
Lectures of March 7 and 14: Some notes

Preliminaries Let (A, ‖·‖) be1 a commutative Banach algebra and let σ(A) be its spectrum,
namely the set of all nonzero homomorphisms φ : A → C. Equipped with the topology of pointwise
convergence, σ(A) is a locally compact Hausdorff space and each a ∈ A defines a continuous function
â : σ(A)→ C by â(φ) := φ(a). The algebra A is semisimple if for each nonzero a ∈ A there exists
φ ∈ σ(A) such that φ(a) 6= 0, i.e. if the map a→ â is one to one. In this case (by identifying a with
â) A can and will be identified with a subalgebra of the algebra C0(X) of continuous complex-valued
functions on the spectrum X = σ(A) vanishing at infinity, and ‖a‖∞ ≤ ‖a‖ for all a ∈ A.

A semisimple commutative Banach algebra A with spectrum X is called regular if for each
x ∈ X and E ⊆ X closed with x /∈ E there exists a ∈ A such that a(x) = 1 and a|E = 0.

For example, the algebra of all continuous functions on the closed complex disc D which are
holomorphic in the open disc is a semisimple Banach algebra in the sup norm (its spectrum is
actually homeomorphic to D) but it is not regular, because any holomorphic function vanishing on
a subset of D with nonempty interior must vanish everywhere by the identity principle.

Example Let A(T) (the Wiener or Fourier algebra of the group T = {eit : t ∈ R}) be the set of
all continuous functions f : T→ C whose Fourier series

∑
f̂(n)eint converges absolutely. With the

norm ‖f‖A := ‖f̂‖1 =
∑
|f̂(n)| and pointwise operations, A(T) is a semisimple Banach algebra

(its spectrum is actually homeomorphic to T) which is regular.

In fact it has the following formally 2 stronger property: the singleton {x} can be replaced by
a compact set. Indeed

Lemma 1 If K,E are disjoint compact subsets of T, there exists f ∈ A(T) such that f |K = 1 and
f |E = 0. 3

Proof For ε > 0, let Kε = {eit ∈ T : |t− s| < ε for some eis ∈ K}. Choose ε > 0 small enough so
that K2ε ∩ E = ∅. If m denotes normalised Lebesgue measure on T and V = {eis : |s| < ε}, we set

f(eit) =
1

ε

∫
χKε(e

is)χV (ei(t−s))
ds

2π
=
m(eitV ∩Kε)

ε

(this equality holds because ei(t−s) ∈ V ⇐⇒ e−is ∈ e−itV ⇐⇒ eis ∈ eitV ).
Let eit ∈ K. If |s| < ε then ei(t+s) ∈ Kε; thus eitV ⊆ Kε and so m(eitV ∩Kε) = m(eitV ) = ε;

hence f(eit) = 1.
On the other hand, if eit ∈ E then eit /∈ K2ε and so eitV ∩Kε = ∅; 4 thus f(eit) = 0.
It remains to prove that f is indeed in A(T), i.e. that its Fourier transform is in `1(Z). For

this, notice that f is the convolution of two functions which are both in L2(T): f = 1
εχKε ∗ χV ;

therefore, applying the Fourier transform F ,

F(f) =
1

ε
F(χKε ∗ χV ) = F(χKε) · F(χV ).

1analy2, 12Mar2014 revised 16Mar, 21Mar
2 It can actually be shown that any commutative semisimple regular Banach algebra has the property that a

compact set can be separated from a disjoint closed set by an element of the algebra.
3 This Lemma actually holds for the Fourier algebra A(G) of any locally compact group, with essentially the same

ideas for the proof (provided one defines A(G) appropriately).
4For if eiu ∈ eitV ∩Kε then |u− t| < ε and also |u−s| < ε for some s ∈ K and so |t−s| < 2ε which gives eit ∈ K2ε
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Now we know (!) that the Fourier transform of a function in L2(T) is in fact in `2(Z). Hence F(f)
is the product of two `2 sequences, and thus is in `1 (Cauchy-Schwarz). 2

The extremal ideals Let (A, ‖·‖) be a commutative semisimple and regular Banach algebra
with spectrum X and let E ⊆ X be a closed subset. Define

I(E) = {f ∈ A : f |E = 0}
J0(E) = {f ∈ A : supp f compact and supp f ∩ E = ∅}
J(E) = J0(E).

Note that any f ∈ J0(E) vanishes (not only on E, but) in the open neighbourhood (supp f)c of E.
Recall that Z(J) = {x ∈ X : f(x) = 0 for all f ∈ J}.

We will prove the following Theorem:

Theorem 2 Let J ⊆ A be a closed ideal and E ⊆ X a closed subset. Then

Z(J) = E if and only if J0(E) ⊆ J ⊆ I(E).

