
The additivity of the index of Fredholm-like linear maps

I. Exact sequences. All vector spaces considered below are over the field of complex
numbers. We say that a sequence of vector spaces and linear maps

U
f−→ V

g−→ W

is exact if im f = ker g. In this way, the sequence

0 −→ U
f−→ V

is exact if and only if f is injective, whereas the sequence

U
f−→ V −→ 0

is exact if and only if f is surjective. We say that a sequence of vector spaces and linear maps

U
f−→ V

g−→ W
h−→ Z −→ . . .

is exact if im f = ker g, im g = ker h, im h = . . .
An exact sequence of the form

0 −→ U
f−→ V

g−→ W −→ 0

is called short exact. We note that, in this case, f induces an isomorphism between U and
the subspace im f ⊆ V , whereas W is isomorphic with the quotient space V/im f = coker f ,
in such a way that g is identified with the quotient map V −→ coker f . It follows that we
then have an equality dim V = dim U + dim W .

Proposition 1. (i) Let U
f−→ V

g−→ W be an exact sequence and assume that both U,W
are finite dimensional. Then, dim V < ∞ as well.

(ii) Let

0 −→ U0 −→ U1 −→ . . . −→ Un−1 −→ Un −→ 0

be an exact sequence of finite dimensional vector spaces. Then,
∑n

i=0(−1)i dim Ui = 0.
Proof. (i) We note that dim im f ≤ dim U and dim im g ≤ dim V . Since im f = ker g, it
follows that dim V = dim ker g + dim im g ≤ dim U + dim W .

(ii) The result is obvious if n = 0 (the exactness of 0 −→ U0 −→ 0 implies that U0 = 0) or

n = 1 (the exactness of 0 −→ U0
f−→ U1 −→ 0 implies that f is an isomorphism). We use

induction, assuming that n ≥ 2. We denote by f the map Un−1 −→ Un and note that there
are exact sequences

0 −→ U0 −→ U1 −→ . . . −→ Un−2 −→ ker f −→ 0

(since im(Un−2 −→ Un−1) = ker f) and

0 −→ ker f −→ Un−1 −→ Un −→ 0.

In view of the induction hypothesis, we have
∑n−2

i=0 (−1)i dim Ui +(−1)n−1 dim ker f = 0. Since
dim ker f = dim Un−1 − dim Un, it follows that

∑n

i=0
(−1)i dim Ui =

∑n−2

i=0
(−1)i dim Ui + (−1)n−1(dim Un−1 − dim Un) = 0,

as needed. ¤
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II. The snake lemma. We prove the following result by a method which is usually referred
to as diagram chasing.

Proposition 2. Let

U
f−→ V

g−→ W −→ 0
a ↓ b ↓ c ↓

0 −→ U ′ ϕ−→ V ′ γ−→ W ′

be a commutative diagram of vector spaces and linear maps with exact rows. Then, there
exists a 6-term exact sequence of vector spaces and linear maps

ker a
f0−→ ker b

g0−→ ker c
δ−→ coker a

ϕ−→ coker b
γ−→ coker c,

where f0 and g0 are restrictions of f and g, whereas ϕ and γ are obtained from ϕ and γ by
passage to the quotient.
Proof. We begin by defining δ. To that end, let w be an element contained in the kernel ker c
of c. Since g is onto, we may write w = g(v) for some v ∈ V . Since γ(b(v)) = (γb)(v) =
(cg)(v) = c(g(v)) = c(w) = 0 ∈ W ′, we conclude that b(v) ∈ ker γ = im ϕ. Hence, there
exists an element u′ ∈ U ′, such that b(v) = ϕ(u′). Having chosen another element v0 ∈ V
with w = g(v0), we obtain as above an element u′0 ∈ U ′, such that b(v0) = ϕ(u′0). Since
g(v) = w = g(v0), we conclude that g(v − v0) = 0 ∈ W and hence v − v0 ∈ ker g = im f . It
follows that there exists an element u ∈ U , such that v − v0 = f(u). We then have

ϕ(u′−u′0) = ϕ(u′)−ϕ(u′0) = b(v)−b(v0) = b(v−v0) = b(f(u)) = (bf)(u) = (ϕa)(u) = ϕ(a(u)).

