Crossed products of Operator Algebras Seminar 2015

Aristides Katavolos

Reminder

$$
\begin{array}{ll}
A: \quad C^{*} \text {-algebra } & G: \quad \text { discrete group } \\
t \rightarrow \alpha_{t}: G \rightarrow A u t(A) & \text { group homomorphism } \\
\alpha_{t}(a)=t \cdot a &
\end{array}
$$

A (discrete) \mathbf{C}^{*}-dynamical system is a triple (A, α, G) where $\alpha: G \rightarrow \operatorname{Aut}(A)$ is a group morphism into the group of
*-automorphisms of A.

Definition

A covariant representation of a C^{*}-dynamical system (\mathscr{A}, α, G) on a Hilbert space H is a pair $(\pi, U: H)$ where π is a *-representation of \mathscr{A} on H, U is a unitary representation of G on the same H and π and U are connected by the covariance condition:

$$
\begin{equation*}
\pi\left(\alpha_{g}(a)\right)=U_{g} \pi(a) U_{g}^{*} \quad(a \in \mathscr{A}, g \in G) . \tag{C}
\end{equation*}
$$

Example

Let Ω be a locally compact Hausdorff space, G a group of homeomorphisms of Ω, μ a G-invariant Borel measure on Ω (thus $\mu(t S)=\mu(S)$ for all $t \in G$ and $S \subseteq \Omega$ Borel). Let $A=C_{0}(\Omega)$ and $\alpha_{t}(a)=a \circ t^{-1}$.
Represent A on $H=L^{2}(\Omega, \mu)$ as multiplication operators:

$$
\pi(a) f=a f \quad(a \in A, f \in H) .
$$

Represent G on H by composition:

$$
U_{t} f=f \circ t^{-1}
$$

(the fact that each U_{t} is unitary follows from the fact that μ is G-invariant).
The pair (π, U) is covariant.

The twisted convolution algebra

$$
A \otimes c_{00}(G)=c_{00}(G ; A)=\{f: G \rightarrow A: \operatorname{supp} f \text { finite }\}
$$

This is the linear span of the functions $a \otimes f, a \in A, f \in c_{00}(G)$ where

$$
(a \otimes f)(t)=a f(t) \in A
$$

It is also the linear span of the functions $a \otimes \delta_{s}, a \in A, s \in G$ where

$$
\begin{aligned}
\left(a \otimes \delta_{s}\right)(t) & = \begin{cases}a, & t=s \\
0, & t \neq s\end{cases} \\
\text { So } \quad f & =\sum_{t} f(t) \otimes \delta_{t}
\end{aligned}
$$

Given covariant pair $(\pi, U: H)$, define $(\pi \times U)\left(a \otimes \delta_{s}\right)=\pi(a) U_{s}$, i.e.

$$
(\pi \times U)\left(\sum_{t} f(t) \otimes \delta_{t}\right):=\sum_{t} \pi(f(t)) U_{t} \in B(H)
$$

The twisted convolution algebra

Want to define *-algebra structure on $A \otimes c_{00}(G)$ making $\pi \times U$ a *-representation: covariance requires

$$
\begin{aligned}
& \pi(a) U_{s} \pi(b) U_{r}=\pi(a) \pi\left(\alpha_{s}(b)\right) U_{s} U_{r}, \text { so } \\
& \begin{aligned}
\left(a \otimes \delta_{s}\right) *\left(b \otimes \delta_{r}\right) & =\left(a \alpha_{s}(b)\right) \otimes \delta_{s r} \\
\text { i.e. } \quad(\phi * \psi)(t) & =\sum_{s r=t} \phi(s) \alpha_{s}(\psi(r)) \\
& =\sum_{s \in G} \phi(s) \alpha_{s}\left(\psi\left(s^{-1} t\right)\right) .
\end{aligned}
\end{aligned}
$$

and

$$
\begin{gathered}
\left(\pi(a) U_{s}\right)^{*}=U_{s^{-1}} \pi\left(a^{*}\right)=\pi\left(\alpha_{s^{-1}}\left(a^{*}\right)\right) U_{s^{-1}}, \text { so } \\
\left(a \otimes \delta_{s}\right)^{*}=\alpha_{s^{-1}}\left(a^{*}\right) \otimes \delta_{s^{-1}} \\
\text { i.e. } \quad \phi^{*}(t)=\alpha_{t}\left(\phi^{*}\left(t^{-1}\right)\right) .
\end{gathered}
$$

The (full) crossed product

Definition

The completion of the twisted convolution algebra
$\left(A \otimes c_{00}(G), *\right)$ with respect to

$$
\begin{equation*}
\|f\|:=\sup \{\|(\pi \times U)(f)\|:(\pi, U: H) \text { covariant rep. }\} \tag{*}
\end{equation*}
$$

is called the (full) crossed product $A \rtimes_{\alpha} G$.
It is a C^{*}-seminorm, but why a norm?

