Hilbert modules, TRO’s and C*-correspondences
(rough notes by A.K.)

1 Hilbert modules and TRQO’s

1.1 Reminders

Recall' the definition of a Hilbert module

Definition 1 Let A be a C*-algebra. An Hilbert C*-module over A is a complex vector
space E which is a right A-module and is equipped with an A-valued scalar product satisfying

1. {x, Ay + 2) = ANz, y) +{x,y)
2. (x,y-a)={z,y)a
3. ()" =y, )
4. {x,xye Ay
5. {r,xy=0=2=0 (v,y,2€ E,ae A, e C)
and which is complete with respect to the norm
|2l = [, (e E).

An operator T : E — F between Hilbert C*-modules over A is said to be adjointable
(written T e L(E, F)) if there is a linear map T* : F' — E such that

(I*f,e)p ={f,Tey, forall eekE, fekF.

When E = F, the space L(F) := L(E, E) is a C*-algebra. Recall also the definition of the
‘compact’ operators: For x € I, y € I/ we define the map 6, , : E — F by:

Opy(2) =2y, 2).
This map has the properties
ei,y = ey,an Tez’,y = eTamya ex,ys = 0:0,5*3/7 ex,yeu,v = 9x<y,u>,v = ez,v<u,y>~

The closed linear span of the set {6,, : * € F,y € E} is a closed subspace of L(E, F).
We call it the space of ‘compact’ operators and denote it by K(E, F)). When E = F then
K(E) := K(E, E) is an ideal in the C*-algebra L(E).
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1.2 Representing Hilbert modules as TRO’s
If F is a Hilbert module over A and x € E we define two maps
L,:A—>FE:a—za D,:E—>A:y—{x,y).

Then we have

(Lx)* = Dz
so that both maps are adjointable (A is a Hilbert module over itself with {z,y) = zy*).
Clearly, | D, | = |z|; thus the map z — D, is an antilinear isometry into L(E, A). Moreover,
the easily verified identity

D:va* = Qa,m

shows that KC(E, A) is contained in the (closed) range of D. The same identity, together
with an approximate unit argument, shows that in fact D maps E onto K(E, A). Taking
adjoints, we conclude that

Proposition 1 The map © — L, : E — K(A, E) is a linear isometric bijection, and
the map x — D, : E — K(E,A) is an antilinear isometric bijection.

In particular, @ — L, is a linear bijection between A and K(A) and it is easily verified that
it is a *-homomorphism. *

Thus we may identify E with the linear space K(E, A) and define its ‘adjoint’ (or ‘con-
jugate’) space E to be K(A, E) (so that E is antilinearly isometric to E).

Definition 2 Given T € K(E), x,y € E and a € A define the following operator on the
Hilbert A-module > E@® A:

[ L Lo 2] - [l

The set of all such operators,

[ K(E) K(AE)] [KE) E
LB) = [’C(E,A) /C(A)]:[ E A

is a C*-subalgebra of L(E @ A), called the linking algebra of E.

Note that IL(E) is in fact a C*-subalgebra of K(E@® A). In fact, L(E) = K(E® A). Indeed,
it is clear that the four “corners” of IL(E) are bimodules over the appropriate algebras.
For instance if A € L(E) and B € L(A) then for all 0,, with a € A and x € E we have
A0y oB = 04y v € K(E, A). Thus if p1,ps € L(E @ A) denote the canonical orthogonal
projections onto £ and A respectively * then given T' € K(E @ A) we see for example that
mTp2|a € K(AE) ~ E, etc.

Thus, if one represents L(F) faithfully as operators on some Hilbert space H, then E
can be identified as a closed linear space of operators on H. Of course F is not in general a
subalgebra of B(H), however it is a ‘ternary ring of operators’ in the following sense

] CL(EDA)

2Lape = (ab)e = a(bc) = Lq(Lp(c)) and (Lg)*(¢) = Da(c) =<a, ¢y, = a*c = Lyx(c).
3with scalar product {(z,a), (y,b)) = (z,y)p + a*b
4 the easily verified fact that (p;(z),y) = {(z, p;(x)) shows that the p; are adjointable

2



Definition 3 A ternary ring of operators (TRO) is a linear subspace X of some B(H)
(or more generally of a C*-algebra B) such that

a,bce X = ab*ce X.