Since ϕ is injective, it follows that u′ − u′0 = a(u) ∈ im a and hence the classes of u′ and
u′0 in the quotient U ′/im a = coker a are equal. We may therefore define δ, by letting w 7→
u′ + im a ∈ coker a.

Having defined δ, we shall now verify the exactness of the sequence in the statement of the
proposition.

Since im f = ker g, it follows that gf = 0 and hence g0f0 = 0; therefore, we have an inclusion
im f0 ⊆ ker g0. In order to prove the reverse inclusion, let v ∈ ker b be an element contained
in the kernel ker g0 of g0. Then, v ∈ ker g = im f and hence v = f(u) for some u ∈ U . Since
v ∈ ker b, we conclude that ϕ(a(u)) = (ϕa)(u) = (bf)(u) = b(f(u)) = b(v) = 0. In view of the
injectivity of ϕ, it follows that a(u) = 0 and hence u ∈ ker a. Hence, v = f0(u) ∈ im f0.

If v ∈ ker b, then in order to compute δ(g0(v)), we may choose v ∈ V as a preimage of
g0(v) = g(v) under g. Since b(v) = 0 = a(0), we conclude that δ(g0(v)) = 0 + im f ∈ coker a.
It follows that δg0 = 0 and hence im g0 ⊆ ker δ. In order to prove the reverse inclusion, let
w ∈ ker c be an element contained in the kernel ker δ of δ. Then, we may write w = g(v) for
some v ∈ V and b(v) = ϕ(u′) for some u′ ∈ U ′, which is contained in the image of a (so that
the class u′ + im a = δ(w) be zero in coker a). If we write u′ = a(u), then we have

b(v) = ϕ(u′) = ϕ(a(u)) = (ϕa)(u) = (bf)(u) = b(f(u))

and hence the element v−f(u) is contained in the kernel of b. Since g0(v−f(u)) = g(v−f(u)) =
g(v)− g(f(u)) = w − 0 = w, we conclude that w ∈ im g0.

Let w ∈ ker c and assume that δ(w) = u′ + im a ∈ coker a. Then, by the very definition
of δ, there exists an element v ∈ V , such that w = g(v) and b(v) = ϕ(u′). Hence, we may
conclude that ϕ(δ(w)) = ϕ(u′ + im a) = ϕ(u′) + im b = b(v) + im b = 0 + im b ∈ coker b. It



3

follows that ϕδ = 0 and hence im δ ⊆ ker ϕ. In order to show the reverse inclusion, let u′ ∈ U ′

be an element, such that the class u′ + im a ∈ coker a is contained in the kernel ker ϕ of ϕ.
Then, ϕ(u′) + im b = 0 + im b ∈ coker b and hence ϕ(u′) ∈ im b. Therefore, we may write
ϕ(u′) = b(v) for some v ∈ V . Since c(g(v)) = (cg)(v) = (γb)(v) = γ(b(v)) = γ(ϕ(u′)) = 0,
we conclude that g(v) ∈ ker c. In view of the definition of δ, we have δ(g(v)) = u′ + im a and
hence u′ + im a ∈ im δ.

Since im ϕ = ker γ, it follows that γϕ = 0 and hence γ ϕ = 0; therefore, we have an inclusion
im ϕ ⊆ ker γ. In order to prove the reverse inclusion, let v′ ∈ V ′ be an element, such that the
class v′ + im b ∈ coker b is contained in the kernel ker γ of γ. Then, γ(v′) + im c = 0 + im c ∈
coker c and hence γ(v′) ∈ im c. We may then write γ(v′) = c(w) for some w ∈ W . Since g is
onto, we may write w = g(v) for some v ∈ V and hence we have

γ(v′) = c(w) = c(g(v)) = (cg)(v) = (γb)(v) = γ(b(v)).

