## Lectures of March 7 and 14: Some notes

Preliminaries Let $(\mathcal{A},\|\cdot\|)$ be ${ }^{1}$ a commutative Banach algebra and let $\sigma(\mathcal{A})$ be its spectrum, namely the set of all nonzero homomorphisms $\phi: \mathcal{A} \rightarrow \mathbb{C}$. Equipped with the topology of pointwise convergence, $\sigma(\mathcal{A})$ is a locally compact Hausdorff space and each $a \in \mathcal{A}$ defines a continuous function $\hat{a}: \sigma(\mathcal{A}) \rightarrow \mathbb{C}$ by $\hat{a}(\phi):=\phi(a)$. The algebra $\mathcal{A}$ is semisimple if for each nonzero $a \in \mathcal{A}$ there exists $\phi \in \sigma(\mathcal{A})$ such that $\phi(a) \neq 0$, i.e. if the map $a \rightarrow \hat{a}$ is one to one. In this case (by identifying $a$ with $\hat{a}) \mathcal{A}$ can and will be identified with a subalgebra of the algebra $C_{0}(X)$ of continuous complex-valued functions on the spectrum $X=\sigma(\mathcal{A})$ vanishing at infinity, and $\|a\|_{\infty} \leq\|a\|$ for all $a \in \mathcal{A}$.

A semisimple commutative Banach algebra $\mathcal{A}$ with spectrum $X$ is called regular if for each $x \in X$ and $E \subseteq X$ closed with $x \notin E$ there exists $a \in \mathcal{A}$ such that $a(x)=1$ and $\left.a\right|_{E}=0$.

For example, the algebra of all continuous functions on the closed complex disc $\overline{\mathbb{D}}$ which are holomorphic in the open disc is a semisimple Banach algebra in the sup norm (its spectrum is actually homeomorphic to $\overline{\mathbb{D}}$ ) but it is not regular, because any holomorphic function vanishing on a subset of $\mathbb{D}$ with nonempty interior must vanish everywhere by the identity principle.
Example Let $A(\mathbb{T})$ (the Wiener or Fourier algebra of the group $\mathbb{T}=\left\{e^{i t}: t \in \mathbb{R}\right\}$ ) be the set of all continuous functions $f: \mathbb{T} \rightarrow \mathbb{C}$ whose Fourier series $\sum \hat{f}(n) e^{\text {int }}$ converges absolutely. With the norm $\|f\|_{A}:=\|\hat{f}\|_{1}=\sum|\hat{f}(n)|$ and pointwise operations, $A(\mathbb{T})$ is a semisimple Banach algebra (its spectrum is actually homeomorphic to $\mathbb{T}$ ) which is regular.

In fact it has the following formally ${ }^{2}$ stronger property: the singleton $\{x\}$ can be replaced by a compact set. Indeed

Lemma 1 If $K, E$ are disjoint compact subsets of $\mathbb{T}$, there exists $f \in A(\mathbb{T})$ such that $\left.f\right|_{K}=1$ and $\left.f\right|_{E}=0 .{ }^{3}$

Proof For $\epsilon>0$, let $K_{\epsilon}=\left\{e^{i t} \in \mathbb{T}:|t-s|<\epsilon\right.$ for some $\left.e^{i s} \in K\right\}$. Choose $\epsilon>0$ small enough so that $K_{2 \epsilon} \cap E=\emptyset$. If $m$ denotes normalised Lebesgue measure on $\mathbb{T}$ and $V=\left\{e^{i s}:|s|<\epsilon\right\}$, we set

$$
f\left(e^{i t}\right)=\frac{1}{\epsilon} \int \chi_{K_{\epsilon}}\left(e^{i s}\right) \chi_{V}\left(e^{i(t-s)}\right) \frac{d s}{2 \pi}=\frac{m\left(e^{i t} V \cap K_{\epsilon}\right)}{\epsilon}
$$

(this equality holds because $e^{i(t-s)} \in V \Longleftrightarrow e^{-i s} \in e^{-i t} V \Longleftrightarrow e^{i s} \in e^{i t} V$ ).
Let $e^{i t} \in K$. If $|s|<\epsilon$ then $e^{i(t+s)} \in K_{\epsilon}$; thus $e^{i t} V \subseteq K_{\epsilon}$ and so $m\left(e^{i t} V \cap K_{\epsilon}\right)=m\left(e^{i t} V\right)=\epsilon$; hence $f\left(e^{i t}\right)=1$.

