
Lecture of Feb. 21: Summary

Definition 1 (Loginov-Shulman [17], Erdos [?])
(i) The reflexive cover Ref(S) of a subset S ⊆ B(H,K) is the set of all B ∈ B(H,K) such
that

Bx ∈ [Sx] ∀x ∈ H.
(ii) A subset S ⊆ B(H,K) is said to be reflexive if S = Ref(S).

The reflexive cover of a set of operators can be thought of as its “one-point closure”. Of
course Ref is not a closure operator in the topological sense. However, in some important
cases, the reflexive cover of a subspace coincides with its closure in the weak operator topology
(WOT).

Proposition 1 Let S ⊆ B(H,K) be a linear space. Then

Ssot
= {T ∈ B(H,K) : ∀n, T (n) ∈ Ref(S(n)}.

Corollary 2 Let S ⊆ B(H,K) be a linear space. Then Ssot
= Swot

.
(In fact, this is true for any convex set S.)

Example If

A =

{(
a b
0 a

)
: a, b ∈ C

}
then A is not reflexive: Ref(A) is the set of all upper-triangular matrices.

Theorem 3 (von Neumann’s bicommutant theorem) Let A ⊆ B(H) be a selfadjoint
algebra containing the identity operator. Then

Awot
= A′′.

Remark 4 In fact, A′′ = Ref(A) in this case. Thus a topological property A = Awot
is

shown to be equivalent to an algebraic property ( A = A′′) and also to a ‘geometric’ property
(A = Ref(A)) (in the sense that it relates to the action of A on the Hilbert space).

A crucial observation is that reflexive subspaces can be characterised in terms of rank
one operators1. Indeed,

Ref(S) = {T ∈ B(H,K) : 〈Sx, y〉 = 0⇒ 〈Tx, y〉 = 0}
= {T ∈ B(H,K) : ωx,y⊥S ⇒ ωx,y⊥T}
= (R1(

⊥S))⊥ (1)

1This is due to Larson [?] in the case of unital algebras, and to Kraus-Larson [?] and Erdos [?] in the
general case. Theorem 5 is from [?], Theorem 9.2.
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where R1(T ) denotes the ‘rank one subspace’ of T (the linear span of the vector functionals
in T ) and ωx,y(T ) = 〈Tx, y〉.

Thus reflexive spaces are (post-) annihilators of sets of rank ones. The converse also
holds. Thus

Proposition 5 A set S ⊆ B(H,K) is reflexive if and only if it is of the form S = R⊥, for
some set R ⊆ B(K,H) of rank one operators.

Proof Let S = R⊥. Suppose that Tx ∈ Sx for all x ∈ H. Then for each ωx,y ∈ R, we have
ωx,y⊥S, i.e. 〈Sx, y〉 = {0} and hence 〈Tx, y〉 = 0. Thus T ∈ R⊥ = S. 2

Reflexive masa bimodules Let H,K be Hilbert spaces, A ⊆ B(H) and B ⊆ B(K)
masas. A linear subspace S ⊆ B(H,K) is said to be an (A,B)-bimodule when ASB ⊆ S,
i.e. when A ∈ A, B ∈ B and S ∈ S imply ASB ∈ S.

Proposition 6 Let H = L2(X,µ), K = L2(Y, ν) and consider the masas Mµ and Mν. For
any Ω ⊆ X × Y the space

Mmax(Ω) := {T ∈ B(H,K) : T is supported in Ω}

is a reflexive masa bimodule.

In fact, all reflexive masa bimodules are of this form:
Recall that any separable acting masa is unitarily equivalent to the multiplication masa

Mµ of a measure space (X,µ) and that in fact there exists a topology making X a compact
metric space and µ a regular Borel measure.

Theorem 7 [7, 4.2] Let A ⊆ B(H) and B ⊆ B(K) be separably acting masas. Suppose

(A, H)
u' (Mµ, L

2(X,µ)) and (B, K)
u' (Mν , L

2(Y, ν)). If S ⊆ B(H,K) is a reflexive
(A,B)-bimodule, then there exists a subset Ω ⊆ X × Y such that

S u'Mmax(Ω).

The proof uses the following:

Proposition 8 [7, 3.4] Let (X,µ) and (Y, ν) be compact spaces equipped with regular Borel
measures. If K ⊆ X × Y is ω-closed and

K ⊆
∞⋃
n=1

An ×Bn

where An ⊆ X and Bn ⊆ Y are Borel sets, then for all ε > 0 there exists Xε ⊆ X, Yε ⊆ Y
with µ(X \Xε) < ε and ν(Y \ Yε) < ε and N ∈ N so that

K ∩ (Xε × Yε) ⊆
N⋃
n=1

An ×Bn.
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[21] Shôichirô Sakai. C∗-algebras and W ∗-algebras. Classics in Mathematics. Springer-Verlag,
Berlin, 1998. Reprint of the 1971 edition.

[22] Victor Shulman and Lyudmila Turowska. Operator synthesis. I. Synthetic sets, bilattices
and tensor algebras. J. Funct. Anal., 209(2):293–331, 2004.

[23] Victor Shulman and Lyudmila Turowska. Operator synthesis. II. Individual synthesis
and linear operator equations. J. Reine Angew. Math., 590:143–187, 2006.

[24] M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathemati-
cal Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator
Algebras and Non-commutative Geometry, 5.

[25] M. Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathemat-
ical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative
Geometry, 6.

4



[26] M. Takesaki. Theory of operator algebras. III, volume 127 of Encyclopaedia of Mathemat-
ical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative
Geometry, 8.

[27] J. von Neumann. Zur Algebra der Funktionaloperationen und Theorie der normalen
Operatoren. Math. Ann., 102:370–427, 1929.

[28] N. E. Wegge-Olsen. K-theory and C∗-algebras. Oxford Science Publications. The Claren-
don Press Oxford University Press, New York, 1993. A friendly approach.

5


