I. EXACT SEQUENCES. All vector spaces considered below are over the field of complex numbers. We say that a sequence of vector spaces and linear maps

$$U \xrightarrow{f} V \xrightarrow{g} W$$

is exact if im $f = \ker q$. In this way, the sequence

$$0 \longrightarrow U \stackrel{f}{\longrightarrow} V$$

is exact if and only if f is injective, whereas the sequence

$$U \xrightarrow{f} V \longrightarrow 0$$

is exact if and only if f is surjective. We say that a sequence of vector spaces and linear maps

$$U \xrightarrow{f} V \xrightarrow{g} W \xrightarrow{h} Z \longrightarrow \dots$$

is exact if $\operatorname{im} f = \ker g$, $\operatorname{im} g = \ker h$, $\operatorname{im} h = \dots$

An exact sequence of the form

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

is called short exact. We note that, in this case, f induces an isomorphism between U and the subspace im $f \subseteq V$, whereas W is isomorphic with the quotient space V/im f = coker f, in such a way that g is identified with the quotient map $V \longrightarrow \text{coker } f$. It follows that we then have an equality dim $V = \dim U + \dim W$.

Proposition 1. (i) Let $U \xrightarrow{f} V \xrightarrow{g} W$ be an exact sequence and assume that both U, W are finite dimensional. Then, dim $V < \infty$ as well.

(ii) Let

$$0 \longrightarrow U_0 \longrightarrow U_1 \longrightarrow \ldots \longrightarrow U_{n-1} \longrightarrow U_n \longrightarrow 0$$

be an exact sequence of finite dimensional vector spaces. Then, $\sum_{i=0}^{n} (-1)^{i} \dim U_{i} = 0$. *Proof.* (i) We note that dim im $f \leq \dim U$ and dim im $g \leq \dim V$. Since im $f = \ker g$, it follows that dim $V = \dim \ker g + \dim \operatorname{im} g \leq \dim U + \dim W$.

(ii) The result is obvious if n = 0 (the exactness of $0 \longrightarrow U_0 \longrightarrow 0$ implies that $U_0 = 0$) or n = 1 (the exactness of $0 \longrightarrow U_0 \xrightarrow{f} U_1 \longrightarrow 0$ implies that f is an isomorphism). We use induction, assuming that $n \ge 2$. We denote by f the map $U_{n-1} \longrightarrow U_n$ and note that there are exact sequences

$$0 \longrightarrow U_0 \longrightarrow U_1 \longrightarrow \ldots \longrightarrow U_{n-2} \longrightarrow \ker f \longrightarrow 0$$

(since $\operatorname{im}(U_{n-2} \longrightarrow U_{n-1}) = \ker f$) and

$$0 \longrightarrow \ker f \longrightarrow U_{n-1} \longrightarrow U_n \longrightarrow 0.$$

In view of the induction hypothesis, we have $\sum_{i=0}^{n-2} (-1)^i \dim U_i + (-1)^{n-1} \dim \ker f = 0$. Since dim ker $f = \dim U_{n-1} - \dim U_n$, it follows that

$$\sum_{i=0}^{n} (-1)^{i} \dim U_{i} = \sum_{i=0}^{n-2} (-1)^{i} \dim U_{i} + (-1)^{n-1} (\dim U_{n-1} - \dim U_{n}) = 0,$$

as needed.

II. THE SNAKE LEMMA. We prove the following result by a method which is usually referred to as *diagram chasing*.

Proposition 2. Let

be a commutative diagram of vector spaces and linear maps with exact rows. Then, there exists a 6-term exact sequence of vector spaces and linear maps

$$\ker a \xrightarrow{f_0} \ker b \xrightarrow{g_0} \ker c \xrightarrow{\delta} \operatorname{coker} a \xrightarrow{\overline{\varphi}} \operatorname{coker} b \xrightarrow{\overline{\gamma}} \operatorname{coker} c,$$

where f_0 and g_0 are restrictions of f and g, whereas $\overline{\varphi}$ and $\overline{\gamma}$ are obtained from φ and γ by passage to the quotient.

Proof. We begin by defining δ . To that end, let w be an element contained in the kernel ker c of c. Since g is onto, we may write w = g(v) for some $v \in V$. Since $\gamma(b(v)) = (\gamma b)(v) = (cg)(v) = c(g(v)) = c(w) = 0 \in W'$, we conclude that $b(v) \in \ker \gamma = \operatorname{im} \varphi$. Hence, there exists an element $u' \in U'$, such that $b(v) = \varphi(u')$. Having chosen another element $v_0 \in V$ with $w = g(v_0)$, we obtain as above an element $u'_0 \in U'$, such that $b(v_0) = \varphi(u'_0)$. Since $g(v) = w = g(v_0)$, we conclude that $g(v - v_0) = 0 \in W$ and hence $v - v_0 \in \ker g = \operatorname{im} f$. It follows that there exists an element $u \in U$, such that $v - v_0 = f(u)$. We then have

$$\varphi(u'-u'_0) = \varphi(u') - \varphi(u'_0) = b(v) - b(v_0) = b(v-v_0) = b(f(u)) = (bf)(u) = (\varphi a)(u) = \varphi(a(u)).$$

Since φ is injective, it follows that $u' - u'_0 = a(u) \in \text{im } a$ and hence the classes of u' and u'_0 in the quotient U'/im a = coker a are equal. We may therefore define δ , by letting $w \mapsto u' + \text{im } a \in \text{coker } a$.

