(a \otimes \delta_{s}) * (b \otimes \delta_{r}) = (a\alpha_{s}(b)) \otimes \delta_{sr}$$
i.e. $(\phi * \psi)(t) = \sum_{sr=t} \phi(s)\alpha_{s}(\psi(r))$

$$= \sum_{s \in G} \phi(s)\alpha_{s}(\psi(s^{-1}t)).$$

and

$$(\pi(a)U_s)^* = U_{s^{-1}}\pi(a^*) = \pi(\alpha_{s^{-1}}(a^*))U_{s^{-1}}$$
, so
 $(a \otimes \delta_s)^* = \alpha_{s^{-1}}(a^*) \otimes \delta_{s^{-1}}$
i.e. $\phi^*(t) = \alpha_t(\phi^*(t^{-1}))$.

Definition

The completion of the twisted convolution algebra $(A \otimes c_{00}(G), *)$ with respect to

 $||f|| := \sup\{||(\pi \times U)(f)|| : (\pi, U : H) \text{ covariant rep.}\}$ (*)

is called the (full) crossed product $A \rtimes_{\alpha} G$.

It is a C*-seminorm, but why a norm?

For each *-rep $\pi : A \to \mathscr{B}(H_0)$ define $H = H_0 \otimes \ell^2(G) \cong \ell^2(G, H_o).$ Define a representation $\tilde{\pi}$ of A on H by

$$\begin{split} \tilde{\pi}(a)(x\otimes\delta_s) &= \pi(\alpha_{s^{-1}}a)x\otimes\delta_s, \quad \text{i.e. } \tilde{\pi}(a) = \operatorname{diag}\left(\pi(\alpha_{s^{-1}}a)\right)\\ (\tilde{\pi}(a)\xi)(t) &= \pi(\alpha_{t^{-1}}(a))(\xi(t)) \qquad (a\in A, \xi\in\ell^2(G,H_0)). \end{split}$$
(1)

Define a unitary representation \wedge of G on H by

$$\begin{split} &\Lambda_s(x \otimes \delta_t) = x \otimes \delta_{st}, \quad \text{i.e.} \\ &(\Lambda_s \xi)(t) = \xi(s^{-1}t) \qquad (s \in G, \xi \in \ell^2(G, H_o)). \end{split}$$

This is covariant; and if π is faithful on A, then $\tilde{\pi} \times \Lambda$ is faithful on the convolution algebra $A \otimes c_{00}(G)$.

_

Indeed, if $f = \sum_{t} f(t) \otimes \delta_t \in A \otimes c_{00}(G)$, then, for each $x \in H_0$,

$$(\tilde{\pi} \times \Lambda)(f)(x \otimes \delta_{1}) = \left(\sum_{t} \tilde{\pi}(f(t))\Lambda_{t}\right)(x \otimes \delta_{1})$$
$$= \sum_{t} \tilde{\pi}(f(t))(x \otimes \delta_{t})$$
$$= \sum_{t} \pi(\alpha_{t^{-1}}(f(t)))x \otimes \delta_{t}$$
$$\Rightarrow \|(\tilde{\pi} \times \Lambda)(f)(x \otimes \delta_{1})\|^{2} = \sum_{t} \|\pi(\alpha_{t^{-1}}(f(t)))x\|^{2}$$
(3)

hence if $(\tilde{\pi} \times \Lambda)(f) = 0$ then for each $x \in H_0$ and $t \in G$ we have $\pi(\alpha_{t^{-1}}(f(t)))x = 0$ and so each f(t) vanishes since $\pi \circ \alpha_{t^{-1}}$ is injective.

