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OPERATORS ON HILBERT C*-MODULES
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1. Adjointable Operators

Definition 1. Let A be a C∗-algebra and E a Hilbert C∗-module over A. A map T : E → E
is called adjointable if there exists a map T ∗ : E → E such that 〈Tx, y〉 = 〈x, T ∗y〉 for all
x, y in E.

Remark 1. If follows from the definition that if T is adjointable, T ∗ is adjointable and
〈T ∗x, y〉 = 〈x, Ty〉. That is (T ∗)∗ = T .

Proposition 2. Let T be an adjointable map. Then

(1) T is a linear module map.
(2) T is bounded.

Proof. (1) Linearity:
If x, y, z ∈ E and λ, µ ∈ C we have:

〈T (λx+ µy), z〉 = 〈λx+ µy, T ∗z〉 = λ 〈x, T ∗z〉+ µ 〈y, T ∗z〉 =
λ 〈Tx, z〉+ µ 〈Ty, z〉 = 〈λT (x) + µT (y), z〉

and so T (λx+ µy) = λT (x) + µT (y).
T is a module map:
If x, y ∈ E and a ∈ A we have:

〈T (xa), y〉 = 〈xa, T ∗y〉 = a∗ 〈x, T ∗y〉 = a∗ 〈T (x), y〉 =
〈T (x)a, y〉

and so T (xa) = T (x)a.
(2) T is bounded: Let {xn}n∈N be a sequence in E. Assume there exist x, z ∈ E such

that xn → x and Txn → z. Let y ∈ E. We have:

〈T (xn), y〉 → 〈z, y〉
and also

〈Txn, y〉 = 〈xn, T
∗y〉 →

〈x, T ∗y〉 = 〈Tx, y〉
and so T (x) = z. Hence T is bounded by the Closed Graph Theorem.

�
Proposition 3. Let T and S be adjointable operators and λ ∈ C. Then

(1) (T + S)∗ = T ∗ + S∗.
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(2) (λT )∗ = λT .
(3) TS is adjointable and (TS)∗ = S∗T ∗.

We denote by L(E) the algebra of adjointable operators on E.

Proposition 4. L(E) is a C∗-algebra.

Proof. Let T ∈ L(E). We have
‖T ∗T‖ ≤ ‖T ∗‖‖T‖

and also

(1) ‖T ∗T‖ ≥ sup
x∈E,‖x‖≤1

{〈T ∗Tx, x〉} = sup
x∈E,‖x‖≤1

{〈Tx, Tx〉} = ‖T‖2.

It follows that
‖T‖ ≤ ‖T ∗‖

and since T ∗∗ = T we obtain

‖T‖ ≤ ‖T ∗‖ ≤ ‖T‖ ⇒ ‖T ∗‖ = ‖T‖.
By the inequality 1 above we then have:

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2,
and finally

‖T‖2 = ‖T ∗T‖.
We show that L(E) is complete. Let {Tn}n∈N be a Cauchy sequence in L(E). Since the
space of bounded linear operators on E is a Banach space, {Tn}n∈N converges to a linear
operator T and {T ∗

n}n∈N converges to a linear operator T . We show that T is adjointable
and T ∗ = T . We have for y ∈ E:

〈Tx, y〉 = lim 〈Tnx, y〉 = lim 〈x, T ∗
ny〉 =

〈
x, Ty

〉
.

So, T ∗ = T and L(E) is complete. �
Example 5. Let A = C([0, 1]), J = {f ∈ A : f(0) = 0}. Consider the Hilbert C∗-module
A ⊕ E over A. Define T as follows: T (f, g) = (g, 0). We show that T is not adjointable.
Assume there exists a map S : E → E such that 〈Tx, y〉 = 〈x, Sy〉 for all x, y in E. Then
S(1, 0) = (f, g) for some f ∈ A, g ∈ J . Hence for all (h, k) ∈ E we have

〈T (h, k), (1, 0)〉 = 〈(h, k), S(1, 0)〉 ⇒ k = hf + kg.

Set f = 0. This forces k = kg for every k ∈ J . Hence g = 1. Since g(0) = 0 we obtain a
contradiction.

Proposition 6. Let T in L(E). Then for all x ∈ E,

〈Tx, Tx〉 ≤ ‖T‖2 〈x, x〉 .

Proof. The operator ‖T‖2I − T ∗T is positive in the C∗-algebra L(E) and hence there exists
S ∈ L(E) such that ‖T‖2I − T ∗T = S∗S. We have for x ∈ E:

〈Sx, Sx〉 ≥ 0 ⇒ 〈S∗Sx, x〉 ≥ 0 ⇒
〈
(‖T‖2I − T ∗T )x, x

〉
≥ 0

‖T‖2 〈x, x〉 − 〈Tx, Tx〉 ≥ 0.

�
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2. Compact operators on Hilbert modules

Definition 2. Let A be a C∗-algebra and E a Hilbert C∗-module over A. Let x, y in E.
Define the map Θx,y : E → E by:

Θx,y(z) = x 〈y, z〉 .
Proposition 7. Let A be a C∗-algebra and E a Hilbert C∗-module over A. Then for every
x, y in E the map Θx,y : E → E is adjointable and

Θ∗
x,y = Θy,x.

Proof. For z, w ∈ E we have:

〈Θx,yz, w〉 = 〈x 〈y, z〉 , w〉 = 〈y, z〉∗ 〈x,w〉 =
〈z, y〉 〈x,w〉 = 〈z, y 〈x,w〉〉 = 〈z,Θy,xw〉

�
Proposition 8. Let A be a C∗-algebra and E a Hilbert C∗-module over A. The closed linear
span of the set {Θx,y : x ∈ E, y ∈ E} is a closed ideal in L(E). We call it the algebra of
compact operators on E and denote it by K(E).

Proof. Let T ∈ L(E) and x, y ∈ E. We have:

TΘx,y = ΘTx,y

and
Θx,yT = Θx,T ∗y.

The proposition follows. �
Example 9. Let H be a Hilbert space, A = C and consider the Hilbert space H as a Hilbert
C∗-module over A. Then the algebra of adjointable operators on the Hilbert C∗-module H
over A is the algebra of bounded linear operators on H, and the algebra of compact operators
on the Hilbert C∗-module H over A is the algebra of compact operators on the Hilbert space
H.

Example 10. Let A be a C∗-algebra and consider the Hilbert C∗-module A over A. Consider
the map La : A → A defined by LA(x) = ax. Then La is adjointable with adjoint La∗ and
||La|| = 1. Thus the map a → La is an isometric homomorphism from A onto a closed
C∗-subalgebra ImL of L(E). Since Θa,b = Lab∗, ImL contains K(A). On the other hand, if
a ∈ A and {ui}i∈I is a contractive approximate identity for A, we have Luia → La and since
Luia is in K(A) we see that La is in K(A). Thus ImL is contained in K(A). We conclude
that K(A) = ImL and so K(A) is isomorphic to A.

Example 11. Let A be a unital C∗-algebra and consider the Hilbert C∗-module A over A.
Let T be an adjointable operator on A. Then T (a) = T (1a) = T (1)a and T = LT (1). The
map a → La is an isomorphism from A onto L(E). Hence we have L(E) = K(E) ' A.
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