Existence of covariant representations

For each *-rep $\pi: A \rightarrow \mathscr{B}\left(H_{0}\right)$ define
$H=H_{0} \otimes \ell^{2}(G) \cong \ell^{2}\left(G, H_{0}\right)$.
Define a representation $\tilde{\pi}$ of A on H by

$$
\begin{align*}
\tilde{\pi}(a)\left(x \otimes \delta_{s}\right) & =\pi\left(\alpha_{s^{-1}} a\right) x \otimes \delta_{s}, \quad \text { i.e. } \tilde{\pi}(a)=\operatorname{diag}\left(\pi\left(\alpha_{s^{-1}} a\right)\right) \\
(\tilde{\pi}(a) \xi)(t) & =\pi\left(\alpha_{t^{-1}}(a)\right)(\xi(t)) \quad\left(a \in A, \xi \in \ell^{2}\left(G, H_{0}\right)\right) . \tag{1}
\end{align*}
$$

Define a unitary representation \wedge of G on H by

$$
\begin{align*}
\Lambda_{s}\left(x \otimes \delta_{t}\right) & =x \otimes \delta_{s t}, \quad \text { i.e. } \\
\left(\Lambda_{s} \xi\right)(t) & =\xi\left(s^{-1} t\right) \quad\left(s \in G, \xi \in \ell^{2}\left(G, H_{0}\right)\right) \tag{2}
\end{align*}
$$

This is covariant; and if π is faithful on A, then $\tilde{\pi} \times \Lambda$ is faithful on the convolution algebra $A \otimes c_{00}(G)$.

$\tilde{\pi} \times \Lambda$ is faithful on $A \otimes c_{00}(G)$

Indeed, if $f=\sum_{t} f(t) \otimes \delta_{t} \in A \otimes c_{00}(G)$, then, for each $x \in H_{0}$,

$$
\begin{align*}
(\tilde{\pi} \times \Lambda)(f)\left(x \otimes \delta_{1}\right) & =\left(\sum_{t} \tilde{\pi}(f(t)) \Lambda_{t}\right)\left(x \otimes \delta_{1}\right) \\
& =\sum_{t} \tilde{\pi}(f(t))\left(x \otimes \delta_{t}\right) \\
& =\sum_{t} \pi\left(\alpha_{t^{-1}}(f(t))\right) x \otimes \delta_{t} \\
\Rightarrow\left\|(\tilde{\pi} \times \Lambda)(f)\left(x \otimes \delta_{1}\right)\right\|^{2} & =\sum_{t}\left\|\pi\left(\alpha_{t^{-1}}(f(t))\right) x\right\|^{2} \tag{3}
\end{align*}
$$

hence if $(\tilde{\pi} \times \Lambda)(f)=0$ then for each $x \in H_{0}$ and $t \in G$ we have $\pi\left(\alpha_{t^{-1}}(f(t))\right) x=0$ and so each $f(t)$ vanishes since $\pi \circ \alpha_{t^{-1}}$ is injective.

Existence of covariant representations

Thus (${ }^{*}$) defines a norm $\|\cdot\|$ on $A \otimes c_{00}(G)$.
The completion of $A \otimes c_{00}(G)$ with respect to the (a priori smaller) norm

$$
\|f\|_{r}:=\|(\tilde{\pi} \times \Lambda)(f)\|
$$

is called the reduced crossed product $A \rtimes_{r} G$.
It coincides with $A \rtimes G$ when G is abelian, or compact, but not necessarily when $G=\mathbb{F}_{2}$.