Thus (*) defines a norm $\|\cdot\|$ on $A \otimes c_{00}(G)$. The completion of $A \otimes c_{00}(G)$ with respect to the (a priori smaller) norm

 $\|f\|_r := \|(\tilde{\pi} \times \Lambda)(f)\|$

is called *the reduced crossed product* $A \rtimes_r G$. It coincides with $A \rtimes G$ when *G* is abelian, or compact, but not necessarily when $G = \mathbb{F}_2$. If $G = \mathbb{Z}$, $A = \mathbb{C}$ and α is the trivial action, then the unitary $V := \Lambda_1$ is just the bilateral shift on $\ell^2(\mathbb{Z})$, which is unitarily equivalent to multiplication by z on $L^2(\mathbb{T})$. If π is the identity representation of \mathbb{C} as operators on \mathbb{C} , then the representation $\tilde{\pi} \times \Lambda$ extends to a faithful representation of $A \rtimes_{id} \mathbb{Z}$ on $L^2(\mathbb{T})$. If $\phi = \sum \phi_k \otimes \delta_k$ is in $c_{oo}(\mathbb{Z})$, then $(\tilde{\pi} \times \Lambda)(\phi) = \sum \phi_k V^k$ is the operator of multiplication by the function $\sum \phi_k z^k$, whose norm is precisely the supremum norm of the function.

Since such functions are dense in $C(\mathbb{T})$, it follows that $\mathbb{C} \times_{id} \mathbb{Z}$ is isometrically isomorphic to $C(\mathbb{T})$.

The dense subalgebra $\ell^1(\mathbb{Z})$ of $\mathbb{C} \times_{id} \mathbb{Z}$ is mapped by $\tilde{\pi} \times \Lambda$ to the Wiener algebra, that is the algebra of all $f \in C(\mathbb{T})$ whose Fourier series is absolutely convergent.

Fourier coefficients

For $\phi = \sum_t \phi_t \otimes \delta_t \in A \otimes c_{00}(G)$ call ϕ_t the *t*-th Fourier coefficient of ϕ . Fix a faithful rep. π_0 of *A*. Note that by (3), $\|\pi_0(\alpha_{t^{-1}}(\phi_t))\| \leq \|(\tilde{\pi}_0 \times \Lambda)(\phi)\|$ for each $t \in G$. Now

$$\begin{split} \|\phi_s\|_{\mathcal{A}} &= \|\pi_0(\alpha_{s^{-1}}(\phi_s))\| \\ &\leq \sup\{\|(\pi \times U)(\phi)\| : \pi \times U \text{ covariant pair}\} = \|\phi\|. \end{split}$$

Hence the map

$$E_s: A \otimes c_{00}(G) \to A: \phi \to \phi_s$$

is contractive, so extends to a contraction

$$E_s: A \rtimes_{\alpha} G \to A.$$

Clearly if $a \in A \rtimes_{\alpha} G$ has $(\tilde{\pi_0} \times \Lambda)(a) = 0$ then each $E_s(a) = 0$. Hence if the "Fourier transform" is injective, the reduced crossed product coincides with the full crossed product.

Abelian groups

For *G* abelian, let $\Gamma = \widehat{G} = \{\gamma : G \to \mathbb{T} : \text{cts homom.}\}$ be the dual group. For $\gamma \in \Gamma$, let

$$heta_{\gamma}(\sum_g \phi_g \otimes \delta_g) = \sum_g \phi_g \otimes \gamma(g) \delta_g.$$

Each θ_{γ} extends to an isometric *-automorphism of $\mathscr{A} \times_{\alpha} G$ and

$$E_t(B)\otimes \delta_t=\int_{\Gamma}\theta_{\gamma}(B)\gamma(t^{-1})d\gamma\quad\forall B\in\mathscr{A}\times_{\alpha}G,\forall t\in G.\quad(*)$$

Let ξ be a continuous linear form on $\mathscr{A} \times_{\alpha} G$. Let $f(\gamma) = \xi(\theta_{\gamma}(B))$; its Fourier transform is

$$\hat{f}(t) = \int_{\Gamma} f(\gamma) \gamma(t^{-1}) d\gamma = \xi(E_t(B) \otimes \delta_t).$$

So if each $E_t(B)$ is zero, then $\hat{f} = 0$ and so f = 0; therefore B = 0.