Indeed, it is immediate that if z,y, z are in E, the corresponding operators X, Y, Z in L(FE)

e Rl

SR

and x {(y, z) is in F. Sometimes it is useful to think of the scalar product (y, z) as a product
of operators, Y*Z, remembering that this product is not in F ~ K(E, A), but in A ~ KC(A).

2 C*-correspondences

Definition 4 A C*-correspondence is a quadruple (X, B, A, ¢) (sometimes written 4 Xp or
(X, ¢)) where

(a) X is a Hilbert C*-module over B (so we have maps X x X — B : (§,n) — {&,n) and
X x B— X :(£b) —> &b) but also

(b) there is a *~homomorphism ¢ = ¢x : A — Lp(X).
The correspondence s Xp is called injective when ¢ is 1-1 (hence isometric).
It is called non-degenerate when Span{p(A)X} = X.

It is called full when (X, X) = B (i.e. when span{{{,ny:&,ne X} = B).

Definition 5 A representation of a C*-correspondence 4 Xp into B(H), or more generally
into a C*-algebra B is a pair (7,t) where

m:A— B isa *homomoprhism

t: X — B s a linear map, and
m(a)t(§) = t(d(a)s)
(&) tn) =n(&m) acA {neX.

Definition 6 The Toeplitz algebra (or Toeplitz-Cuntz-Pimsner algebra) T (X) of a C*- cor-
respondence 4 X 4 is defined to be the C*-algebra C*(7,t) generated by the universal repre-
sentation (7,t): it has the universal property that whenever (m,t) is a representation of X,
there is a *-epimorphism p : T(X) — C*(x,t) satisfying ™ =po@ andt = pot.

The Tensor algebra T1(X) is the norm-closed (non-selfadjoint) subalgebra of T (X)
generated by {7(a) : a € A} (a selfadjoint subalgebra) together with {t(§) : £ € X} (a non-
selfadjoint subspace)



The Toeplitz algebra can be defined as the direct sum of ‘sufficiently many’ representations
(m,t) of X. But there is an explicit representation, which can be shown to possess the
required universal property, and to be unique (up to *-isomorphism) with that property.
This is the so called ‘Fock representation’.

To construct it, we need the notion of internal tensor product.

2.1 The internal tensor product

Let E4 be a Hilbert C*-module over A and let 4F5 be a C*-correspondence with ¢ : A —
Lp(F). We construct the internal tensor product £ ®, F' in three stages:

(i) Let E® F be the algebraic tensor product, and define the B-valued sesquilinear form
(;-yon EQ® F as follows

Ty, u®v) =y, oz, wp)v)p ,

ie. <Z T ®yi,2uj Ku; )= Z<yi7¢(<xi7uj>E)vj>F :
i J 2

This is well defined. ° In fact {-,-) is positive semidefinite. To see this observe that it may
be written

1 U1
<Z Z ®yi,ZUj ®Uj> = < | Lo w)p) Iy | Uj>
‘ ! Yn Un ”
and so, if [a; ;] is in M, (A);, then [¢(a; ;)] is positive because ¢, being a *-homomorphism,
is completely positive. °
(ii) The quotient E®4 F = (E® F)/N is balanced over A: thus in E ®4 F we have

uae®v =u® ¢(a)v.

Indecd, (@ @y, ua @v) = g, 6((a, u) vy = (s B, u )0 = (1, B, 0g)Bla)dye —
(xQy,u® ¢(a)v), so {xy,ua®@v—u® ¢(a)vy =0 for all z @ y.

Moreover E ®4 F becomes a right B-module by defining (r® y) - b = x ® (yb) and (-, -)
induces a scalar product on E ®4 F satisfying (z,w -b) = {(z,w)b for z,w € F ®4 F and
b € B (recall that the scalar product on £ ®4 F is B-valued).

(iii) The completion of E® 4 F with respect to the norm | z| := |z, z>H}3/2 (z € EQaF)
is a C*-Hilbert module over B (the right action of B extends by continuity). This is called
the internal tensor product of E4 and 4Fp and we will denote it by E®, F or E® F.

