Lectures of March 7 and 14: Some notes

Preliminaries Let (A, |||) be! a commutative Banach algebra and let o(A) be its spectrum,
namely the set of all nonzero homomorphisms ¢ : A — C. Equipped with the topology of pointwise
convergence, o(.A) is a locally compact Hausdorff space and each a € A defines a continuous function
a:0(A) — C by a(¢) := ¢(a). The algebra A is semisimple if for each nonzero a € A there exists
¢ € o(A) such that ¢(a) # 0, i.e. if the map a — a is one to one. In this case (by identifying a with
a) A can and will be identified with a subalgebra of the algebra Cy(X) of continuous complex-valued
functions on the spectrum X = o(.A) vanishing at infinity, and ||a||,, < ||a|| for all a € A.

A semisimple commutative Banach algebra A with spectrum X is called regular if for each
xz € X and E C X closed with x ¢ E there exists a € A such that a(z) =1 and a|g = 0.

For example, the algebra of all continuous functions on the closed complex disc DD which are
holomorphic in the open disc is a semisimple Banach algebra in the sup norm (its spectrum is
actually homeomorphic to D) but it is not reqular, because any holomorphic function vanishing on
a subset of D with nonempty interior must vanish everywhere by the identity principle.

Example Let A(T) (the Wiener or Fourier algebra of the group T = {e' : t € R}) be the set of
all continuous functions f : T — C whose Fourier series f(n)emt converges absolutely. With the
norm ||f|l 4 == IIflli = S |f(n)| and pointwise operations, A(T) is a semisimple Banach algebra
(its spectrum is actually homeomorphic to T ) which is regular.

In fact it has the following formally ? stronger property: the singleton {x} can be replaced by
a compact set. Indeed

Lemma 1 If K, E are disjoint compact subsets of T, there exists f € A(T) such that f|x =1 and
fle=0.2

Proof For e >0, let K. = {e € T: |t —s| < e for some e € K}. Choose ¢ > 0 small enough so
that Ko N E = (). If m denotes normalised Lebesgue measure on T and V = {e® : |s| < €}, we set

1

f(eit) == /XKe(eis)XV(ei(t—s))ds — M

o2 €
(this equality holds because ¢/!=%) € V «= 7 € e 7V «= € € &*V).

Let e € K. If |s| < € then ¢*+9) € K; thus €V C K, and so m(e'V N K.) = m(e"V) = ¢
hence f(e®) = 1.

On the other hand, if ¢ € E then e ¢ Ko and so eV N K, = 0; * thus f(e*) = 0.

It remains to prove that f is indeed in A(T), i.e. that its Fourier transform is in ¢*(Z). For
this, notice that f is the convolution of two functions which are both in L?(T): f = %XKe * XV
therefore, applying the Fourier transform F,

F() = L F (i, xv) = Flx) - Flxv)
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2 Tt can actually be shown that any commutative semisimple regular Banach algebra has the property that a
compact set can be separated from a disjoint closed set by an element of the algebra.

3 This Lemma actually holds for the Fourier algebra A(G) of any locally compact group, with essentially the same
ideas for the proof (provided one defines A(G) appropriately).

“For if ™ € "V N K. then |u—t| < e and also |u—s| < ¢ for some s € K and so |t — 5| < 2¢ which gives e € Ka.



Now we know (!) that the Fourier transform of a function in L?(T) is in fact in ¢?(Z). Hence F(f)
is the product of two £? sequences, and thus is in ¢! (Cauchy-Schwarz). O

The extremal ideals Let (A,|||) be a commutative semisimple and regular Banach algebra
with spectrum X and let £ C X be a closed subset. Define

I(E)={feA: flg =0}
Jo(E) ={f € A :supp f compact and supp fNFE =0}
J(E) = Jo(F).

Note that any f € Jy(E) vanishes (not only on F, but) in the open neighbourhood (supp f)¢ of E.
Recall that Z(J) ={x € X : f(z) =0for all f e J}.
We will prove the following Theorem:

Theorem 2 Let J C A be a closed ideal and E C X a closed subset. Then
Z(J)=E ifandonlyif  Jo(E)CJCI(E).
In particular, J(E) is the smallest closed ideal J with null set Z(J) = E

We will need some preliminaries.