Abelian groups

Note that $\theta_{\gamma}(a \otimes \delta_e) = a$ when $a \in \mathscr{A}$ hence $E_e(a \otimes \delta_e) = a$ by (*). Identify \mathscr{A} with its image $\{a \otimes \delta_e : a \in \mathscr{A}\}$ in $\mathscr{A} \times_{\alpha} G$. The map

$$E_e:\mathscr{A}\times_{\alpha}G\to\mathscr{A}$$

is a contractive projection, and

$$egin{aligned} E_e(aBc) &= E_e(aBc) \otimes \delta_e = \int_{\Gamma} heta_\gamma(aBc) \gamma(e^{-1}) d\gamma = \int_{\Gamma} a heta_\gamma(B) c d\gamma \ &= a(E_e(B)) c \end{aligned}$$

conditional expectation. Also, faithful:

$$0 = E_e(B^*B) = \int_{\Gamma} \theta_{\gamma}(B^*B) d\gamma \Rightarrow B^*B = 0 \Rightarrow B = 0$$

because $\gamma \rightarrow \theta_{\gamma}(B^*B)$ is nonneg. and continuous.

There exists a C*-algebra ${\mathscr B}$ satisfying

(a) There exist embeddings $i_A : \mathscr{A} \to \mathscr{B}$ (a *-representation, necessarily 1-1) and $i_G : G \to \mathscr{U}(\mathscr{B})$ (a - necessarily injective-group homomorphism into the unitary group $\mathscr{U}(\mathscr{B})$ of \mathscr{B}) satisfying

 $i_A(\alpha_s(x)) = i_G(s)i_A(x)i_G(s)^*$ for all $x \in \mathscr{A}, s \in G$;

(b) for every covariant representation $(\pi, U; H)$ of (\mathscr{A}, G, α) , there is a non-degenerate representation $\pi \times U$ of \mathscr{B} with $\pi = (\pi \times U) \circ i_A$ and $U = (\pi \times U) \circ i_G$;

(c) the linear span of $\{i_A(x)i_G(s): x \in \mathscr{A}, s \in G\}$ is dense in \mathscr{B} .

This C*-algebra \mathscr{B} is unique (up to *-isomorphism) and is the crossed product $\mathscr{A} \rtimes_{\alpha} G$.

Example: The irrational rotation algebra

Fix $\theta \in \mathbb{R}$ s.t. $\frac{\theta}{2\pi}$ is irrational and write $\lambda = e^{i\theta}$. Let $\mathscr{A} = C(\mathbb{T}), G = \mathbb{Z}$ and

$$(\alpha_n f)(z) = f(\lambda^n z) \quad (f \in \mathscr{A}, n \in \mathbb{Z}, z \in \mathbb{T}).$$

The crossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} := \mathscr{A}_{\theta}$ is called the irrational rotation algebra.

The reduced representation on $H = L^2(\mathbb{T}) \otimes \ell^2(\mathbb{Z})$:

$$(\tilde{\pi} \times \Lambda) \left(\sum_{|k| \le n} f_k \otimes \delta_k \right) = \left(\sum_{|k| \le n} \tilde{\pi}(f_k) \Lambda_k \right)$$

where $\pi : C(\mathbb{T}) \to B(L^2(\mathbb{T})) : \pi(f)g = fg(g \in L^2(\mathbb{T}))$

(see (1) and (2)) is faithful on $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$ since \mathbb{Z} is abelian.

But the representation on $L^2(\mathbb{T})$ given by

$$(\pi imes \lambda) \left(\sum_{|k| \le n} f_k \otimes \delta_k
ight) = \left(\sum_{|k| \le n} \pi(f_k) \lambda_k
ight)$$

(where $\lambda_k = U^k$ with $U(\delta_k) = \delta_{k+1}$ the bilateral shift) is also faithful because Lebesgue measure is ergodic for the irrational rotation.