Example

If $G=\mathbb{Z}, A=\mathbb{C}$ and α is the trivial action, then the unitary $V:=\Lambda_{1}$ is just the bilateral shift on $\ell^{2}(\mathbb{Z})$, which is unitarily equivalent to multiplication by z on $L^{2}(\mathbb{T})$. If π is the identity representation of \mathbb{C} as operators on \mathbb{C}, then the representation $\tilde{\pi} \times \Lambda$ extends to a faithful representation of $A \rtimes_{i d} \mathbb{Z}$ on $L^{2}(\mathbb{T})$. If $\phi=\sum \phi_{k} \otimes \delta_{k}$ is in $c_{o o}(\mathbb{Z})$, then $(\tilde{\pi} \times \Lambda)(\phi)=\sum_{k} \phi_{k} V^{k}$ is the operator of multiplication by the function $\sum \phi_{k} z^{k}$, whose norm is precisely the supremum norm of the function.
Since such functions are dense in $C(\mathbb{T})$, it follows that $\mathbb{C} \times i d$ is isometrically isomorphic to $C(\mathbb{T})$.
The dense subalgebra $\ell^{1}(\mathbb{Z})$ of $\mathbb{C} \times i d \mathbb{Z}$ is mapped by $\tilde{\pi} \times \Lambda$ to the Wiener algebra, that is the algebra of all $f \in C(\mathbb{T})$ whose Fourier series is absolutely convergent.

Fourier coefficients

For $\phi=\sum_{t} \phi_{t} \otimes \delta_{t} \in A \otimes c_{00}(G)$ call ϕ_{t} the t-th Fourier coefficient of ϕ.
Fix a faithful rep. π_{0} of A. Note that by (3),

$$
\begin{aligned}
& \left\|\pi_{0}\left(\alpha_{t^{-1}}\left(\phi_{t}\right)\right)\right\| \leq\left\|\left(\tilde{\pi}_{0} \times \Lambda\right)(\phi)\right\| \text { for each } t \in G \text {. Now } \\
& \left\|\phi_{s}\right\|_{A}=\left\|\pi_{0}\left(\alpha_{s^{-1}}\left(\phi_{s}\right)\right)\right\| \\
& \leq \sup \{\|(\pi \times U)(\phi)\|: \pi \times U \text { covariant pair }\}=\|\phi\| .
\end{aligned}
$$

Hence the map

$$
E_{s}: A \otimes c_{00}(G) \rightarrow A: \phi \rightarrow \phi_{s}
$$

is contractive, so extends to a contraction

$$
E_{s}: A \rtimes_{\alpha} G \rightarrow A
$$

Clearly if $a \in A \rtimes_{\alpha} G$ has $\left(\tilde{\pi_{0}} \times \Lambda\right)(a)=0$ then each $E_{s}(a)=0$. Hence if the "Fourier transform" is injective, the reduced crossed product coincides with the full crossed product.

Abelian groups

For G abelian, let $\Gamma=\widehat{G}=\{\gamma: G \rightarrow \mathbb{T}:$ cts homom. $\}$ be the dual group. For $\gamma \in \Gamma$, let

$$
\theta_{\gamma}\left(\sum_{g} \phi_{g} \otimes \delta_{g}\right)=\sum_{g} \phi_{g} \otimes \gamma(g) \delta_{g} .
$$

Each θ_{γ} extends to an isometric *-automorphism of $\mathscr{A} \times{ }_{\alpha} G$ and

$$
\begin{equation*}
E_{t}(B) \otimes \delta_{t}=\int_{\Gamma} \theta_{\gamma}(B) \gamma\left(t^{-1}\right) d \gamma \quad \forall B \in \mathscr{A} \times_{\alpha} G, \forall t \in G . \tag{*}
\end{equation*}
$$

Let ξ be a continuous linear form on $\mathscr{A} \times{ }_{\alpha}$ G. Let $f(\gamma)=\xi\left(\theta_{\gamma}(B)\right)$; its Fourier transform is

$$
\hat{f}(t)=\int_{\Gamma} f(\gamma) \gamma\left(t^{-1}\right) d \gamma=\xi\left(E_{t}(B) \otimes \delta_{t}\right) .
$$

So if each $E_{t}(B)$ is zero, then $\hat{f}=0$ and so $f=0$; therefore $B=0$.