On the other hand, if $e^{i t} \in E$ then $e^{i t} \notin K_{2 \epsilon}$ and so $e^{i t} V \cap K_{\epsilon}=\emptyset ;{ }^{4}$ thus $f\left(e^{i t}\right)=0$.
It remains to prove that $f$ is indeed in $A(\mathbb{T})$, i.e. that its Fourier transform is in $\ell^{1}(\mathbb{Z})$. For this, notice that $f$ is the convolution of two functions which are both in $L^{2}(\mathbb{T}): f=\frac{1}{\epsilon} \chi_{K_{\epsilon}} * \chi_{V}$; therefore, applying the Fourier transform $\mathcal{F}$,

$$
\mathcal{F}(f)=\frac{1}{\epsilon} \mathcal{F}\left(\chi_{K_{\epsilon}} * \chi_{V}\right)=\mathcal{F}\left(\chi_{K_{\epsilon}}\right) \cdot \mathcal{F}\left(\chi_{V}\right) .
$$

[^0]Now we know (!) that the Fourier transform of a function in $L^{2}(\mathbb{T})$ is in fact in $\ell^{2}(\mathbb{Z})$. Hence $\mathcal{F}(f)$ is the product of two $\ell^{2}$ sequences, and thus is in $\ell^{1}$ (Cauchy-Schwarz).

The extremal ideals Let $(\mathcal{A},\|\cdot\|)$ be a commutative semisimple and regular Banach algebra with spectrum $X$ and let $E \subseteq X$ be a closed subset. Define

$$
\begin{aligned}
I(E) & =\left\{f \in \mathcal{A}:\left.f\right|_{E}=0\right\} \\
J_{0}(E) & =\{f \in \mathcal{A}: \operatorname{supp} f \text { compact and } \operatorname{supp} f \cap E=\emptyset\} \\
J(E) & =\overline{J_{0}(E)} .
\end{aligned}
$$

Note that any $f \in J_{0}(E)$ vanishes (not only on $E$, but) in the open neighbourhood $(\operatorname{supp} f)^{c}$ of $E$. Recall that $Z(J)=\{x \in X: f(x)=0$ for all $f \in J\}$.

We will prove the following Theorem:
Theorem 2 Let $J \subseteq \mathcal{A}$ be a closed ideal and $E \subseteq X$ a closed subset. Then

$$
Z(J)=E \quad \text { if and only if } \quad J_{0}(E) \subseteq J \subseteq I(E) .
$$

In particular, $J(E)$ is the smallest closed ideal $J$ with null set $Z(J)=E$
We will need some preliminaries.
Proposition 3 If $b \in \mathcal{A}$ vanishes nowhere on a compact set $F \subseteq X$, there is a function $d$ contained in $\mathcal{A}$ such that $(b d)(t)=1$ for all $t \in F$.

Proof Consider the commutative Banach algebra $\mathcal{B}=\mathcal{A} / I(F)$ and let $q: \mathcal{A} \rightarrow \mathcal{B}$ be the quotient map. I claim that the character space $\sigma(\mathcal{B})$ is homeomorphic to $F$ :

For any point $x \in F$, the associated multiplicative linear functional $a \rightarrow a(x)$ annihilates $I(F)$, hence induces a multiplicative linear functional $\phi_{x}: \mathcal{B} \rightarrow \mathbb{C}$ by $\phi_{x}(q(a))=a(x)$ (this $\phi_{x}$ is well defined because if $q(a)=q(b)$ then $a-b \in I(F)$ and so $a(x)=b(x))$. Conversely, every nonzero multiplicative linear functional $\phi: \mathcal{B} \rightarrow \mathbb{C}$ defines a multiplicative linear functional $\phi \circ q: \mathcal{A} \rightarrow \mathbb{C}$ which is nonzero because $\phi$ is nonzero and $q$ is onto. Therefore there exists $x \in X$ such that $\phi(q(a))=a(x)$ for all $a \in \mathcal{A}$ and since $\phi \circ q$ annihilates $I(F), x$ must lie in $Z(I(F))=F$; thus $\phi \circ q=\phi_{x}$.