So we have two isometric representations of the same C* algebra, $\mathscr{A}_{\theta}.$

But if we take w* closures:

$$\overline{((ilde{\pi} imes \Lambda)(\mathscr{A}_{ heta}))}^{w^*} = L^\infty(\mathbb{T}) ar{
tabla}_{lpha} \mathbb{Z}$$

the weak-* crossed product, which we have seen is a type II_1 factor.

On the other hand

$$\overline{((\pi imes \lambda)(\mathscr{A}_{ heta}))}^{w^*} = \mathscr{B}(L^2(\mathbb{T}))$$

(because $\pi \times \lambda$ is irreducible - ergodicity) so we get a type I₁ factor.

These two von Neumann algebras cannot be isomorphic (not even algebraically) for example because in $\mathscr{B}(L^2(\mathbb{T}))$ the unilateral shift *S* satisfies $S^*S = I \neq SS^*$ whereas in $L^{\infty}(\mathbb{T})\bar{\rtimes}_{\alpha}\mathbb{Z}$ the relation $s^*s = I$ implies $ss^* = I$.

Generalisations:

• \mathscr{A} is now an operator algebra (preferably unital), i.e. a norm closed subalgebra of a C*-algebra, not necessarily selfadjoint (for example, the upper triangular matrices on ℓ^2 or the disk algebra $A(\mathbb{D})$).

• *G* is replaced by a unital sub-semigroup G^+ of a group *G* (preferably abelian)

• the action α is now a homomorphism $\alpha : G^+ \to \text{End}(\mathscr{A})$ where $\text{End}(\mathscr{A})$ consists of all homomorphisms $\mathscr{A} \to \mathscr{A}$ which are *completely contractive*.

(On a C*-algebra, every *-homomorphism is completely contractive)

The triple $(\mathscr{A}, \alpha, G^+)$ is called a semigroup dynamical system.

Restrict to abelian G.

A covariant representation $(\pi, T; H)$ of $(\mathscr{A}, \alpha, G^+)$ is:

$$\begin{split} &\pi:\mathscr{A}\to\mathscr{B}(H) \quad \text{compl. contractive representation} \\ &T:G^+\to\mathscr{B}(H) \quad \text{contactions s.t. } T_{s+t}=T_sT_t. \\ &\pi(f)T_s=T_s\pi(\alpha_s(f)), \quad f\in\mathscr{A}, s\in G^+ \quad (\text{covariance}). \end{split}$$

The covariance algebra $c_{00}(G^+, \alpha, \mathscr{A})$ is $c_{00}(G^+) \otimes \mathscr{A}$ as a linear space with

$$(\delta_t \otimes f) * (\delta_s \otimes g) = \delta_{t+s} \otimes \alpha_s(f)g.$$

To define a norm¹, fix a family \mathscr{F} of covariant pairs and put

$$\left\|\sum_{k} \delta_{t_{k}} \otimes f_{k}\right\|_{\mathscr{F}} := \sup\left\{\left\|\sum_{k} T_{t_{k}} \pi(f_{k})\right\|_{\mathscr{B}(H)} : (\pi, T : H) \in \mathscr{F}\right\}$$

¹on the quotient by ker $\|\cdot\|_{\mathscr{F}}$, if necessary

Semicrossed products

To get an *operator algebra structure* need norms on $n \times n$ matrices for all $n \in \mathbb{N}$: Given $F_k = [f_{i,j}^{(k)}] \in M_n(\mathscr{A})$, for each covariant rep. $(\pi, T : H)$ get operator $[T_{t_k}\pi(f_{i,j}^{(k)})]$ on H^n . Define

$$\left\|\sum_{k} \delta_{t_{k}} \otimes \mathcal{F}_{k}\right\|_{n,\mathscr{F}} := \sup\left\{\left\|\sum_{k} [T_{t_{k}} \pi(f_{i,j}^{(k)})]\right\|_{\mathscr{B}(H^{n})} : (\pi, T : H) \in \mathscr{F}\right\}$$

Definition

The semicrossed product $\mathscr{A} \rtimes_{\alpha} G^+$ is the Hausdorff² completion of $c_{00}(G^+, \alpha, \mathscr{A})$ with respect to $\|\cdot\|_{\mathscr{F}^c}$ where \mathscr{F}^c denotes the family of all contractive covariant pairs.

