Hilbert C*-modules
Introductory lecture: rough notes

A K.
October 12, 2012

Motivating Examples '

Example 1 Consider £ = Ms3(C). It is a Banach space (with the norm that a matrix «
has as an operator z : C3> — C?) but the product ry makes no sense. What does make sense
is the product z*y, but this does not lie in My3(C); it lies in A = M33(C).

Thus we have a sesquilinear map £ x E — A : (z,y) — z*y. Note that we can recover
the norm on E from the norm of A via this map: |z|; = ||:1:”‘93||114/2
Also, A acts on E on the right: we have a map F' x A — E : (z,a) — za.

Example 2 let E be the space of continuous functions z = (z1,79) : [0,1] — C? and let
A be the algebra C(]0,1]). We may define a sesquilinear map F x £ — A : (z,y) — {z,y)
where (x,y) (t) = Z1(t)y1(t) + Z1(t)y1 (t). This time we define the norm on E from the norm
of A via this map: |z|, = H<x,x>H¥2

Also, A acts on E by pointwise multiplication: we have a map £ x A — E : (z,a) — xa
(where (za)(t) = (x1(t)a(t), zo(t)a(t)).

Roughly speaking, a Hilbert C*-module E over a C* algebra A is a right A-module
equipped with an A-valued ‘inner product’ which is compatible with the action of A on F
and which is used to define a complete norm on F.

Definition 1 (a) A Banach algebra is a complex algebra A equiped with a complete such
that |ab|| < ||a| |b] for all a,be A.
(b) A C*-algebra A is a Banach algebra A equiped with an involution® a — a* satisfying
the C*-condition

la*a| = |a|? for all ae A.

The basic example is the algebra B(#) of all bounded operators on a Hilbert space H
equipped with the operator norm

lall = sup{llag]y, - € € H, [l = 1}

'hmod, October 15, 2012 -
2that is, a map A — A such that (a + \b)* = a* + \b*, (ab)* = b*a*, a** = a for all a,be A and A\ € C
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where the involution is defined by (a*¢,n) = (£, an).

Any C*-algebra can be considered as * a closed subalgebra of B(H) for some Hilbert
space H (the Gelfand - Naimark theorem).

Any abelian C*-algebra is isometrically *-isomorphic to an algebra of the form Cy(X),
the continuous complex-valued functions on a locally compact Hausdorff space X, equipped
with pointwise operations and the supremum norm.

An element a € A is called positive if (a&,&) = 0 for all £ € H (here A is considered to be
a subalgebra of B(H)) *. An element a € A is positive if and only if it is of the form a = b*b
for some b € A. In particular, a positive element « is selfadjoint, i.e. a = a*. An element
a € Co(X) is positive if and only if a(t) € Ry for all t € X.

The set A, of positive elements of a C*-algebra A is a closed convex cone, and the norm
is monotone on A, : if 0 < a < b (meaning that b —a € A,) then |lal| < ||b]|. °

Definition 2 Let A be a C*-algebra. An inner product A-module is a complex vector
space E such that
(a) E is a right A-module, i.e. there is a bilinear map

ExA—A:(r,a)>x-a

satisfying (x - a)-b =z - (ab) and (A\x)-a =z -(\a) (and x -1 = x when A has a unit 1).
(b) There is a map
ExE—A:(z,y) = (2,y)

satisfying

Ay + 2y = N,y + {x,y)

~

2. {x,y-ay=_{x,y)a

3. Cw,y)” =y, @)

4. {x,xye A,

5. {r,xy=0=2=0 (v,y,2€ E,ae A, A e C).

If only conditions (1) to (4) hold, E is called a semi-inner product A-module.