Hence the map $F \rightarrow \sigma(\mathcal{B}): x \rightarrow \phi_{x}$ is a bijection. Finally, if $x_{i} \rightarrow x$ in $X$ then $a\left(x_{i}\right) \rightarrow a(x)$ for all $a \in \mathcal{A}$ (definition of the topology of $X=\sigma(\mathcal{A}))$ hence $\phi_{x_{i}}(q(a)) \rightarrow \phi_{x}(q(a))$, which is equivalent to $\phi_{x_{i}} \rightarrow \phi_{x}$ in the topology of $\sigma(\mathcal{B})$. This shows that $x \rightarrow \phi_{x}$ is continuous.

Thus $\sigma(\mathcal{B})$ is compact and $x \rightarrow \phi_{x}$ a homeomorphism.
Note that $\mathcal{B}=\mathcal{A} / I(F)$ is semisimple: indeed if $q(a) \neq 0$ then there exists $t \in F$ s.t. $a(t) \neq 0$; thus $\phi_{t}(q(a))=a(t) \neq 0$.

The fact that $\mathcal{B}$ has compact spectrum and contains a nowhere vanishing element (namely, $q(b)$ ) implies that $\mathcal{B}$ has a unit, say e. Equivalently
there exists an element $u \in \mathcal{A}$ such that $q(u)=e$ i.e. $\left.u\right|_{F}=1 .{ }^{5}$ We will prove this in Proposition 6 below.

[^1]I claim that $q(b)$ is invertible in $\mathcal{B}$. This is equivalent to showing that $\phi(q(b)) \neq 0$ for every nonzero multiplicative linear functional $\phi \in \sigma(B)$. But as observed above, any such $\phi$ must be of the form $\phi_{x}$ for some $x \in X$. Thus $\phi_{x}(q(b))=b(x)$ which is never zero because $b$ never vanishes on $F$. Thus $q(b)$ is invertible.

It follows that there exists $q(d)=(q(b))^{-1} \in \mathcal{B}$ such that $q(d) q(u)=q(u)$; but this means exactly that $q(d u-u)=0$ in $\mathcal{B}$, i.e. that $(d b)(t)=u(t)=1$ for all $t \in F$, as required.

Remark 4 Note that in many specific cases the existence of the element $u$ is proved directly. This is the case for example in the case of the Wiener algebra $A(\mathbb{T})$ (see Lemma 1) or more generally for $A(G)$. A proof in the general case (Proposition 6) seems to require some complex analysis.

Proposition 5 Let $J \subseteq \mathcal{A}$ be a closed ideal and $K \subseteq X$ a compact set such that $Z(J) \cap K=\emptyset$. Then there exists $c \in J$ such that $c(x)=1$ for all $x \in K$.

Proof For all $x \in K$, since $x \notin Z(J)$ there is $b \in J$ with $b(x) \neq 0$. Since $b$ is continuous, there is an open neighbourhood $V_{x}$ of $x$ on which $b$ never vanishes and such that $\bar{V}_{x}$ is compact. ${ }^{6}$

Since $b$ never vanishes on the compact set $\bar{V}_{x}$, by Proposition 3 there is a function $d$ contained in $\mathcal{A}$ such that $(b d)(t)=1$ for all $t \in \bar{V}_{x}$.

Set $c_{x}=b d$. Thus $c_{x} \in J$ because $J$ is an ideal and $c_{x}(t)=1$ for all $t \in \bar{V}_{x}$. The family $\left\{V_{x}: x \in K\right\}$ is an open cover of $K$. Let $V_{1}, \ldots, V_{n}$ be a finite subcover and denote by $c_{1}, \ldots, c_{n}$ the corresponding elements of $J$. If we now define

$$
c=\mathbf{1}-\prod_{i=1}^{n}\left(\mathbf{1}-c_{i}\right)
$$

then we have an element of $J$ (the $\mathbf{1}$ 's cancel out) such that $c(x)=1$ for any $x \in K$ (because $x$ will be in some $V_{i}$ so $\left(\mathbf{1}-c_{i}\right)(x)=0$ so the product vanishes and hence $c(x)=1$.

