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1. Unitization

Definition 1. Let A be a C∗-algebra and I an ideal of A. The ideal I is essential if I ∩ J 6=
{0} for every ideal J of A, J 6= {0}.

Proposition 1. The following are equivalent for an ideal I of A.

(1) I is essential.
(2) If a ∈ A and aI = {0} then a = 0.

Example 2. Let X be a locally compact Hausdorff space. Consider the C∗-algebra C0(X).
If I is an ideal of C0(X) there exists an open set UI such that I = {f ∈ C0(X) : f(x) =
0, x /∈ UI}. An ideal I is essential if and only if UI is dense in X.

Definition 2. A unitization of a C∗-algebra A is a unital C∗-algebra B and an injective
homomorphism i : A→ B such that i(A) is an essential ideal in B.

Remark 3. If A is unital and B is a unitization of A, then A = B.

Proof. Let 1 be the unit of A and b the unit of B. If a ∈ A we have (b− 1)a = ba− 1a = 0
and hence (b− 1)A = {0}. By Proposition 1 b = 1 and so A = B. �
Example 4. Let A be a C∗-algebra. Set A1 = A⊕C. Define (a, λ)(b, µ) = (ab+µa+λb, λµ)
and (a, λ)∗ = (a∗, λ). Consider the embedding L : A → K(A). (La is the operator defined
by La(x) = ax for x in A). Define L̃ : A1 → L(A) by L̃((a, λ)) = La + λI. Then, the
image of A1 by L̃ is closed in L(A) and so it is a C∗-algebra. Define the norm on A1 by
‖(a, λ)‖ = ‖La + λI‖. Then, A1 with this norm is a C∗-algebra and is a unitization of A.

Example 5. Let H be a Hilbert space and K(H) the algebra of compact operators on H.
Then the subalgebra K(H) + CI of B(H) is closed in B(H) and is a unitization of K(H).

Example 6. Let A be a C∗-algebra and consider the Hilbert C∗-module A over A. Consider
the map L : A→ K(A). Then L(A) is a unitization of A. One has to show that K(A) is an
essential ideal of L(A). Let T ∈ L(A) and assume that TΘx,y = 0 for every x, y ∈ A. Then
ΘTx,y = 0 for every x, y ∈ A which implies that Tx = 0 for every x ∈ A and so T = 0. From
Proposition 1 we see that K(A) is an essential ideal of L(A).

Definition 3. Let X be a locally compact Hausdorff space. A compactification of X is a
compact Hausdorff space Y and a map i : X → Y such that X is homeomorphic to i(X).
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Example 7. If X is a locally compact Hausdorff space the one point compactification of X
is a compactification. The Stone-Cěch compactification of X is also a compactification.

Let X be a locally compact Hausdorff space and Y a compactification of X. If i : X → Y
is the embedding of X into Y , define: i∗ : C0(X) → C(Y ) by

i∗f(y) =


0 if y /∈ i(X)

f(x) if y = i(x) ∈ i(X)

Then, C(Y ) and i∗ is a unitization of C0(X). If Y is the one-point compactification of X,
then C0(X)1 = C(Y ).

2. multiplier algebras

Definition 4. A unitization (B, i) of a C∗-algebra A is maximal if whenever C is a C∗-
algebra, j : A → C a homomorphism such that j(A) is an essential ideal of C, then there
exists an homomorphism φ : C → B such that φj = i.

It is not obvious from the definition that a maximal unitization of a C∗-algebra exists.
This is proved in the following:

Theorem 8. Let A be a C∗-algebra. The C∗-algebra (L(A), i) (where i(a) = La) is a
maximal unitization of A. Moreover it (B, j) is another maximal unitization, there exists an
isomorphism φ : B → L(A) such that φj = i.

Definition 5. We will refer to L(A) as the multiplier algebra of A and denote it by M(A).

Definition 6. Let A be a C∗-algebra and E a Hilbert C∗-module over A. Let B be a C∗-
algebra and α an homomorphism α : B → L(E) We say that α is a non-degenerate homo-
morphism if α(B)E is dense in E.