When one restricts to the family \mathscr{F}^{is} of all isometric covariant pairs, one obtains the isometric semicrossed product $\mathscr{A} \rtimes_{\alpha}^{is} G^+$.

²i.e. the completion of the quotient modulo the ideal ker $\|\cdot\|_{\mathscr{F}^c}$

As before, fix $\theta \in \mathbb{R}$ s.t. $\frac{\theta}{2\pi}$ is irrational. Let $\mathscr{A} = C(\mathbb{T}), G = \mathbb{Z}$ and

$$(\alpha_n f)(z) = f(e^{in\theta}z) \quad (f \in \mathscr{A}, n \in \mathbb{Z}, z \in \mathbb{T}).$$

The semicrossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_+$ is a closed subalgebra of the irrational rotation algebra $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$ (why?).

Thus the representation $\pi \times \lambda : C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} \to \mathscr{B}(L^{2}(\mathbb{T}) \text{ restricts})$ to an isometric representation of $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$ given by (flip)

$$(\pi imes \lambda)(\sum_{k=0}^n \delta_k \otimes f_k) = \sum_{k=0}^n V^k \pi(f_k)$$

where V is the generator λ_1 of $\{\lambda_n : n \in \mathbb{Z}_+\}$ given by $(Vg)(z) = g(e^{i\theta}z), g \in L^2(\mathbb{T}).$

The C*-algebra $C(\mathbb{T})$ is the closed algebra generated by ζ and $\overline{\zeta}$, where $\zeta(z) = z$; hence $\pi(C(\mathbb{T}) \subseteq \mathscr{B}(L^2(\mathbb{T}))$ is generated by $U := \pi(\zeta)$ and U^* . Therefore $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_+$ is generated by $\{U, U^*, V\}$ and $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} = \mathscr{A}_{\theta}$ is generated by $\{U, U^*, V, V^*\}$.

 $UV = e^{i\theta} VU$ the Weyl relation.

Proposition

The w*-closed subalgebra of $\mathscr{B}(L^2(\mathbb{T})$ generated by $\{U, V\}$ is the nest algebra Alg \mathscr{N} of all operators $T \in \mathscr{B}(L^2(\mathbb{T}))$ leaving all elements of $\mathscr{N} = \{N_n : n \in \mathbb{Z}\}$ invariant, where $N_n = \{f \in L^2(\mathbb{T}) : \hat{f}(k) = 0, k < n\}.$ After Fourier transform $L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$:

Write A_{θ}^+ and A_{θ}^{++} for the norm-closed subalgebras of A_{θ} generated by $\{U, V, V^*\}$ and $\{U, V, I\}$ respectively.

Example: the irrational rotation

Note that $U(N_m) = N_{m+1} \subset N_m$ and $V(N_m) = N_m$. It follows that U, V and V^* lie in the nest algebra $Alg \mathscr{N}$ and so

$$A_{\theta}^{++} \subset A_{\theta}^{+} \subseteq A_{\theta} \cap Alg\mathscr{N}.$$

We have shown that the weak-* closure of A_{θ}^{++} is the whole of $Alg \mathcal{N}$. Thus

$$W^*(A^{++}_{\theta}) = W^*(A^+_{\theta}) = Alg \mathscr{N}.$$

Since A_{θ} is an irreducible C*-algebra, its w* closure is B(H).

Proposition

We have $A_{\theta}^+ = A_{\theta} \cap Alg \mathcal{N}$. In other words A_{θ}^+ is a nest subalgebra of a C^{*}-algebra.