Proof of Theorem 2 Suppose first that $J_{0}(E) \subseteq J \subseteq I(E)$; to show that $Z(J)=E$. Now $Z\left(J_{0}(E)\right) \supseteq Z(J) \supseteq Z(I(E))$. But we know (regularity) that $Z(I(E))=E$. Thus it suffices to prove that $E \supseteq Z\left(J_{0}(E)\right)$.

So let $x \notin E$. Then $x$ has an open neighbourhood $U$ s.t. $\bar{U}$ is compact and disjoint from $E$. By regularity, there exists $a \in \mathcal{A}$ with $a(x)=1$ and $a(t)=0$ for all $t \in U^{c}$ (a closed set not containing $x)$. Thus $\{t \in X: a(t) \neq 0\} \subseteq U$ and so $\operatorname{supp} a \subseteq \bar{U}$. Thus $\operatorname{supp} a$ is compact and does not meet $E$; hence $a \in J_{0}(E)$. Since $a(x) \neq 0$, we have shown that $x \notin Z\left(J_{0}(E)\right)$.

Suppose now that $Z(J)=E$. It is obvious that $J \subseteq I(E)$. To show that $J_{0}(E) \subseteq J$, take any $a \in J_{0}(E)$ and put $K=\operatorname{supp} a$ : a compact set with $K \cap Z(J)=\emptyset$.

By Proposition 5, there exists $c \in J$ such that $c(x)=1$ for all $x \in K$.
But note that $a=a c$; indeed $(a c)(x)=a(x)$ for all $x \in K$ and $(a c)(y)=0=a(y)$ for all $y \notin K$. Thus $a \in J$ since $c \in J$ and $J$ is an ideal. This completes the proof that $J_{0}(E) \subseteq J$.

Proposition 6 If $\mathcal{B}$ is a semisimple commutative Banach algebra with compact spectrum containing an element a which vanishes nowhere, then $\mathcal{B}$ must be unital, and in fact a must be invertible in $\mathcal{B}$.

[^2]Proof. Consider $a$ as an element of the unitisation $\mathcal{B}_{1}=\mathcal{B} \oplus \mathbb{C}$ and write $\mathbf{e}$ for the unit $(0,1)$ of $\mathcal{B}_{1}$ so that each $(f, \lambda) \in \mathcal{B}_{1}$ is written $f+\lambda$. The spectrum $\sigma\left(\mathcal{B}_{1}\right)$ consists of all maps $\tilde{\phi}: f+\lambda \mathbf{e} \rightarrow \phi(f)+\lambda$ where $\phi \in \sigma(\mathcal{B})$ together with the map $\phi_{\infty}: f+\lambda \mathbf{e} \rightarrow \lambda$. Therefore the spectrum of $a$ in $\mathcal{B}_{1}$ is the set

$$
\{\tilde{\phi}(a): \phi \in \sigma(\mathcal{B})\} \cup\left\{\phi_{\infty}(a)\right\}=\{\phi(a): \phi \in \sigma(\mathcal{B})\} \cup\{0\} .
$$

Since the map $\hat{a}: \phi \rightarrow \phi(a)$ is continuous and never vanishes on $\sigma(\mathcal{B})$ (by definition of the topology of $\sigma(\mathcal{B})$ ), The set $A:=\{\phi(a): \phi \in \sigma(\mathcal{B})\}$ is a compact subset of $\mathbb{C}$ not containing $0 \in \mathbb{C}$. Thus there are disjoint open subsets $V, W$ of $\mathbb{C}$ such that $0 \in V$ and $A \subseteq W$. Now define a function $h: V \cup W \rightarrow \mathbb{C}$ by

$$
h(z)=\left\{\begin{array}{cc}
0, & z \in V \\
1 / z, & z \in W
\end{array}\right.
$$

This function has a complex derivative at all points of $V \cup W$ : it is a holomorphic function on the open set $V \cup W$.