Proposition 3 Ifb € A vanishes nowhere on a compact set F' C X, there is a function d contained
in A such that (bd)(t) =1 for allt € F.

Proof Consider the commutative Banach algebra B = A/I(F) and let ¢ : A — B be the quotient
map. I claim that the character space o(B3) is homeomorphic to F:

For any point x € F, the associated multiplicative linear functional a — a(z) annihilates I(F'),
hence induces a multiplicative linear functional ¢, : B — C by ¢5(¢(a)) = a(x) (this ¢, is well
defined because if ¢(a) = ¢(b) then a — b € I(F) and so a(x) = b(x)). Conversely, every nonzero
multiplicative linear functional ¢ : B — C defines a multiplicative linear functional ¢oq: A — C
which is nonzero because ¢ is nonzero and ¢ is onto. Therefore there exists x € X such that
¢(q(a)) = a(zx) for all a € A and since ¢ o ¢ annihilates I(F'), z must lie in Z(I(F')) = F; thus
¢ °0q = Qg

Hence the map F' — o(B) : * — ¢ is a bijection. Finally, if z; — z in X then a(x;) — a(z) for
all a € A (definition of the topology of X = o(.A)) hence ¢, (q(a)) — ¢(q(a)), which is equivalent
to ¢z, — ¢z in the topology of o(B). This shows that z — ¢, is continuous.

Thus o(B) is compact and x — ¢, a homeomorphism.

Note that B = A/I(F) is semisimple: indeed if ¢(a) # 0 then there exists ¢ € F' s.t. a(t) # 0;
thus ¢1(q(a)) = at) # 0.

The fact that B has compact spectrum and contains a nowhere vanishing element (namely, ¢(b))
implies that B has a unit, say e. Equivalently

there exists an element w € A such that q(u) = e i.e. ulp = 1.
Proposition 6 below.

® We will prove this in

Pindeed, for all z € F, u(x) = ¢ (q(u)) = ¢z(e) = 1.



I claim that ¢(b) is invertible in B. This is equivalent to showing that ¢(q(b)) # 0 for every
nonzero multiplicative linear functional ¢ € o(B). But as observed above, any such ¢ must be of
the form ¢, for some x € X. Thus ¢,(q(b)) = b(z) which is never zero because b never vanishes on
F'. Thus ¢(b) is invertible.

It follows that there exists ¢(d) = (q(b))~' € B such that q(d)q(u) = q(u); but this means
exactly that ¢(du —w) =0 in B, i.e. that (db)(t) = u(t) =1 for all t € F, as required. O

Remark 4 Note that in many specific cases the existence of the element u is proved directly. This
is the case for example in the case of the Wiener algebra A(T) (see Lemma 1) or more generally
for A(G). A proof in the general case (Proposition 6) seems to require some complex analysis.

Proposition 5 Let J C A be a closed ideal and K C X a compact set such that Z(J) N K = (.
Then there exists ¢ € J such that ¢(z) =1 for all x € K.

Proof For all x € K, since x ¢ Z(J) there is b € J with b(x) # 0. Since b is continuous, there is
an open neighbourhood V,, of 2 on which b never vanishes and such that V, is compact.’

Since b never vanishes on the compact set V,, by Proposition 3 there is a function d contained
in A such that (bd)(t) =1 for all t € V.

Set ¢, = bd. Thus ¢, € J because J is an ideal and c,(t) = 1 for all t € V,. The family
{Vy : 2 € K} is an open cover of K. Let Vi,...,V,, be a finite subcover and denote by cy,...,c,
the corresponding elements of J. If we now define

n

c:l—H(l—ci)

=1

then we have an element of J (the 1’s cancel out) such that ¢(x) = 1 for any € K (because x will
be in some V; so (1 — ¢;)(z) = 0 so the product vanishes and hence c(x) = 1. O

Proof of Theorem 2 Suppose first that Jo(E) C J C I(E); to show that Z(J) = E. Now
Z(Jo(E)) D Z(J) D Z(I(F)). But we know (regularity) that Z(I(E)) = E. Thus it suffices to
prove that E D Z(Jy(E)).