Abelian groups

Note that $\theta_{\gamma}\left(a \otimes \delta_{e}\right)=a$ when $a \in \mathscr{A}$ hence $E_{e}\left(a \otimes \delta_{e}\right)=a$ by (*). Identify \mathscr{A} with its image $\left\{a \otimes \delta_{e}: a \in \mathscr{A}\right\}$ in $\mathscr{A} \times{ }_{\alpha} G$. The map

$$
E_{e}: \mathscr{A} \times{ }_{\alpha} G \rightarrow \mathscr{A}
$$

is a contractive projection, and

$$
\begin{aligned}
E_{e}(a B c) & =E_{e}(a B c) \otimes \delta_{e}=\int_{\Gamma} \theta_{\gamma}(a B c) \gamma\left(e^{-1}\right) d \gamma=\int_{\Gamma} a \theta_{\gamma}(B) c d \gamma \\
& =a\left(E_{e}(B)\right) c
\end{aligned}
$$

conditional expectation. Also, faithful:

$$
0=E_{e}\left(B^{*} B\right)=\int_{\Gamma} \theta_{\gamma}\left(B^{*} B\right) d \gamma \Rightarrow B^{*} B=0 \Rightarrow B=0
$$

because $\gamma \rightarrow \theta_{\gamma}\left(B^{*} B\right)$ is nonneg. and continuous.

Universal property

There exists a C^{*}-algebra \mathscr{B} satisfying
(a) There exist embeddings $i_{A}: \mathscr{A} \rightarrow \mathscr{B}$ (a *-representation, necessarily 1-1) and $i_{G}: G \rightarrow \mathscr{U}(\mathscr{B})$ (a - necessarily injectivegroup homomorphism into the unitary group $\mathscr{U}(\mathscr{B})$ of $\mathscr{B})$ satisfying
$i_{A}\left(\alpha_{s}(x)\right)=i_{G}(s) i_{A}(x) i_{G}(s)^{*}$ for all $x \in \mathscr{A}, s \in G ;$
(b) for every covariant representation $(\pi, U ; H)$ of (\mathscr{A}, G, α), there is a non-degenerate representation $\pi \times U$ of \mathscr{B} with $\pi=(\pi \times U) \circ i_{A}$ and $U=(\pi \times U) \circ i_{G} ;$
(c) the linear span of $\left\{i_{A}(x) i_{G}(s): x \in \mathscr{A}, s \in G\right\}$ is dense in \mathscr{B}.

This C^{*}-algebra \mathscr{B} is unique (up to *-isomorphism) and is the crossed product $\mathscr{A} \rtimes_{\alpha} G$.

Example: The irrational rotation algebra

Fix $\theta \in \mathbb{R}$ s.t. $\frac{\theta}{2 \pi}$ is irrational and write $\lambda=e^{i \theta}$. Let $\mathscr{A}=C(\mathbb{T}), G=\mathbb{Z}$ and

$$
\left(\alpha_{n} f\right)(z)=f\left(\lambda^{n} z\right) \quad(f \in \mathscr{A}, n \in \mathbb{Z}, z \in \mathbb{T})
$$

The crossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}:=\mathscr{A}_{\theta}$ is called the irrational rotation algebra.
The reduced representation on $H=L^{2}(\mathbb{T}) \otimes \ell^{2}(\mathbb{Z})$:

$$
\begin{aligned}
& \quad(\tilde{\pi} \times \Lambda)\left(\sum_{|k| \leq n} f_{k} \otimes \delta_{k}\right)=\left(\sum_{|k| \leq n} \tilde{\pi}\left(f_{k}\right) \Lambda_{k}\right) \\
& \text { where } \pi: C(\mathbb{T}) \rightarrow B\left(L^{2}(\mathbb{T})\right): \pi(f) g=f g\left(g \in L^{2}(\mathbb{T})\right)
\end{aligned}
$$

(see (1) and (2)) is faithful on $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$ since \mathbb{Z} is abelian.

The irrational rotation algebra

But the representation on $L^{2}(\mathbb{T})$ given by

$$
(\pi \times \lambda)\left(\sum_{|k| \leq n} f_{k} \otimes \delta_{k}\right)=\left(\sum_{|k| \leq n} \pi\left(f_{k}\right) \lambda_{k}\right)
$$

(where $\lambda_{k}=U^{k}$ with $U\left(\delta_{k}\right)=\delta_{k+1}$ the bilateral shift) is also faithful because Lebesgue measure is ergodic for the irrational rotation.
So we have two isometric representations of the same C* algebra, \mathscr{A}_{θ}.