In particular, J(E) is the smallest closed ideal J with null set Z(J) = E

We will need some preliminaries.

Proposition 3 If b ∈ A vanishes nowhere on a compact set F ⊆ X, there is a function d contained
in A such that (bd)(t) = 1 for all t ∈ F .

Proof Consider the commutative Banach algebra B = A/I(F ) and let q : A → B be the quotient
map. I claim that the character space σ(B) is homeomorphic to F :

For any point x ∈ F , the associated multiplicative linear functional a→ a(x) annihilates I(F ),
hence induces a multiplicative linear functional φx : B → C by φx(q(a)) = a(x) (this φx is well
defined because if q(a) = q(b) then a − b ∈ I(F ) and so a(x) = b(x)). Conversely, every nonzero
multiplicative linear functional φ : B → C defines a multiplicative linear functional φ ◦ q : A → C
which is nonzero because φ is nonzero and q is onto. Therefore there exists x ∈ X such that
φ(q(a)) = a(x) for all a ∈ A and since φ ◦ q annihilates I(F ), x must lie in Z(I(F )) = F ; thus
φ ◦ q = φx.

Hence the map F → σ(B) : x→ φx is a bijection. Finally, if xi → x in X then a(xi)→ a(x) for
all a ∈ A (definition of the topology of X = σ(A)) hence φxi(q(a))→ φx(q(a)), which is equivalent
to φxi → φx in the topology of σ(B). This shows that x→ φx is continuous.

Thus σ(B) is compact and x→ φx a homeomorphism.
Note that B = A/I(F ) is semisimple: indeed if q(a) 6= 0 then there exists t ∈ F s.t. a(t) 6= 0;

thus φt(q(a)) = a(t) 6= 0.
The fact that B has compact spectrum and contains a nowhere vanishing element (namely, q(b))

implies that B has a unit, say e. Equivalently
there exists an element u ∈ A such that q(u) = e i.e. u|F = 1. 5 We will prove this in

Proposition 6 below.

5indeed, for all x ∈ F , u(x) = φx(q(u)) = φx(e) = 1.
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I claim that q(b) is invertible in B. This is equivalent to showing that φ(q(b)) 6= 0 for every
nonzero multiplicative linear functional φ ∈ σ(B). But as observed above, any such φ must be of
the form φx for some x ∈ X. Thus φx(q(b)) = b(x) which is never zero because b never vanishes on
F . Thus q(b) is invertible.

It follows that there exists q(d) = (q(b))−1 ∈ B such that q(d)q(u) = q(u); but this means
exactly that q(du− u) = 0 in B, i.e. that (db)(t) = u(t) = 1 for all t ∈ F , as required. 2

Remark 4 Note that in many specific cases the existence of the element u is proved directly. This
is the case for example in the case of the Wiener algebra A(T) (see Lemma 1) or more generally
for A(G). A proof in the general case (Proposition 6) seems to require some complex analysis.

Proposition 5 Let J ⊆ A be a closed ideal and K ⊆ X a compact set such that Z(J) ∩K = ∅.
Then there exists c ∈ J such that c(x) = 1 for all x ∈ K.

Proof For all x ∈ K, since x /∈ Z(J) there is b ∈ J with b(x) 6= 0. Since b is continuous, there is
an open neighbourhood Vx of x on which b never vanishes and such that V x is compact.6

Since b never vanishes on the compact set V x, by Proposition 3 there is a function d contained
in A such that (bd)(t) = 1 for all t ∈ V x.

Set cx = bd. Thus cx ∈ J because J is an ideal and cx(t) = 1 for all t ∈ V x. The family
{Vx : x ∈ K} is an open cover of K. Let V1, . . . , Vn be a finite subcover and denote by c1, . . . , cn
the corresponding elements of J . If we now define

c = 1−
n∏
i=1

(1− ci)

then we have an element of J (the 1’s cancel out) such that c(x) = 1 for any x ∈ K (because x will
be in some Vi so (1− ci)(x) = 0 so the product vanishes and hence c(x) = 1. 2

Proof of Theorem 2 Suppose first that J0(E) ⊆ J ⊆ I(E); to show that Z(J) = E. Now
Z(J0(E)) ⊇ Z(J) ⊇ Z(I(E)). But we know (regularity) that Z(I(E)) = E. Thus it suffices to
prove that E ⊇ Z(J0(E)).

So let x /∈ E. Then x has an open neighbourhood U s.t. U is compact and disjoint from E. By
regularity, there exists a ∈ A with a(x) = 1 and a(t) = 0 for all t ∈ U c (a closed set not containing
x). Thus {t ∈ X : a(t) 6= 0} ⊆ U and so supp a ⊆ U . Thus supp a is compact and does not meet
E; hence a ∈ J0(E). Since a(x) 6= 0, we have shown that x /∈ Z(J0(E)).

