HILBERT C*-MODULES SECOND LECTURE OPERATORS ON HILBERT C*-MODULES

М. А.

1. Adjointable Operators

Definition 1. Let A be a C^{*}-algebra and E a Hilbert C^{*}-module over A. A map $T : E \to E$ is called adjointable if there exists a map $T^* : E \to E$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all x, y in E.

Remark 1. If follows from the definition that if T is adjointable, T^* is adjointable and $\langle T^*x, y \rangle = \langle x, Ty \rangle$. That is $(T^*)^* = T$.

Proposition 2. Let T be an adjointable map. Then

(1) T is a linear module map.

(2) T is bounded.

Proof. (1) Linearity: If $x, y, z \in E$ and $\lambda, \mu \in \mathbb{C}$ we have:

$$\langle T(\lambda x + \mu y), z \rangle = \langle \lambda x + \mu y, T^* z \rangle = \overline{\lambda} \langle x, T^* z \rangle + \overline{\mu} \langle y, T^* z \rangle = \\ \overline{\lambda} \langle Tx, z \rangle + \overline{\mu} \langle Ty, z \rangle = \langle \lambda T(x) + \mu T(y), z \rangle$$

and so $T(\lambda x + \mu y) = \lambda T(x) + \mu T(y)$. *T* is a module map: If $x, y \in E$ and $a \in A$ we have:

$$\langle T(xa), y \rangle = \langle xa, T^*y \rangle = a^* \langle x, T^*y \rangle = a^* \langle T(x), y \rangle = \langle T(x)a, y \rangle$$

and so T(xa) = T(x)a.

(2) T is bounded: Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in E. Assume there exist $x, z \in E$ such that $x_n \to x$ and $Tx_n \to z$. Let $y \in E$. We have:

$$\langle T(x_n), y \rangle \to \langle z, y \rangle$$

and also

$$\langle Tx_n, y \rangle = \langle x_n, T^*y \rangle \rightarrow \\ \langle x, T^*y \rangle = \langle Tx, y \rangle$$

and so T(x) = z. Hence T is bounded by the Closed Graph Theorem.

Proposition 3. Let T and S be adjointable operators and $\lambda \in \mathbb{C}$. Then

(1) $(T+S)^* = T^* + S^*$.

Date: November 12, 2012.

- (2) $(\lambda T)^* = \overline{\lambda}T.$
- (3) TS is adjointable and $(TS)^* = S^*T^*$.

We denote by $\mathcal{L}(E)$ the algebra of adjointable operators on E.

Proposition 4. $\mathcal{L}(E)$ is a C^{*}-algebra.

Proof. Let $T \in \mathcal{L}(E)$. We have

$$||T^*T|| \le ||T^*|| ||T||$$

and also

(1)
$$||T^*T|| \ge \sup_{x \in E, ||x|| \le 1} \{ \langle T^*Tx, x \rangle \} = \sup_{x \in E, ||x|| \le 1} \{ \langle Tx, Tx \rangle \} = ||T||^2.$$

It follows that

$$||T|| \le ||T^*||$$

and since $T^{**} = T$ we obtain

 $||T|| \le ||T^*|| \le ||T|| \Rightarrow ||T^*|| = ||T||.$

By the inequality 1 above we then have:

$$||T||^2 \le ||T^*T|| \le ||T^*|| ||T|| = ||T||^2,$$

and finally

$$||T||^2 = ||T^*T||.$$

We show that $\mathcal{L}(E)$ is complete. Let $\{T_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in $\mathcal{L}(E)$. Since the space of bounded linear operators on E is a Banach space, $\{T_n\}_{n\in\mathbb{N}}$ converges to a linear operator T and $\{T_n^*\}_{n\in\mathbb{N}}$ converges to a linear operator \overline{T} . We show that T is adjointable and $T^* = \overline{T}$. We have for $y \in E$:

$$\langle Tx, y \rangle = \lim \langle T_n x, y \rangle = \lim \langle x, T_n^* y \rangle = \langle x, Ty \rangle.$$

So, $T^* = \overline{T}$ and $\mathcal{L}(E)$ is complete.

Example 5. Let A = C([0,1]), $J = \{f \in A : f(0) = 0\}$. Consider the Hilbert C^{*}-module $A \oplus E$ over A. Define T as follows: T(f,g) = (g,0). We show that T is not adjointable. Assume there exists a map $S : E \to E$ such that $\langle Tx, y \rangle = \langle x, Sy \rangle$ for all x, y in E. Then S(1,0) = (f,g) for some $f \in A$, $g \in J$. Hence for all $(h,k) \in E$ we have

$$\langle T(h,k),(1,0)\rangle = \langle (h,k),S(1,0)\rangle \Rightarrow \overline{k} = \overline{h}f + \overline{k}g.$$

Set f = 0. This forces $\overline{k} = \overline{k}g$ for every $k \in J$. Hence g = 1. Since g(0) = 0 we obtain a contradiction.