The irrational rotation algebra

But if we take w* closures:

$$
{\overline{\left((\tilde{\pi} \times \Lambda)\left(\mathscr{A}_{\theta}\right)\right)}}^{w^{*}}=L^{\infty}(\mathbb{T}) \bar{\rtimes}_{\alpha} \mathbb{Z}
$$

the weak-* crossed product, which we have seen is a type II_{1} factor.
On the other hand

$$
{\overline{\left((\pi \times \lambda)\left(\mathscr{A}_{\theta}\right)\right)}}^{w^{*}}=\mathscr{B}\left(L^{2}(\mathbb{T})\right)
$$

(because $\pi \times \lambda$ is irreducible - ergodicity) so we get a type I_{1} factor.
These two von Neumann algebras cannot be isomorphic (not even algebraically) for example because in $\mathscr{B}\left(L^{2}(\mathbb{T})\right)$ the unilateral shift S satisfies $S^{*} S=I \neq S S^{*}$ whereas in $L^{\infty}(\mathbb{T}) \bar{\rtimes}_{\alpha} \mathbb{Z}$ the relation $s^{*} s=l$ implies $s s^{*}=l$.

Semicrossed products

Generalisations:

- \mathscr{A} is now an operator algebra (preferably unital), i.e. a norm closed subalgebra of a C^{*}-algebra, not necessarily selfadjoint (for example, the upper triangular matrices on ℓ^{2} or the disk algebra $A(\mathbb{D}))$.
- G is replaced by a unital sub-semigroup G^{+}of a group G (preferably abelian)
- the action α is now a homomorphism $\alpha: G^{+} \rightarrow \operatorname{End}(\mathscr{A})$ where $\operatorname{End}(\mathscr{A})$ consists of all homomorphisms $\mathscr{A} \rightarrow \mathscr{A}$ which are completely contractive.
(On a C*-algebra, every *-homomorphism is completely contractive)
The triple $\left(\mathscr{A}, \alpha, G^{+}\right)$is called a semigroup dynamical system.

Semicrossed products

Restrict to abelian G.
A covariant representation $(\pi, T ; H)$ of $\left(\mathscr{A}, \alpha, G^{+}\right)$is:

$$
\begin{aligned}
& \pi: \mathscr{A} \rightarrow \mathscr{B}(H) \quad \text { compl. contractive representation } \\
& T: G^{+} \rightarrow \mathscr{B}(H) \quad \text { contactions s.t. } T_{s+t}=T_{s} T_{t} . \\
& \pi(f) T_{s}=T_{s} \pi\left(\alpha_{s}(f)\right), \quad f \in \mathscr{A}, s \in G^{+} \quad \text { (covariance). }
\end{aligned}
$$

The covariance algebra $c_{00}\left(G^{+}, \alpha, \mathscr{A}\right)$ is $c_{00}\left(G^{+}\right) \otimes \mathscr{A}$ as a linear space with

$$
\left(\delta_{t} \otimes f\right) *\left(\delta_{s} \otimes g\right)=\delta_{t+s} \otimes \alpha_{s}(f) g
$$

To define a norm ${ }^{1}$, fix a family \mathscr{F} of covariant pairs and put

$$
\left\|\sum_{k} \delta_{t_{k}} \otimes f_{k}\right\|_{\mathscr{F}}:=\sup \left\{\left\|\sum_{k} T_{t_{k}} \pi\left(f_{k}\right)\right\|_{\mathscr{B}(H)}:(\pi, T: H) \in \mathscr{F}\right\}
$$

[^0]
Semicrossed products

To get an operator algebra structure need norms on $n \times n$ matrices for all $n \in \mathbb{N}$: Given $F_{k}=\left[f_{i, j}^{(k)}\right] \in M_{n}(\mathscr{A})$, for each covariant rep. $(\pi, T: H)$ get operator $\left[T_{t_{k}} \pi\left(f_{i, j}^{(k)}\right)\right]$ on H^{n}. Define

$$
\left\|\sum_{k} \delta_{t_{k}} \otimes F_{k}\right\|_{n, \mathscr{F}}:=\sup \left\{\left\|\sum_{k}\left[T_{t_{k}} \pi\left(f_{i, j}^{(k)}\right)\right]\right\|_{\mathscr{B}\left(H^{n}\right)}:(\pi, T: H) \in \mathscr{F}\right\}
$$

Definition

The semicrossed product $\mathscr{A} \rtimes_{\alpha} G^{+}$is the Hausdorff ${ }^{2}$ completion of $c_{00}\left(G^{+}, \alpha, \mathscr{A}\right)$ with respect to $\|\cdot\|_{\mathscr{F} c}$ where \mathscr{F}^{c} denotes the family of all contractive covariant pairs.