We prove the Cauchy - Schwarz inequality. We will need the simple observation that (za,y) =
(y,z0))* = y,x)a)* = a*(x,y).
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more accurately, is isometrically *-isomorphic to

4this is not the original definition of positivity, but it is equivalent to it

Indeed if a = c*c and b = d*d the inequality a < b gives |c€|| < ||d¢]|| for all £ € H and so ||c|| < ||d| hence
laf < o]



Proposition 3 In a semi-inner product A-module E, for all x,y € F,

W, 2)<z,y) < Kz, 2| 4 Sy )
hence [y l% < I, )L 1y, 9D
Proof. For a = {(x,y) € A and all t € R, we have

0 < <{za —ty,za —ty)y = {xa,zay — t{za,y) — t{y, zay + 12 Ly, y)
=a*{(x,x)a —ta*a — ta*a + t*{y, y)
hence 2ta*a < a*|[{z,2)|, a + 12 {y,y) (*)

(we have used the inequality a*ba < a* |b|a, for b = 0). °©

inequality gives, for all t > 0

If {x,z) = 0, the previous

0<2ta*a<t®(y,yd) = 0<2a"a<tly,y).

Letting ¢t — 0, this forces a*a = 0 and the Cauchy- Schwarz inequality holds. If {(x,z) # 0,
setting ¢t = |{z, z)| 4, we get from (¥*)

ta*a < t*(y,yy or aa < |z, @), <y,

which is the required first inequality.
For the second inequality, since 0 < (y,z){z,y) < |{z,x)|,{y,y), monotonicity of the
norm on A, gives

[z, 907 S )],

2
so Kz, y)lls

<z, )4 <y )] 4

|
[z, 2l 4 Ky pla- - O

NN

Definition 3 If E is a semi-inner product A-module, we write
1/2
2l = Kz, )I{* (€ B).

This is a seminorm on E; ” it is a norm iff £ is an inner product A-module.
A Hilbert C*-module over A is an inner product A-module such that (E, ||-| ) is complete.

Remark 4 If FE is a semi-inner A-module, then by the last Proposition the set N = {x €
E :||z| 5z = 0} is a closed subspace and an A-submodule (if x € N then x-a € N) and so the
quotient E/N becomes an inner product A-module in the induced operations.

6 Proof: assuming A € B(H), for all £ € H we have (a*ba&, &) = (b(af), (a&)) = 0 and so
(a*bat, &) = (b(a€), (a)) < [b] [a]* = [b] (a€,a&) = (a* [|b] a&, &).
T +y,z +)la < K2l g+ Kz pla + 1Ky 2)all + 1Ky 9l 4 < Kool 4 + 24/ 1<, )4 Ky, 0l 4 +

1<y, ¥l 4




Corollary 5 If E is an inner product A-module, the map E x A — E : (z,a) —> x - a is
continuous; in fact

|z - allp < 2l g llal 4 -

It follows that for each a € A tha map R, : E - E : x — z - a is bounded with |R,| < |a| 4. Thus
the map R : a —» R, is a contractive anti-homomorphism of the Banach algebra A into the Banach
algebra B(E).

Proposition 6 The closed linear span [EA] of the set {x-a:x € E a € A} is the whole of E. We
say that E is a non-degenerate A-module.

Proof. If A contains a unit 1, this is obvious from the relation -1 = z: in fact £ = E'A in this case.
For the general case, we use the fact that every C*-algebra contains a positive contractive approzi-
mate identity, i.s. a net of contractions (e;) in A4 such that for all a € A we have lim; ||ae; —al =0
(hence also lim; |e;a — al| = 0). Thus every x € E can be approximated by ze; € EA. Indeed,

|z — wei| 3 = Ko — zes, @ — zeg)| 4 = [(z,2) — (x, me;) + (wey, me;) — (wey, || 4
= Kz, z) —(x, ) e; + e {w,xye; — e (x,x)| 4

[Coy 2y = Cary ) el g + lles(Cs ) e = (o, )| 4

<
< Kz = (o xpeil 4 + (o xp e = (2,09 4 = 0. O

Examples
e Any C*-algebra A is a Hilbert C*-module over A with {a,b) = a*b and a - b = ab.
e Any closed right ideal J of A is an A-submodule, hence a Hilbert C*-module over A.
e Any Hilbert space H is a Hilbert C*-module over C.

