THE ADDITIVITY OF THE INDEX OF FREDHOLM-LIKE LINEAR MAPS

I. EXACT SEQUENCES. All vector spaces considered below are over the field of complex
numbers. We say that a sequence of vector spaces and linear maps

v-Lv-Sw
is exact if im f = ker g. In this way, the sequence
0—U S, \%4

is exact if and only if f is injective, whereas the sequence

ULV—)O

is exact if and only if f is surjective. We say that a sequence of vector spaces and linear maps
vLvLwltz

is exact if im f = kerg,img = kerh,imh = ...
An exact sequence of the form

0—U-v_24Zw—o

is called short exact. We note that, in this case, f induces an isomorphism between U and
the subspace im f C V| whereas W is isomorphic with the quotient space V/im f = coker f,
in such a way that g is identified with the quotient map V' —— coker f. It follows that we
then have an equality dim V' = dim U + dim W.

Proposition 1. (i) Let U TV 2 W be an exact sequence and assume that both U, W
are finite dimensional. Then, dim V' < oo as well.

(ii) Let

0o—Uy—U —...—U,.1—U,—0

be an exact sequence of finite dimensional vector spaces. Then, Y (—1)"dim U; = 0.
Proof. (i) We note that dimim f < dimU and dimimg < dimV. Since im f = kerg, it
follows that dim V' = dimker g + dimim g < dim U + dim W.

(i) The result is obvious if n = 0 (the exactness of 0 — Uy — 0 implies that Uy = 0) or

n = 1 (the exactness of 0 — U Lo, —o0 implies that f is an isomorphism). We use
induction, assuming that n > 2. We denote by f the map U,y — U, and note that there
are exact sequences

0—Uy—U — ... — U, 9 —kerf — 0
(since im(U,,—o — U,_1) = ker f) and
00— kerf — U,y — U, — 0.
In view of the induction hypothesis, we have 3" ?(—1)* dim U; +-(—1)"' dim ker f = 0. Since
dimker f = dim U,,_; — dim U, it follows that
”_i. o ”72_2‘. A 1\n—1(71: T .
Zizo( 1)'dim U; = Zizo( 1)'dimU; + (=1)" Ydim U,,_, — dim U,,) = 0,

as needed. O



II. THE SNAKE LEMMA. We prove the following result by a method which is usually referred
to as diagram chasing.

Proposition 2. Let

v L v L w — o
al bl el
0 — U 5 VvV = W
be a commutative diagram of vector spaces and linear maps with exact rows. Then, there
exists a 6-term exact sequence of vector spaces and linear maps

fo 9o 5 [2 i
ker a — ker b — ker ¢ — coker a — coker b — coker ¢,

where fy and gy are restrictions of f and g, whereas © and 7 are obtained from ¢ and v by
passage to the quotient.

Proof. We begin by defining §. To that end, let w be an element contained in the kernel ker ¢
of ¢. Since g is onto, we may write w = g(v) for some v € V. Since y(b(v)) = (7yb)(v) =
(cg)(v) = c(g(v)) = c(w) = 0 € W', we conclude that b(v) € kery = imy. Hence, there
exists an element v’ € U’, such that b(v) = ¢(u’). Having chosen another element vy € V
with w = g(vy), we obtain as above an element u; € U’, such that b(vg) = @(uf). Since
g(v) = w = g(vy), we conclude that g(v —vy) = 0 € W and hence v — vy € kerg = im f. It
follows that there exists an element u € U, such that v — vy = f(u). We then have

(' i) = o) —plup) = b(v) ~bluy) = blv—vo) = b(F(u)) = (bF)(w) = (pa)(w) = (a(u).
Since ¢ is injective, it follows that v’ — w) = a(u) € ima and hence the classes of «' and
ug in the quotient U’/ima = cokera are equal. We may therefore define 6, by letting w —
u' +ima € coker a.

Having defined ¢, we shall now verify the exactness of the sequence in the statement of the
proposition.

Since im f = ker g, it follows that g f = 0 and hence gy fo = 0; therefore, we have an inclusion
im fy C ker gy. In order to prove the reverse inclusion, let v € kerb be an element contained
in the kernel ker g of go. Then, v € kerg = im f and hence v = f(u) for some u € U. Since
v € ker b, we conclude that p(a(u)) = (pa)(u) = (bf)(u) = b(f(u)) = b(v) = 0. In view of the
injectivity of ¢, it follows that a(u) = 0 and hence u € kera. Hence, v = fo(u) € im fo.