Proposition 9. Let A be a C∗-algebra and E a Hilbert C∗-module over A. Let C be a C∗-
algebra and B an ideal of C. Denote by i : B → C the canonical embedding. If α : B → L(E)
is a non-degenerate homomorphism, then there is a unique homomorphism α : C → L(E)
which extends α, i.e. αi = α. If B is an essential ideal in C and α is injective, then α is
injective.

Proof. Let n ∈ N, bi ∈ B, xi ∈ E for i = 1, 2, .., n and c ∈ C. Consider the map∑n
i=1 α(bi)xi →

∑n
i=1 α(cbi)xi. Take an approximate unit eλ of B. We have

‖
n∑

i=1

α(cbi)xi‖ = lim ‖
n∑

i=1

α(ceλbi)xi‖ ≤

lim sup ‖α(ceλ)‖‖
n∑

i=1

α(bi)xi‖ ≤ lim sup ‖ceλ‖‖
n∑

i=1

α(bi)xi‖ ≤ ‖c‖‖
n∑

i=1

α(bi)xi‖.

So this map is bounded on α(B)E and extends to a bounded operator α(c) on E. This
map is adjointable with adjoint α(c∗). Clearly α is a homomorphism from C into L(E) and
is unique since α(B)E is dense in E. (If β is another such map, it must agree with α on
α(B)E and hence on E). Assume now that α is injective and B is essential in C. Then we
have Kerα∩B = {0} since B is injective. But Kerα∩B = Kerα∩B and so Kerα∩B = {0}.
This implies Kerα = {0} since B is essential in C. �
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Lemma 10. Let A and B be C∗-algebras and φ : B → M(A) be a non-degenerate homo-
morphism. Then, there exists a unique homomorphism φ :M(B) →M(A) which extends φ,
i.e. such that φ(b) = φ(b).

Proof. Apply Proposition 9.
�

Lemma 11. Let A be a C∗-algebra and (B, i) a maximal unitization of A. Let C be a C∗-
algebra and j : A → C an injective homomorphism such that j(A) is essential in C. Then
there exists a unique homomorphism φ : C → B such that φj = i. Moreover φ is injective.

Proof. There exists an homomorphism φ : C → B such that φj = i, since (B, i) a maximal
unitization of A. Since j(A) is essential, φ is injective since Kerφ ∩ j(A) = {0}. Hence, φ is
injective. If ψ is another homomorphism ψ such that ψj = i and c ∈ C, a ∈ A we have:

(φ(c)− ψ(c))i(a) = φ(c)i(a)− ψ(c)i(a) =

φ(c)φ(j(a))− ψ(c)ψ(j(a)) =

φ(cj(a))− ψ(cj(a)) = 0,

since cj(a) ∈ j(A) and φ = ψ on j(A). We conclude that (φ(c)−ψ(c))j(A) = {0} and since
j(A) is essential this implies that φ(c) = ψ(c).

�
Proof of Theorem
We show first the uniqueness. Let (B, j) be a maximal unitization of A. Then by the

maximality of L(A) there exists an homomorphism φ : B → L(A) such that φj = i. By
the maximality of B there exists an homomorphism ψ : L(A) → B such that ψi = j. Now,
φψ : L(A) → L(A)) is an homomorphism and satisfies φψi = φj = i. But we also have
iL(A)i = i where iL(A) is the identity map on L(A). By Lemma 11 we have that iL(A) = φψ.
In the same way we prove that ψφ = iB and hence φ is an isomorphism.

We show that L(A) is a maximal unitization. Let C be a C∗-algebra, j : A → C a
homomorphism such that j(A) is an essential ideal of C. Since the map i : A → L(A) is a
non-degenerate homomorphism, Proposition 9 implies that there exists a map φ such that
φj = i. Since i is injective, we conclude that φ is injective.

�
The following proposition provides concrete realizations of the multiplier algebra of a

C∗-algebra A as an algebra of multipliers.