e But # it is also a Hilbert C*-module E over B(H). It is clearer to see this for H = (2
We identify each x € ¢? with the 1 x co matrix [21,72,...], i.e. with the linear operator
fz:n — (X, 2nmm) : H — C. The module action is given by matrix multiplication: for
a = |ai;] € B(H), the element z - a is the row matrix [, z;a:1, Y, 502, ... |. Finally, the
B(#)-valued inner product is {(z,y) = [Z;y;]. The Hilbert C*-module norm |z|, actually
coincides with the ¢? norm of . ®

e The direct sum @), _, E, of finitely many Hilbert C*-modules over the same C*-algebra A is
the vector space direct sum equipped with coordinate-wise inner product and module action:

zw), W))p = Z (x(k >Ek and  (xg)-a:= (zg - a).

Example 7 The direct sum @ Ey of a sequence of Hilbert C*-modules over a fized C*-algebra A
1s defined to be

E=@E;:={z= HEk Z<az (k))p, converges in the norm of A}.

8 This can be thought as a 1 x oo version of the 2 x 3 example 1.
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We prove that E has the properties of a Hilbert C*-modules over A:
Linear space structure Suppose (z(k)), (y(k)) € E; we show that (z(k) + y(k)) € E: Let

an = Y, G@k)xk)y, bu= D k)ylky, cn= D) @k) +yk),z(k) +y(k))

k<n k<n k<n

these are in A4. Since

0<@+y,z+y <{z+y,z+y +{&—yz—y =2{,2)+2{y,y
when n = m the differences ¢,, — ¢, etc. are finite sums of such terms and hence
0<cn—cm <2an —am) +2(bn —bp) = llen —cmllg < 2[(an — am) + (bn — bin)ll4

(monotonicity of norm). Since (z(k)) and (y(k)) are in E, the sequences (a,) and (b,) converge in
A; hence (¢,) is Cauchy in A, showing that (z(k) + y(k)) belongs to E.
Module action Define (z(k)) - a := (xz(k)a). This maps F to E because

n

2 a}-Za*<x(k) z(k)aya = a* (2@ )

k=m

which shows that when Y, (x(k), z(k)) converges in A, so does ), (x(k)a, z(k)a).
A-valued product

Define (z(k)), (y(k)))p = 2 @(k),y(k)) g,
This series converges in A by polarization: we have
4;@3(@, y(k)) = Z (@(k) +y(k), x(k) + y(k)) — Z@(kﬁ) —y(k), z(k) —y(k))
HZ@ +iy(k), (k) + iy(k —ZZ@ s (k) — iy (k)

and since x + iy € E (m = 0,1, 2, 3), the four series on the right converge in A, hence so does the
one on the left.

Norm This is of course given by

[@(RD | = K@), @ (k) gl = | Y <ak), y(k)p,

k

A

To prove completeness, we need a simple observation:
Remark If (x(k)) € E then for each k, since

0 < a(k),x(k)) < Y Ce(m),z(m)) in A,

= [(z(k)|5

A

we have Ha:(k:)HzEk <z (k), z(k))ll 4 <




by monotonicity of the norm. It follows that the coordinate projection Qi : £ — FEj which is
clearly an A-module map, is contractive.

Completeness Suppose (z,) is a |-| ;-Cauchy sequence, where each z,, = (z,(k)) with z,,(k) € E}.
By the last remark, for each fixed k, the sequence (x,(k)), is Cauchy in E}, hence convergent. Thus
there exists y(k) € By, with limy, |y(k) — zn (k)| g, = 0.

Let y = (y(k)) € [ | Ex. We need to prove two things:
(a) that y € E and
(b) that lim,, |y — x|z = 0.