Let $\gamma$ be a closed piecewise smooth cycle (: finite 'sum' of simple closed curves) in $V \cup W$ such that $\operatorname{Ind}_{\gamma}(z)=1$ for all $z \in\{0\} \cup A$ and $\operatorname{Ind}_{\gamma}(z)=0$ for all $z \notin V \cup W$ (it is proved in complex analysis that such curves exist - see for example Negr. 12.8). Then by the global Cauchy Theorem (Negr. 5.19),

$$
h(z)=\frac{1}{2 \pi i} \int_{\gamma} h(w)(z-w)^{-1} d w, \quad z \in\{0\} \cup A .
$$

Since the spectrum of $a$ in $\mathcal{B}_{1}$ is the set $\{0\} \cup A$, it follows that when $w \in V \cup W \backslash(\{0\} \cup A)$ the element $a-w \mathbf{e}$ is invertible in $\mathcal{B}_{1}$ and it is known that the map $w \rightarrow(a-w \mathbf{e})^{-1}$ is continuous there; in particular, this map is defined and continuous on the trace of $\gamma$. It follows that the integral

$$
\tilde{h}(a):=\frac{1}{2 \pi i} \int_{\gamma} h(w)(a-w \mathbf{e})^{-1} d w
$$

is well defined as a limit of Riemann sums which are elements of $\mathcal{B}_{1}$. Moreover for every nonzero multiplicative linear functional $\psi: \mathcal{B}_{1} \rightarrow \mathbb{C}$ we have of course $\left.\psi\left((a-w \mathbf{e})^{-1}\right)=(\psi(a)-w \psi(\mathbf{e}))^{-1}\right)=$ $(\psi(a)-w)^{-1}($ since $\psi(\mathbf{e})=1)$ and so by linearity and continuity,

$$
\psi(\tilde{h}(a))=\frac{1}{2 \pi i} \int_{\gamma} h(w) \psi\left((a-w \mathbf{e})^{-1}\right) d w=\frac{1}{2 \pi i} \int_{\gamma} h(w)(\psi(a)-w)^{-1} d w=h(\psi(a))
$$

using the integral formula for $h(z)$. In particular, $\phi_{\infty}(\tilde{h}(a))=h\left(\phi_{\infty}(a)\right)=h(0)=0$, which shows that $\tilde{h}(a)$ is actually an element $v$ of $\mathcal{B}$. Thus, for every $\phi \in \sigma(\mathcal{B})$ we have

$$
\phi(v a)=\phi(\tilde{h}(a)) \cdot \phi(a)=h(\phi(a)) \cdot \phi(a)
$$

But $\phi(a) \in A$ and $h(z)=1 / z$ for $z \in A$; therefore $h(\phi(a)) \cdot \phi(a)=1$ and so $\phi(v a)=1$. Let $u=v a$. For all $c \in \mathcal{B}$ we have

$$
\phi(u c)=\phi(v a) \cdot \phi(c)=\phi(c) \quad \text { or } \quad \phi(u c-c)=0
$$

for all $\phi \in \sigma(\mathcal{B})$. Since $\mathcal{B}$ is semisimple, it follows that $u c=c$ for all $c \in \mathcal{B}$, and so $u$ is the identity of $\mathcal{B}$, and $a$ is invertible with inverse $v$, as required.

Remark 7 It can be shown that the assumption that $\mathcal{B}$ contains a nowhere vanishing element is superfluous; but the proof uses tools from the theory of several complex variables...


[^0]:    ${ }^{1}$ analy2, 12Mar2014 revised 16Mar, 21Mar
    ${ }^{2}$ It can actually be shown that any commutative semisimple regular Banach algebra has the property that a compact set can be separated from a disjoint closed set by an element of the algebra.
    ${ }^{3}$ This Lemma actually holds for the Fourier algebra $A(G)$ of any locally compact group, with essentially the same ideas for the proof (provided one defines $A(G)$ appropriately).
    ${ }^{4}$ For if $e^{i u} \in e^{i t} V \cap K_{\epsilon}$ then $|u-t|<\epsilon$ and also $|u-s|<\epsilon$ for some $s \in K$ and so $|t-s|<2 \epsilon$ which gives $e^{i t} \in K_{2 \epsilon}$

[^1]:    ${ }^{5}$ indeed, for all $x \in F, u(x)=\phi_{x}(q(u))=\phi_{x}(e)=1$.

[^2]:    ${ }^{6}$ for instance, take $V_{x}=\left\{t \in X:|b(t)|>\frac{1}{2}|b(x)|\right\}$. Then $\bar{V}_{x}$ is contained in $\left\{t \in X:|b(t)| \geq \frac{1}{2}|b(x)|\right\}$ which is compact because $|b(t)|<\frac{1}{2}|b(x)|$ for all $t$ outside some compact set (recall that $\mathcal{A} \subseteq C_{0}(X)$ ).