It follows that v′ − b(v) ∈ ker γ = im ϕ and hence we may write v′ − b(v) = ϕ(u′) for some
u′ ∈ U ′. We conclude that v′ − ϕ(u′) = b(v) ∈ im b and hence v′ + im b = ϕ(u′) + im b =
ϕ(u′ + im a) ∈ im ϕ. ¤

Corollary 3. Let U, V, W be vector spaces and consider two linear maps f : U −→ V and
g : V −→ W . Then, there exists an exact sequence of vector spaces and linear maps

0 −→ ker f
ι−→ ker gf

f0−→ ker g
δ−→ coker f

g−→ coker gf
p−→ coker f −→ 0.

Here, ι is the inclusion, f0 is the restriction of f , δ is the restriction of the quotient map
V −→ coker f to the subspace ker g ⊆ V , g is the map induced from g by passage to the
quotient and p is that induced by the identity of W .
Proof. It is easily seen that an application of Proposition 2 to the diagram

0 −→ U
1U−→ U −→ 0

↓ f ↓ gf ↓
0 −→ ker g −→ V

g−→ W

provides us with the exact sequence

0 −→ ker f
ι−→ ker gf

f0−→ ker g
δ−→ coker f

g−→ coker gf.

Applying once again Proposition 2, this time to the diagram

U
f−→ V −→ coker f −→ 0

gf ↓ g ↓ ↓
0 −→ V

1V−→ V −→ 0

is easily seen to give the exact sequence

ker gf
f0−→ ker g

δ−→ coker f
g−→ coker gf

p−→ coker f −→ 0.

The two exact sequences obtained above may be glued together to yield the exact sequence
in the statement of the proposition. ¤

III. Composition of Fredholm-like linear maps. If U, V are two vector spaces, then
we denote by F(U, V ) the set consisting of those linear maps f : U −→ V for which both
vector spaces ker f and coker f are finite dimensional. The index ind f of such a linear map
f is defined by letting ind f = dim ker f − dim coker f ∈ Z.
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Remark 4. Let U, V be two finite dimensional vector spaces. Then, F(U, V ) is the set of all
linear maps f : U −→ V . Moreover, the index of any linear map f : U −→ V is equal to the
difference dim U − dim V . This follows from Proposition 1(ii), applied to the exact sequence

0 −→ ker f −→ U
f−→ V −→ coker f −→ 0.

In particular, if U is a finite dimensional vector space, then F(U,U) is the set of all linear
operators f on U and the index of any such an f is equal to 0.

Proposition 5. Let U, V, W be vector spaces and consider two linear maps f ∈ F(U, V ) and
g ∈ F(V,W ). Then, the composition gf : U −→ W is actually contained in F(U,W ) and we
have an equality ind gf = ind f + ind g.
Proof. Since the vector spaces ker f and ker g are both finite dimensional, the exact sequence
of Corollary 3 together with Proposition 1(i) imply that ker gf is finite dimensional as well. In
the same way, the finite dimensionality of coker f and coker g implies that dim coker gf < ∞.
Invoking Proposition 1(ii), the exact sequence of Corollary 3 provides us with an equality

dim ker f − dim ker gf + dim ker g − dim coker f + dim coker gf − dim coker g = 0.

It follows that ind f − ind gf + ind g = 0, as needed. ¤

Exercise 6. If A,B are any two abelian groups, then define F(A,B) to be the set consisting
of those additive maps f : A −→ B, for which both groups ker f and coker f are finite. We
also define the index v(f) of such an additive map f to be the number log |ker f |−log |coker f |.
(Here, we denote by |G| the order, i.e. the cardinality, of a finite group G.)

Let A,B,C be three abelian groups and consider two additive maps f ∈ F(A,B) and
g ∈ F(B, C). Then, show that the composition gf : A −→ C is contained in F(A,C) and we
have an equality v(gf) = v(g) + v(f).