Having defined δ , we shall now verify the exactness of the sequence in the statement of the proposition.

Since im $f = \ker g$, it follows that gf = 0 and hence $g_0 f_0 = 0$; therefore, we have an inclusion im $f_0 \subseteq \ker g_0$. In order to prove the reverse inclusion, let $v \in \ker b$ be an element contained in the kernel ker g_0 of g_0 . Then, $v \in \ker g = \operatorname{im} f$ and hence v = f(u) for some $u \in U$. Since $v \in \ker b$, we conclude that $\varphi(a(u)) = (\varphi a)(u) = (bf)(u) = b(f(u)) = b(v) = 0$. In view of the injectivity of φ , it follows that a(u) = 0 and hence $u \in \ker a$. Hence, $v = f_0(u) \in \operatorname{im} f_0$.

If $v \in \ker b$, then in order to compute $\delta(g_0(v))$, we may choose $v \in V$ as a preimage of $g_0(v) = g(v)$ under g. Since b(v) = 0 = a(0), we conclude that $\delta(g_0(v)) = 0 + \operatorname{im} f \in \operatorname{coker} a$. It follows that $\delta g_0 = 0$ and hence $\operatorname{im} g_0 \subseteq \ker \delta$. In order to prove the reverse inclusion, let $w \in \ker c$ be an element contained in the kernel ker δ of δ . Then, we may write w = g(v) for some $v \in V$ and $b(v) = \varphi(u')$ for some $u' \in U'$, which is contained in the image of a (so that the class $u' + \operatorname{im} a = \delta(w)$ be zero in coker a). If we write u' = a(u), then we have

$$b(v) = \varphi(u') = \varphi(a(u)) = (\varphi a)(u) = (bf)(u) = b(f(u))$$

and hence the element v - f(u) is contained in the kernel of b. Since $g_0(v - f(u)) = g(v - f(u)) = g(v - f(u)) = g(v - f(u)) = w - 0 = w$, we conclude that $w \in \text{im } g_0$.

Let $w \in \ker c$ and assume that $\delta(w) = u' + \operatorname{im} a \in \operatorname{coker} a$. Then, by the very definition of δ , there exists an element $v \in V$, such that w = g(v) and $b(v) = \varphi(u')$. Hence, we may conclude that $\overline{\varphi}(\delta(w)) = \overline{\varphi}(u' + \operatorname{im} a) = \varphi(u') + \operatorname{im} b = b(v) + \operatorname{im} b = 0 + \operatorname{im} b \in \operatorname{coker} b$. It follows that $\overline{\varphi}\delta = 0$ and hence im $\delta \subseteq \ker \overline{\varphi}$. In order to show the reverse inclusion, let $u' \in U'$ be an element, such that the class $u' + \operatorname{im} a \in \operatorname{coker} a$ is contained in the kernel $\ker \overline{\varphi}$ of $\overline{\varphi}$. Then, $\varphi(u') + \operatorname{im} b = 0 + \operatorname{im} b \in \operatorname{coker} b$ and hence $\varphi(u') \in \operatorname{im} b$. Therefore, we may write $\varphi(u') = b(v)$ for some $v \in V$. Since $c(g(v)) = (cg)(v) = (\gamma b)(v) = \gamma(b(v)) = \gamma(\varphi(u')) = 0$, we conclude that $g(v) \in \ker c$. In view of the definition of δ , we have $\delta(g(v)) = u' + \operatorname{im} a$ and hence $u' + \operatorname{im} a \in \operatorname{im} \delta$.

Since $\operatorname{im} \varphi = \ker \gamma$, it follows that $\gamma \varphi = 0$ and hence $\overline{\gamma} \overline{\varphi} = 0$; therefore, we have an inclusion $\operatorname{im} \overline{\varphi} \subseteq \ker \overline{\gamma}$. In order to prove the reverse inclusion, let $v' \in V'$ be an element, such that the class $v' + \operatorname{im} b \in \operatorname{coker} b$ is contained in the kernel $\ker \overline{\gamma}$ of $\overline{\gamma}$. Then, $\gamma(v') + \operatorname{im} c = 0 + \operatorname{im} c \in \operatorname{coker} c$ and hence $\gamma(v') \in \operatorname{im} c$. We may then write $\gamma(v') = c(w)$ for some $w \in W$. Since g is onto, we may write w = g(v) for some $v \in V$ and hence we have

$$\gamma(v') = c(w) = c(g(v)) = (cg)(v) = (\gamma b)(v) = \gamma(b(v)).$$

It follows that $v' - b(v) \in \ker \gamma = \operatorname{im} \varphi$ and hence we may write $v' - b(v) = \varphi(u')$ for some $u' \in U'$. We conclude that $v' - \varphi(u') = b(v) \in \operatorname{im} b$ and hence $v' + \operatorname{im} b = \varphi(u') + \operatorname{im} b = \overline{\varphi}(u' + \operatorname{im} a) \in \operatorname{im} \overline{\varphi}$.