Proposition 6. Let T in $\mathcal{L}(E)$. Then for all $x \in E$, $\langle Tx, Tx \rangle \leq ||T||^2 \langle x, x \rangle$.

Proof. The operator $||T||^2 I - T^*T$ is positive in the C^* -algebra $\mathcal{L}(E)$ and hence there exists $S \in \mathcal{L}(E)$ such that $||T||^2 I - T^*T = S^*S$. We have for $x \in E$:

$$\langle Sx, Sx \rangle \ge 0 \Rightarrow \langle S^*Sx, x \rangle \ge 0 \Rightarrow \left\langle (\|T\|^2 I - T^*T)x, x \right\rangle \ge 0$$
$$\|T\|^2 \langle x, x \rangle - \langle Tx, Tx \rangle \ge 0.$$

Definition 2. Let A be a C^{*}-algebra and E a Hilbert C^{*}-module over A. Let x, y in E. Define the map $\Theta_{x,y} : E \to E$ by:

$$\Theta_{x,y}(z) = x \langle y, z \rangle.$$

Proposition 7. Let A be a C^{*}-algebra and E a Hilbert C^{*}-module over A. Then for every x, y in E the map $\Theta_{x,y} : E \to E$ is adjointable and

$$\Theta_{x,y}^* = \Theta_{y,x}.$$

Proof. For $z, w \in E$ we have:

$$\langle \Theta_{x,y}z, w \rangle = \langle x \langle y, z \rangle, w \rangle = \langle y, z \rangle^* \langle x, w \rangle = \langle z, y \rangle \langle x, w \rangle = \langle z, y \langle x, w \rangle \rangle = \langle z, \Theta_{y,x}w \rangle$$

Proposition 8. Let A be a C^{*}-algebra and E a Hilbert C^{*}-module over A. The closed linear span of the set $\{\Theta_{x,y} : x \in E, y \in E\}$ is a closed ideal in $\mathcal{L}(E)$. We call it the algebra of compact operators on E and denote it by $\mathcal{K}(E)$.

Proof. Let $T \in \mathcal{L}(E)$ and $x, y \in E$. We have:

 $T\Theta_{x,y} = \Theta_{Tx,y}$

and

 $\Theta_{x,y}T = \Theta_{x,T^*y}.$

The proposition follows.

Example 9. Let H be a Hilbert space, $A = \mathbb{C}$ and consider the Hilbert space H as a Hilbert C^* -module over A. Then the algebra of adjointable operators on the Hilbert C^* -module H over A is the algebra of bounded linear operators on H, and the algebra of compact operators on the Hilbert C^* -module H over A is the algebra of compact operators on the Hilbert C^* -module H over A is the algebra of compact operators on the Hilbert space H.

Example 10. Let A be a C^{*}-algebra and consider the Hilbert C^{*}-module A over A. Consider the map $L_a : A \to A$ defined by $L_A(x) = ax$. Then L_a is adjointable with adjoint L_{a^*} and $||L_a|| = 1$. Thus the map $a \to L_a$ is an isometric homomorphism from A onto a closed C^{*}-subalgebra ImL of $\mathcal{L}(E)$. Since $\Theta_{a,b} = L_{ab^*}$, ImL contains $\mathcal{K}(A)$. On the other hand, if $a \in A$ and $\{u_i\}_{i\in I}$ is a contractive approximate identity for A, we have $L_{u_ia} \to L_a$ and since L_{u_ia} is in $\mathcal{K}(A)$ we see that L_a is in $\mathcal{K}(A)$. Thus ImL is contained in $\mathcal{K}(A)$. We conclude that $\mathcal{K}(A) = \text{ImL}$ and so $\mathcal{K}(A)$ is isomorphic to A.

Example 11. Let A be a unital C^{*}-algebra and consider the Hilbert C^{*}-module A over A. Let T be an adjointable operator on A. Then T(a) = T(1a) = T(1)a and $T = L_{T(1)}$. The map $a \to L_a$ is an isomorphism from A onto $\mathcal{L}(E)$. Hence we have $\mathcal{L}(E) = \mathcal{K}(E) \simeq A$.

References

[2] N. E. Wegge-Olsen. K-theory and C*-algebras. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1993. A friendly approach.

Iain Raeburn and Dana P. Williams. Morita equivalence and continuous-trace C^{*}-algebras, volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.