Suppose now that Z(J) = E. It is obvious that J ⊆ I(E). To show that J0(E) ⊆ J , take any
a ∈ J0(E) and put K = supp a: a compact set with K ∩ Z(J) = ∅.

By Proposition 5, there exists c ∈ J such that c(x) = 1 for all x ∈ K.
But note that a = ac; indeed (ac)(x) = a(x) for all x ∈ K and (ac)(y) = 0 = a(y) for all y /∈ K.

Thus a ∈ J since c ∈ J and J is an ideal. This completes the proof that J0(E) ⊆ J. 2

Proposition 6 If B is a semisimple commutative Banach algebra with compact spectrum contain-
ing an element a which vanishes nowhere, then B must be unital, and in fact a must be invertible
in B.

6 for instance, take Vx = {t ∈ X : |b(t)| > 1
2
|b(x)|}. Then V x is contained in {t ∈ X : |b(t)| ≥ 1

2
|b(x)|} which is

compact because |b(t)| < 1
2
|b(x)| for all t outside some compact set (recall that A ⊆ C0(X)).
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Proof. Consider a as an element of the unitisation B1 = B⊕C and write e for the unit (0, 1) of B1 so
that each (f, λ) ∈ B1 is written f+λe. The spectrum σ(B1) consists of all maps φ̃ : f+λe→ φ(f)+λ
where φ ∈ σ(B) together with the map φ∞ : f + λe→ λ. Therefore the spectrum of a in B1 is the
set

{φ̃(a) : φ ∈ σ(B)} ∪ {φ∞(a)} = {φ(a) : φ ∈ σ(B)} ∪ {0}.

Since the map â : φ→ φ(a) is continuous and never vanishes on σ(B) (by definition of the topology
of σ(B)), The set A := {φ(a) : φ ∈ σ(B)} is a compact subset of C not containing 0 ∈ C. Thus
there are disjoint open subsets V,W of C such that 0 ∈ V and A ⊆ W . Now define a function
h : V ∪W → C by

h(z) =

{
0, z ∈ V

1/z, z ∈W
This function has a complex derivative at all points of V ∪W : it is a holomorphic function on the
open set V ∪W .

Let γ be a closed piecewise smooth cycle (: finite ‘sum’ of simple closed curves) in V ∪W such
that Indγ(z) = 1 for all z ∈ {0} ∪ A and Indγ(z) = 0 for all z /∈ V ∪W (it is proved in complex
analysis that such curves exist - see for example Negr. 12.8). Then by the global Cauchy Theorem
(Negr. 5.19),

h(z) =
1

2πi

∫
γ
h(w)(z − w)−1dw, z ∈ {0} ∪A.

Since the spectrum of a in B1 is the set {0} ∪ A, it follows that when w ∈ V ∪W \ ({0} ∪ A) the
element a−we is invertible in B1 and it is known that the map w → (a−we)−1 is continuous there;
in particular, this map is defined and continuous on the trace of γ. It follows that the integral

h̃(a) :=
1

2πi

∫
γ
h(w)(a− we)−1dw

is well defined as a limit of Riemann sums which are elements of B1. Moreover for every nonzero
multiplicative linear functional ψ : B1 → C we have of course ψ((a−we)−1) = (ψ(a)−wψ(e))−1) =
(ψ(a)− w)−1 (since ψ(e) = 1) and so by linearity and continuity,

ψ(h̃(a)) =
1

2πi

∫
γ
h(w)ψ((a− we)−1)dw =

1

2πi

∫
γ
h(w)(ψ(a)− w)−1dw = h(ψ(a))

using the integral formula for h(z). In particular, φ∞(h̃(a)) = h(φ∞(a)) = h(0) = 0, which shows
that h̃(a) is actually an element v of B. Thus, for every φ ∈ σ(B) we have

φ(va) = φ(h̃(a)) · φ(a) = h(φ(a)) · φ(a).

But φ(a) ∈ A and h(z) = 1/z for z ∈ A; therefore h(φ(a)) · φ(a) = 1 and so φ(va) = 1. Let u = va.
For all c ∈ B we have

φ(uc) = φ(va) · φ(c) = φ(c) or φ(uc− c) = 0

for all φ ∈ σ(B). Since B is semisimple, it follows that uc = c for all c ∈ B, and so u is the identity
of B, and a is invertible with inverse v, as required.

Remark 7 It can be shown that the assumption that B contains a nowhere vanishing element is
superfluous; but the proof uses tools from the theory of several complex variables...
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