Corollary 3. Let U, V, W be vector spaces and consider two linear maps $f : U \longrightarrow V$ and $g : V \longrightarrow W$. Then, there exists an exact sequence of vector spaces and linear maps

$$0 \longrightarrow \ker f \xrightarrow{\iota} \ker gf \xrightarrow{f_0} \ker g \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{\overline{g}} \operatorname{coker} gf \xrightarrow{p} \operatorname{coker} f \longrightarrow 0.$$

Here, ι is the inclusion, f_0 is the restriction of f, δ is the restriction of the quotient map $V \longrightarrow \operatorname{coker} f$ to the subspace $\operatorname{ker} g \subseteq V$, \overline{g} is the map induced from g by passage to the quotient and p is that induced by the identity of W.

Proof. It is easily seen that an application of Proposition 2 to the diagram

provides us with the exact sequence

$$0 \longrightarrow \ker f \stackrel{\iota}{\longrightarrow} \ker gf \stackrel{f_0}{\longrightarrow} \ker g \stackrel{\delta}{\longrightarrow} \operatorname{coker} f \stackrel{\overline{g}}{\longrightarrow} \operatorname{coker} gf.$$

Applying once again Proposition 2, this time to the diagram

is easily seen to give the exact sequence

$$\ker gf \xrightarrow{f_0} \ker g \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{\overline{g}} \operatorname{coker} gf \xrightarrow{p} \operatorname{coker} f \longrightarrow 0.$$

The two exact sequences obtained above may be glued together to yield the exact sequence in the statement of the proposition. $\hfill \Box$

III. COMPOSITION OF FREDHOLM-LIKE LINEAR MAPS. If U, V are two vector spaces, then we denote by $\mathfrak{F}(U, V)$ the set consisting of those linear maps $f : U \longrightarrow V$ for which both vector spaces ker f and coker f are finite dimensional. The index ind f of such a linear map f is defined by letting ind $f = \dim \ker f - \dim \operatorname{coker} f \in \mathbb{Z}$. **Remark 4.** Let U, V be two finite dimensional vector spaces. Then, $\mathfrak{F}(U, V)$ is the set of all linear maps $f: U \longrightarrow V$. Moreover, the index of any linear map $f: U \longrightarrow V$ is equal to the difference dim $U - \dim V$. This follows from Proposition 1(ii), applied to the exact sequence

$$0 \longrightarrow \ker f \longrightarrow U \xrightarrow{f} V \longrightarrow \operatorname{coker} f \longrightarrow 0.$$

In particular, if U is a finite dimensional vector space, then $\mathfrak{F}(U, U)$ is the set of all linear operators f on U and the index of any such an f is equal to 0.

Proposition 5. Let U, V, W be vector spaces and consider two linear maps $f \in \mathfrak{F}(U, V)$ and $g \in \mathfrak{F}(V, W)$. Then, the composition $gf : U \longrightarrow W$ is actually contained in $\mathfrak{F}(U, W)$ and we have an equality ind $gf = \operatorname{ind} f + \operatorname{ind} g$.

Proof. Since the vector spaces ker f and ker g are both finite dimensional, the exact sequence of Corollary 3 together with Proposition 1(i) imply that ker gf is finite dimensional as well. In the same way, the finite dimensionality of coker f and coker g implies that dim coker $gf < \infty$. Invoking Proposition 1(ii), the exact sequence of Corollary 3 provides us with an equality

dim ker f - dim ker gf + dim ker g - dim coker f + dim coker gf - dim coker g = 0. It follows that ind f - ind gf + ind g = 0, as needed.

Exercise 6. If A, B are any two abelian groups, then define $\mathbb{F}(A, B)$ to be the set consisting of those additive maps $f : A \longrightarrow B$, for which both groups ker f and coker f are finite. We also define the index v(f) of such an additive map f to be the number $\log |\ker f| - \log |\operatorname{coker} f|$. (Here, we denote by |G| the order, i.e. the cardinality, of a finite group G.)

Let A, B, C be three abelian groups and consider two additive maps $f \in \mathbb{F}(A, B)$ and $g \in \mathbb{F}(B, C)$. Then, show that the composition $gf : A \longrightarrow C$ is contained in $\mathbb{F}(A, C)$ and we have an equality v(gf) = v(g) + v(f).