When one restricts to the family $\mathscr{F}^{\text {is }}$ of all isometric covariant pairs, one obtains the isometric semicrossed product $\mathscr{A} \rtimes_{\alpha}^{\text {is }} G^{+}$.
${ }^{2}$ i.e. the completion of the quotient modulo the ideal $\operatorname{ker}\|\cdot\|_{\mathscr{F} c}$

Example: the irrational rotation

As before, fix $\theta \in \mathbb{R}$ s.t. $\frac{\theta}{2 \pi}$ is irrational. Let $\mathscr{A}=C(\mathbb{T}), G=\mathbb{Z}$ and

$$
\left(\alpha_{n} f\right)(z)=f\left(e^{i n \theta} z\right) \quad(f \in \mathscr{A}, n \in \mathbb{Z}, z \in \mathbb{T})
$$

The semicrossed product $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$is a closed subalgebra of the irrational rotation algebra $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}$ (why?).
Thus the representation $\pi \times \lambda: C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} \rightarrow \mathscr{B}\left(L^{2}(\mathbb{T})\right.$ restricts to an isometric representation of $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$given by (flip)

$$
(\pi \times \lambda)\left(\sum_{k=0}^{n} \delta_{k} \otimes f_{k}\right)=\sum_{k=0}^{n} V^{k} \pi\left(f_{k}\right)
$$

where V is the generator λ_{1} of $\left\{\lambda_{n}: n \in \mathbb{Z}_{+}\right\}$given by $(V g)(z)=g\left(e^{i \theta} z\right), g \in L^{2}(\mathbb{T})$.

Example: the irrational rotation

The C^{*}-algebra $C(\mathbb{T})$ is the closed algebra generated by ζ and $\bar{\zeta}$, where $\zeta(z)=z$; hence $\pi\left(C(\mathbb{T}) \subseteq \mathscr{B}\left(L^{2}(\mathbb{T})\right)\right.$ is generated by $U:=\pi(\zeta)$ and U^{*}. Therefore $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}_{+}$is generated by $\left\{U, U^{*}, V\right\}$ and $C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}=\mathscr{A}_{\theta}$ is generated by $\left\{U, U^{*}, V, V^{*}\right\}$. $U V=e^{i \theta} V U$ the Weyl relation.

Proposition

The w^{*}-closed subalgebra of $\mathscr{B}\left(L^{2}(\mathbb{T})\right.$ generated by $\{U, V\}$ is the nest algebra $\operatorname{Alg} \mathscr{N}$ of all operators $T \in \mathscr{B}\left(L^{2}(\mathbb{T})\right)$ leaving all elements of $\mathscr{N}=\left\{N_{n}: n \in \mathbb{Z}\right\}$ invariant, where $N_{n}=\left\{f \in L^{2}(\mathbb{T}): \hat{f}(k)=0, k<n\right\}$.

Example: the irrational rotation

After Fourier transform $L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$:

$$
U \sim\left[\begin{array}{ccccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 1 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 1 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 1 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 1 & 0 & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right], V \sim\left[\begin{array}{ccccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & \bar{\lambda}^{2} & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & \bar{\lambda} & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 1 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & \lambda & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & \lambda^{2} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Write A_{θ}^{+}and A_{θ}^{++}for the norm-closed subalgebras of A_{θ} generated by $\left\{U, V, V^{*}\right\}$ and $\{U, V, I\}$ respectively.

Example: the irrational rotation

Note that $U\left(N_{m}\right)=N_{m+1} \subset N_{m}$ and $V\left(N_{m}\right)=N_{m}$.
It follows that U, V and V^{*} lie in the nest algebra $A l g \mathscr{N}$ and so

$$
A_{\theta}^{++} \subset A_{\theta}^{+} \subseteq A_{\theta} \cap A l g \mathscr{N} .
$$

We have shown that the weak-* closure of A_{θ}^{++}is the whole of Alg \mathscr{N}. Thus

$$
W^{*}\left(A_{\theta}^{++}\right)=W^{*}\left(A_{\theta}^{+}\right)=A / g \mathscr{N} .
$$

Since A_{θ} is an irreducible C^{*}-algebra, its w^{*} closure is $B(H)$.

Proposition

We have $A_{\theta}^{+}=A_{\theta} \cap A l g \mathscr{N}$. In other words A_{θ}^{+}is a nest subalgebra of a C^{*}-algebra.

[^0]: ${ }^{1}$ on the quotient by $\operatorname{ker}\|\cdot\|_{\mathscr{F}}$, if necessary