(a) Proof that y € E, i.e. that >}, (y(k),y(k)) converges in A.
Since A is complete, we need to show that this series satisfies the Cauchy criterion: given € > 0
we need to prove that there exists P € N such that

2, k), y(k))
k=n

<& (1)
A

m=n>=>P —

Let us use the notation
1/2

A
for all z = (z(k)) e[ Ex and m = n
Since (z,,) is Cauchy, given € > 0 there exists N € N such that

kzl=2N = H:L’k—l'lHE<€/3. (2)

Now xzy € E, so »,, {xn(i),zn(i)) converges in A; hence we can choose P > N such that

1/2
<g/3. 3)

2, Cen (i), zn (@)
i=P

Now for each k € N we have y(k) = limps zps (k) in Ey, i.e. limps |[{y(k) — 2nm(k), y(k) —zm (k)] 4 =
0. Hence for each m > n we have

A

m

Z ) — xn(k), y(k) — xar(k

2
ly = xnlsym =

Z IK<y(k) — war(k), y(k) = xpr (k)4 —> 2150 0

and therefore we may choose M > P (depending on m,n) such that

[y = zpllym < €/3. (4)

Thus if m > n > P we have

HyHn,m < Hy - xMHn,m + HZ‘M - mNHn,m + |‘$N‘|n,m

m 1/2
<Ny = 2pllyn + lens = anl g + | D) v (@), an (i)
i=n A



where we have used the inequality |zy — 2n],,,, < |2y — 2n|p. 7 The first term is < /3 by (4);
the second is < €/3 by (2) because M > N; and the third term is < e/3 by (3) because n = P.
Therefore

<e€

which proves (1). Hence y € E.

(b) Proof that lim,, |y — x|z = 0.
Given ¢ > 0, let ng € N be such that

n,mz=nyg = [T, —Tm|p <e.

Then, if n,m = ng, we have for all N ¢ N

< &2,

A

Letting m — o0, since each x,,(k) — y(k) in Ej and there are finitely many terms, we obtain

2
Le¢

A

N
Z (@n(k (k) = y(k))

for all n = ng. But now we know from part (a) that =, —y € E and so the series

Z (e (k k), 2n(k) —y(k))

converges in A.. Thus if we set

N o]

an = ) (onlk) —y(k),za(k) —y(k) and  a= )] (wa(k) —y(k), za(k) — y(k))
k=1 k=1
then [lay —al|, = 0 and so ||, = limy |an] 4. Since each |an]|, < €2, it follows that |a| 4, < 2.
But this says precisely that |y — x,| 5 < € for all n > ng, as required. [

Remark 8 On the defining condition for the norm of x = (x(k)):

[@(kD |z = K@®), (@(k))gl 4 = Z<fﬂ (k) ks,

A

9 Indeed for all z € E we have
m u
0< ) k), 2(k)y < D <2(k), 2(k)y in Ay, hence |z[,, < |2[%
k=n k=1

by monotonicity of the norm.



Since the partial sums a, = 3} <{x(k),y(k))p, form an increasing sequence in A, such that
k<n

Q0
limy, |an — a4, = 0 where a =}, (x(k),y(k))p, , we have
k=1

2, k), y(k))

k<n

NI = lall, = lim fau] 4 = lim
A
Note that IF the series converges absolutely, i.e. if we require that Y, ; [{z(k),y(k))| 4, < o0, then
certainly (z(k)) € E; but this is too strong a condition. '°

On the other hand, if we merely assume that the partial sums »;, . <(x(k),y(k)) are bounded
above, then the series need not converge in the norm of A although it does converge strongly (but
its limit need not be in A); for example we may take each Ey = A = the compact operators, and
(z(k)) to be a sequence of orthogonal rank one projections: the sum is not compact.

A special case of the direct sum is partcularly important for the theory.

Definition 4 The standard C*-module over a C*-algebra A, sometimes denoted H 4, is the direct
sum @ Fk, where each Ey equals the Hilbert C*-module A. Thus

Ha = {x = (x(k)) : each x(k) € A and Z:U(k)*x(k:) converges in the norm of A}.
k

Thus, in case A = C, the standard module is just £2(N).
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10 Exercise: Find a sequence (fi) of elements of A = ¢ such that Y, |fx|> converges in the norm of A,
but >}, ||fk||%/ = 400. Can you do the same in the algebra C([0,1)]?
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