Proposition 12. Let A and C be C∗-algebras and E a Hilbert C∗-module over C. Assume
that α : A → L(E) is an injective, non-degenerate homomorphism. Then α extends to an
isomorphism α of M(A) onto B = {T ∈ L(E) : Tα(A) ⊆ α(A), α(A)T ⊆ α(A)}.
Proof. It is clear that α(A) is an ideal of B. We show that it is essential. Let T ∈ B such
that Tα(A) = {0}. Then Tα(A)E = {0} and since α is non-degenerate, T (E) = {0} and
so T = 0. To prove the proposition we only have to show that α : A → B is a maximal
unitization. Assume that there exists a C∗-algebra D and an injective homomorphism j :
A→ D such that j(A) is an essential ideal of D. By Proposition 9 there exists an injective
homomorphism α : D → L(E) such that αj = α. We show that α(D) ⊆ B. If d ∈ D and
a ∈ A we have

α(d)α(a) = α(d)α(j(a)) = α(dj(a)).
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Since dj(a) ∈ j(A), α(dj(a)) ∈ α(A) and hence α(d)α(a) ∈ α(A). Similarly we see that
α(a)α(d) ∈ α(A) and so α(d) ∈ B. �
Corollary 13. Let A be a C∗-algebra. Then M(K(A)) = L(A).
Proof. What we need to show is that the embedding i : K(E) → L(E) is non-degenerate.
Let Tλ be an approximate unit for K(E). It follows from Theorem 15 that it suffices to show
that Tλx→ x for every x ∈ E of the form y 〈y, y〉. We have

Tλx = Tλ(y 〈y, y〉) = TλΘy,y(y) =

(TλΘy,y)(y) → Θy,y(y) = x.

�
Proposition 14. (1) Let H be a Hilbert space. Then M(K(H)) = B(H).

(2) Let T be a locally compact Hausdorff space. Then M(C0(T )) = Cb(T ) = C(βT )
where Cb(T ) is the space of bounded continuous functions on T and βT is the Stone
Cěch compactification of T .

Proof. (1) Follows from Corrolary 13.
(2) It is easy to see that the ideal C0(T ) is an essential ideal in Cb(T ). We are going

to prove that each multiplier is given by a function in Cb(T ). We consider the
representation µ of C0(T ) and Cb(T ) as multiplication operators on `2(T ), so that
(µ(f)h)(t) = f(t)h(t). This representation of C0(T ) is injective and non-degenerate.
Hence, it is enough to prove that if m ∈ B(`2(T )) is such that mµ(f) ∈ µ(C0(T )) and
µ(f)m ∈ µ(C0(T )) for all f ∈ C0(T ), then m ∈ µ(Cb(T )). So we may assume that
for each f ∈ C0(T ) there exists a function mf ∈ C0(T ) such that mµ(f) = µ(mf).
Let t ∈ T . We show that if f ∈ C0(T ), g ∈ C0(T ) satisfy f(t) = g(t) = 1 then
mf(t) = mg(t). Let h ∈ `2(T ) be the function defined by

h(s) =


1 if s = t

if s 6= t

Then

|mf(t)−mg(t)| = |mf(t)h(t)−mg(t)h(t)| = |(µ(mf)h)(t)− (µ(mg)h)(t)| =
|(mµ(f)h)(t)− (mµ(g)h)(t)| ≤ ‖mµ(f)h−mµ(g)h‖ ≤
‖m‖‖µ(f)h− µ(g)h‖ = ‖m‖|f(t)h(t)− g(t)h(t)| = 0.

We define φ by φ(t) = mf(t) where f is any function in C0(T ) of norm 1 such that
f(t) = 1. Since we can choose the same f for each point s lying in a neighbourhood
of t and mf is continuous, we see that φ is continuous. We show that φ is bounded
by ‖m‖. Taking h as above we have

|φ(t)| = |mf(t)| = |mf(t)h(t)| = |(µ(mf)h)(t)| =
|(mµ(f)h)(t)| ≤ ‖mµ(f)h‖ ≤ ‖m‖‖µ(f)h‖ = ‖m‖|f(t)| = ‖m‖.

So, φ ∈ Cb(T ).
We finally show that m = µ(φ). Let h ∈ `2(T ) be of finite support and take

f ∈ C0(T ) such that f equals 1 on the support of h. We then have:
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µ(φ)h = µ(mf)h = mµ(f)h = mh.