So let ¢ E. Then x has an open neighbourhood U s.t. U is compact and disjoint from E. By
regularity, there exists a € A with a(z) =1 and a(t) = 0 for all t € U° (a closed set not containing
x). Thus {t € X : a(t) # 0} C U and so suppa C U. Thus suppa is compact and does not meet
E; hence a € Jy(FE). Since a(x) # 0, we have shown that z ¢ Z(Jy(E)).

Suppose now that Z(J) = E. It is obvious that J C I(F). To show that Jo(F) C J, take any
a € Jo(F) and put K = suppa: a compact set with K N Z(J) = 0.

By Proposition 5, there exists ¢ € J such that ¢(z) =1 for all x € K.

But note that a = ac; indeed (ac)(x) = a(z) for all x € K and (ac)(y) =0 = a(y) for ally ¢ K.
Thus a € J since ¢ € J and J is an ideal. This completes the proof that Jy(E) C J. O

Proposition 6 If B is a semisimple commutative Banach algebra with compact spectrum contain-
ing an element a which vanishes nowhere, then B must be unital, and in fact a must be invertible
in B.

® for instance, take Vo = {t € X : [b(t)| > 3|b(z)|}. Then V, is contained in {t € X : [b(t)| > %[b(x)|} which is
compact because [b(t)| < $|b(z)]| for all ¢ outside some compact set (recall that A C Co(X)).




Proof. Consider a as an element of the unitisation B; = B&C and write e for the unit (0, 1) of By so
that each (f, \) € By is written f+\e. The spectrum o (1) consists of all maps ¢ : f+ e — ¢(f)+A
where ¢ € o(B) together with the map ¢oo : f + Ae — A. Therefore the spectrum of a in By is the
set

{6(a) : ¢ € 0(B)} U {9c(a)} = {6(a) : ¢ € 0(B)} U {0}.
Since the map a : ¢ — ¢(a) is continuous and never vanishes on o(B) (by definition of the topology

of o(B)), The set A := {¢(a) : ¢ € o(B)} is a compact subset of C not containing 0 € C. Thus
there are disjoint open subsets V, W of C such that 0 € V and A C W. Now define a function

h:VUW — C by
0, zeV
h(z){ 1)z, zeW

This function has a complex derivative at all points of V U W: it is a holomorphic function on the
open set VU W.

Let v be a closed piecewise smooth cycle (: finite ‘sum’ of simple closed curves) in V.U W such
that Ind,(z) = 1 for all z € {0} U A and Ind,(z) = 0 for all z ¢ V UW (it is proved in complex
analysis that such curves exist - see for example Negr. 12.8). Then by the global Cauchy Theorem

(Negr. 5.19),

hz) = - /h(w)(z —w)ldw,  ze{0}UA.

T 2mi

Since the spectrum of a in By is the set {0} U A, it follows that when w € V. UW \ ({0} U A) the
element a —we is invertible in B; and it is known that the map w — (a—we)~! is continuous there;
in particular, this map is defined and continuous on the trace of . It follows that the integral

h(a) := % h(w)(a — we) tdw
g

is well defined as a limit of Riemann sums which are elements of B;. Moreover for every nonzero
multiplicative linear functional ¢ : B; — C we have of course ¥((a —we)™!) = (¢(a) —wip(e))~!) =
(¢(a) —w)~! (since 1(e) = 1) and so by linearity and continuity,

wli(@) = 5 [ )@= we) dw = 5 [ h(w)(v(e) - w) dw = hv(a)

2

using the integral formula for i(z). In particular, boo(M(a)) = h(¢eo(a)) = h(0) = 0, which shows
that h(a) is actually an element v of B. Thus, for every ¢ € o(B) we have

$(va) = ¢(h(a)) - p(a) = h(d(a)) - $(a).

But ¢(a) € A and h(z) = 1/z for z € A; therefore h(¢p(a)) - ¢(a) = 1 and so ¢(va) = 1. Let u = va.
For all ¢ € B we have

o(uc) = d(va) - $(c) = dlc) or  dluc—c) =0

for all ¢ € o(B). Since B is semisimple, it follows that uc = ¢ for all ¢ € B, and so w is the identity
of B, and a is invertible with inverse v, as required.

Remark 7 It can be shown that the assumption that B contains a nowhere vanishing element is
superfluous; but the proof uses tools from the theory of several complex variables...