® For instance if 2. uj ®v; = 0 then for all z € E, since (u,v) = ¢({z,u)y)v is bilinear on £ x I we

have »; ¢(Cx, u;)p)v; = 0 and so <x ®y, 2 uj ®vj> =0forall z®y.
6in fact whenever ¢ is just a completely positive map the above formula defines a semi-inner product on
EQF



For € € E, define
Te : F—>EQs F:n—E6Qn

One can check that
TG E@y > F:2Qy— ¢((&2)p)y -

Indeed,

(TEx®@y),n), =@y, Te(n) per = (T @Y, EQ M pgp
= Y, 92, ) = (o )y, )
= <¢(<$’ §>*)y7 77>F = <¢(<§7 $>)ya 77>F :

It follows that

TTy 2@y — o((n,2))y = EQ O((n,2))y = O () @y

because, if we write a for (n, ),

ERO((n, )y =E@d(a)y =Ea®y =M, 1)@y = O, (2) .

Thus
TgT;; = 0&,7 X le ,C(E ®¢ F)

Also,

TTe 2 —>EQx — o((n, )z
so TiTe = ¢((n,§)) € L(E).

Definition 7 If 4E4 and AlF4 are both C*-correspondences via ¢, then E ®, F becomes a
C*-correspondence over A via ¢ defined by

d(a) = dla) D1, ac€ A.

2.2 The Fock representation

Let 4FE4 be a C*-correspondence and define a sequence of C*-correspondences over A as
follows

E®' = E, E®"!' =FE®,, E®.
Thus each E®" is a C*-correspondence over A with

LY. QL,MAOMNME...0N) ={®...Q&, d((&,m) (11 ...0n))
(E1R0&LE®..QE) a=606£Q...Q (§a)

and ¢n(a’)(§1 ®§2 ®... ®£n) = (¢(a)£1) ®£2 ®... ®£n Le. (bn = (b



Definition 8 (The Fock space F(E)) This is defined to be the direct sum @B, E®* of the
sequence of Hilbert C*-modules over A where E®¥° := A. Thus

F(E ) A@E@(E®¢ E)® ..
= {z = ) € 1_[E®lC Z<x ) per converges in the norm of A}.

For £ € E, recall the map Ty : F > EQ®y F : ) — {®n. When F = E®" we denote this by
tn(§). Thus
(@G ®.. Q&) =EQ4®. .. ®&, € E¥"

Note that since t,(€)"ta(€) = ¢a((€,£)), we have [t,(€)]” = [¢(¢€, ) < [€]*. We define
the creation operator on F(E) by

to(&)(a,x1,29...) = (0,0, R 11, R xa, .. .)
(here a € A and x;, € E®¥) and we observe that the map
tw : E — L(F(E))
is linear and contractive. We also define the *~homomorphism
G : A — L(F(E)) : a — diag(a, ¢(a), pa2(a),...).

We verify the conditions for the pair (¢o, o) to be a representation of the C*-correspondence
E:

too(Mtn(§) = 9o ((n,£))
Poo(@)tn(§) = to(9(a)é).

The first relation is immediate from t*(n)t,(£) = ¢,((n,&)). We verify the second:

Poo(@)teo (&) : (b, w1, 22,...) = (0,60, @21, @ 12,...) = (0,0(a)éb, d(a) @ x1, ¢2(a)({ ® x2), . ..

= (0,¢(a)&b, 9(a)§ @ 21, p(a) @ w2, .. ) = (0, (¢(a)€)b, (#(a)§) ® 71, (P(a)€) @ 2, . ..

= tw(¢(a)§)(b’xl7x27 - )

Thus the pair (¢x,ts) is a representation of the C*-correspondence E. Moreover, it is
injective, since ¢o, is 1-1. This is obvious since ¢4 (a) = diag(a, ¢(a), pa(a),. . .).

Theorem 2 The C*-algebra generated by the Fock representation (¢o,te) is *~isomorphic
to the Toeplitz algebra T (X).

)
)



2.3 The Cuntz-Pimsner algebra

Definition 9 (The Katsura ideal) For a C*-correspondence sE 4, we define an ideal of
A by
Jg={aeA:¢(a)e K(E) and ab = 0 Vb € ker ¢}

Note that since F(E) is a right A-module, it is also a right Jg-module, i.e. F(E)Jg € F(E).
Consider the ideal of L(F(E))

K(F(E)Jg) = span{lye, € K(F(E)) : x,y € F(E),a € Jg}.

Definition 10 (The Cuntz-Pimsner algebra) This is the quotient
O(E) =T(E)/K(F(E)Jg).
This also has a universal property ...

(... to be continued)
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