If v € kerb, then in order to compute §(go(v)), we may choose v € V as a preimage of
go(v) = g(v) under g. Since b(v) = 0 = a(0), we conclude that §(go(v)) = 0+ im f € coker a.
It follows that dgy = 0 and hence im gy C kerd. In order to prove the reverse inclusion, let
w € kerc be an element contained in the kernel ker § of §. Then, we may write w = g(v) for
some v € V and b(v) = p(u’) for some v € U’, which is contained in the image of a (so that
the class v/ +ima = §(w) be zero in coker a). If we write v’ = a(u), then we have

b(v) = o(u') = p(a(u)) = (pa)(u) = (bf)(u) = b(f(u))
and hence the element v— f(u) is contained in the kernel of b. Since go(v—f(u)) = g(v—f(u)) =
g(v) — g(f(u)) = w — 0 =w, we conclude that w € im gj.
Let w € kerc and assume that §(w) = v’ +ima € cokera. Then, by the very definition
of §, there exists an element v € V, such that w = g(v) and b(v) = ¢(v'). Hence, we may
conclude that (6(w)) = p(v' +ima) = p(u') +imb = b(v) +imb = 0 + imb € cokerb. It
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follows that 9 = 0 and hence im § C ker . In order to show the reverse inclusion, let v’ € U’
be an element, such that the class v’ + ima € cokera is contained in the kernel ker @ of @.
Then, ¢(u') +imb = 0 +imb € cokerb and hence p(u') € imb. Therefore, we may write
(') = b(v) for some v € V. Since c(g(v)) = (cg)(v) = (YB)(v) = (b(v)) = Yplu)) = O,
we conclude that g(v) € kerc. In view of the definition of §, we have §(g(v)) = v/ + ima and
hence v 4+ ima € imd.

Since im ¢ = ker 7, it follows that v = 0 and hence 7 @ = 0; therefore, we have an inclusion
im @ C ker?. In order to prove the reverse inclusion, let v' € V’ be an element, such that the
class v/ +1imb € coker b is contained in the kernel ker¥ of 7. Then, y(v') +imc =0+ imc €
coker ¢ and hence v(v') € imec. We may then write v(v') = ¢(w) for some w € W. Since g is
onto, we may write w = g(v) for some v € V' and hence we have

V() = c(w) = c(g(v)) = (cg)(v) = (vb)(v) = 7(b(v)).
It follows that v — b(v) € kery = im ¢ and hence we may write v' — b(v) = (') for some
u € U'. We conclude that v' — ¢(u') = b(v) € imb and hence v/ + imb = p(v') + imb =
P(u +ima) € im . O

Corollary 3. Let U, V,W be vector spaces and consider two linear maps f : U — V and
g : V. — W. Then, there exists an exact sequence of vector spaces and linear maps

0 — ker f —— ker gf i>kelgqi>cokerfim:okergf L coker f — 0.

Here, ¢ is the inclusion, fj is the restriction of f, ¢ is the restriction of the quotient map
V' — coker f to the subspace kerg C V', g is the map induced from ¢ by passage to the
quotient and p is that induced by the identity of W.

Proof. 1t is easily seen that an application of Proposition 2 to the diagram

0 — U 2% U — 0

! £l af |
0 — kerg — V L W

provides us with the exact sequence
0 — ker f —— ker gf o, ker g N coker f g, coker g f.

Applying once again Proposition 2, this time to the diagram

v Lov — coker f — 0
af | gl !
0 — vV % v — 0

is easily seen to give the exact sequence

ker g f LN ker g 2, coker f 9, coker gf - coker f — 0.

The two exact sequences obtained above may be glued together to yield the exact sequence
in the statement of the proposition. 0

III. COMPOSITION OF FREDHOLM-LIKE LINEAR MAPS. If U,V are two vector spaces, then
we denote by §(U, V) the set consisting of those linear maps f : U — V for which both
vector spaces ker f and coker f are finite dimensional. The index ind f of such a linear map
f is defined by letting ind f = dim ker f — dim coker f € Z.
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Remark 4. Let U,V be two finite dimensional vector spaces. Then, §(U, V) is the set of all
linear maps f : U — V. Moreover, the index of any linear map f : U — V is equal to the
difference dim U — dim V. This follows from Proposition 1(ii), applied to the exact sequence

O—»kerf—>Ui>V—>cokerf—>0.

In particular, if U is a finite dimensional vector space, then F(U,U) is the set of all linear
operators f on U and the index of any such an f is equal to 0.

Proposition 5. Let U, V,W be vector spaces and consider two linear maps f € (U, V) and
g € §(V,W). Then, the composition gf : U — W is actually contained in §(U, W) and we
have an equality ind gf = ind f + ind g.

Proof. Since the vector spaces ker f and ker g are both finite dimensional, the exact sequence
of Corollary 3 together with Proposition 1(i) imply that ker g f is finite dimensional as well. In
the same way, the finite dimensionality of coker f and coker g implies that dim coker gf < oc.
Invoking Proposition 1(ii), the exact sequence of Corollary 3 provides us with an equality

dim ker f — dim ker g f 4+ dim ker g — dim coker f + dim coker g f — dim coker g = 0.
It follows that ind f —ind gf + ind g = 0, as needed. OJ

Exercise 6. If A, B are any two abelian groups, then define F(A, B) to be the set consisting
of those additive maps f : A — B, for which both groups ker f and coker f are finite. We
also define the index v(f) of such an additive map f to be the number log |ker f|—log |coker f|.
(Here, we denote by |G| the order, i.e. the cardinality, of a finite group G.)

Let A, B,C be three abelian groups and consider two additive maps f € F(A, B) and
g € F(B,C). Then, show that the composition gf : A — C'is contained in F(A, C) and we
have an equality v(gf) = v(g) + v(f).