Since the linear span of these fuctions is dense in `2(T ) we obtain m = µ(φ). So,
m = µ(φ) ∈ µ(Cb(T )). �

3. factorization

Theorem 15. Let A be C∗-algebra and E a Hilbert C∗-module over A. Let x ∈ E. Then
there exists a unique y ∈ E such that x = y 〈y, y〉.

Let A be C∗-algebra and E1 and E2 be two Hilbert C∗-module over A. We define the
adjointable operators (resp. the compact operators) from E1 to E2 taking into account the
obvious modifications.

Proposition 16. Let A be C∗-algebra and E a Hilbert C∗-module over A. We also consider
A as a Hilbert C∗-module over A. Let x ∈ E. We set
Lx : A→ E by Lxa = xa
and
Dx : E → A by Dx(y) = 〈x, y〉.
Then Lx ∈ L(A,E) and Dx ∈ L(E,A). Moreover (Lx)

∗ = Dx.

Lemma 17. (1) The map x → Dx is an isometric conjugate linear isomorphism from
E onto K(E,A).

(2) The map x→ Lx is a is an isometric linear isomorphism from E onto K(A,E).

Proof. (1) We have ‖Dx‖ = sup{‖ 〈x, y〉 ‖ : ‖y‖ ≤ 1} = ‖x‖, and hence D is isometric.
The image of D is then closed. We also have for x ∈ E and a ∈ A that Θa,x = Dxa∗ .
It follows that the image of D contains K(E,A). On the other hand, for x ∈ E the
operator Dx is in K(E,A) since D is continuous and EA is dense in E.

(2) Note that Lx = D∗
x and apply the first part.

�
Let A be C∗-algebra and E a Hilbert C∗-module over A. Let a ∈ A, T ∈ K(E,A).

S ∈ K(A,E) and R ∈ K(E). Then [
a T
S R

]
defines an operator on the Hilbert C∗-module A⊕ E by the formula:[

a T
S R

][
b
x

]
=

[
ab+ Tx
Sb+Rx

]
.

Proposition 18. Let A be C∗-algebra and E a Hilbert C∗-module over A. Let a ∈ A,
T ∈ K(E,A), S ∈ K(A,E) and R ∈ K(E). Then

(1) The operator [
a T
S R

]
is in L(A⊕ E) and its adjoint is[

a∗ S∗

T ∗ R∗

]
.
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(2) The operator [
a T
S R

]
is in K(A⊕ E).

(3) Every compact operator M on the Hilbert C∗-module A⊕ E is of the form[
a T
S R

]
for some a ∈ A, T ∈ K(E,A), S ∈ K(A,E) and R ∈ K(E).

Proof of Theorem Let x ∈ E. The operator[
0 Dx

Lx 0

]
is a self-adjoint operator in K(A⊕ E) and satisfies[

0 Dx

Lx 0

][
1 0
0 −1

]
+

[
1 0
0 −1

][
0 Dx

Lx 0

]
=

[
0 0
0 0

]
.

It follows from Lemma 17 and Proposition 18 that any self-adjoint operator[
a T
S R

]
in K(A⊕ E) which satisfies[

a T
S R

][
1 0
0 −1

]
+

[
1 0
0 −1

][
a T
S R

]
=

[
0 0
0 0

]
is of the form [

0 Dy

Ly 0

]
for some y ∈ E.
If f is the function f(t) = t

1
3 , it follows from functional calculus that the operator

f

([
0 Dx

Lx 0

])
is in K(A⊕ E) and satisfies

f

([
0 Dx

Lx 0

])[
1 0
0 −1

]
+

[
1 0
0 −1

]
f

([
0 Dx

Lx 0

])
=

[
0 0
0 0

]
.

Hence

f

([
0 Dx

Lx 0

])
=

[
0 Dy

Ly 0

]
for some y ∈ E.

We obtain [
0 Dx

Lx 0

]
=

[
0 Dy

Ly 0

]3
⇒
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[
0 Dx

Lx 0

]
=

[
0 DyLyDy

LyDyLy 0

]
.

Let b ∈ A. We have

LyDyLy(b) = LyDy(yb) = Ly(〈y, yb〉) = y 〈y, yb〉 = y 〈y, y〉 b
and also

Lx(b) = xb.

Hence x = y 〈y, y〉.
�
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