Hilbert C*-modules Introductory lecture: rough notes

A.K.

October 12, 2012

Motivating Examples

Example 1 Consider $E = M_{23}(\mathbb{C})$. It is a Banach space (with the norm that a matrix x has as an operator $x : \mathbb{C}^3 \to \mathbb{C}^2$) but the product xy makes no sense. What does make sense is the product x^*y , but this does not lie in $M_{23}(\mathbb{C})$; it lies in $A = M_{33}(\mathbb{C})$.

Thus we have a sesquilinear map $E \times E \to A : (x, y) \to x^* y$. Note that we can recover the norm on E from the norm of A via this map: $||x||_E = ||x^*x||_A^{1/2}$.

Also, A acts on E on the right: we have a map $E \times A \to E : (x, a) \to xa$.

Example 2 let *E* be the space of continuous functions $x = (x_1, x_2) : [0, 1] \to \mathbb{C}^2$ and let *A* be the algebra C([0, 1]). We may define a sesquilinear map $E \times E \to A : (x, y) \to \langle x, y \rangle$ where $\langle x, y \rangle(t) = \bar{x}_1(t)y_1(t) + \bar{x}_1(t)y_1(t)$. This time we define the norm on *E* from the norm of *A* via this map: $||x||_E = ||\langle x, x \rangle||_{\infty}^{1/2}$.

Also, A acts on E by pointwise multiplication: we have a map $E \times A \to E : (x, a) \to xa$ (where $(xa)(t) = (x_1(t)a(t), x_2(t)a(t))$.

Roughly speaking, a *Hilbert C*-module* E over a C* algebra A is a right A-module equipped with an A-valued 'inner product' which is compatible with the action of A on E and which is used to define a complete norm on E.

Definition 1 (a) A **Banach algebra** is a complex algebra A equiped with a complete such that $||ab|| \leq ||a|| ||b||$ for all $a, b \in A$.

(b) A C*-algebra A is a Banach algebra A equiped with an involution² $a \rightarrow a^*$ satisfying the C*-condition

$$||a^*a|| = ||a||^2$$
 for all $a \in A$.

The basic example is the algebra $\mathcal{B}(\mathcal{H})$ of all bounded operators on a Hilbert space \mathcal{H} equipped with the operator norm

$$||a|| = \sup\{||a\xi||_{\mathcal{H}} : \xi \in \mathcal{H}, ||\xi||_{\mathcal{H}} = 1\}$$

 $^{^{1}}$ hmod, October 15, 2012

²that is, a map $A \to A$ such that $(a + \lambda b)^* = a^* + \overline{\lambda}b^*$, $(ab)^* = b^*a^*$, $a^{**} = a$ for all $a, b \in A$ and $\lambda \in \mathbb{C}$

where the involution is defined by $\langle a^*\xi, \eta \rangle = \langle \xi, a\eta \rangle$.

Any C*-algebra can be considered as ³ a closed subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (the Gelfand - Naimark theorem).

Any *abelian* C^{*}-algebra is isometrically *-isomorphic to an algebra of the form $C_0(X)$, the continuous complex-valued functions on a locally compact Hausdorff space X, equipped with pointwise operations and the supremum norm.

An element $a \in A$ is called *positive* if $\langle a\xi, \xi \rangle \ge 0$ for all $\xi \in \mathcal{H}$ (here A is considered to be a subalgebra of $\mathcal{B}(\mathcal{H})$)⁴. An element $a \in A$ is positive if and only if it is of the form $a = b^*b$ for some $b \in A$. In particular, a positive element a is selfadjoint, i.e. $a = a^*$. An element $a \in C_0(X)$ is positive if and only if $a(t) \in \mathbb{R}_+$ for all $t \in X$.

The set A_+ of positive elements of a C*-algebra A is a closed convex cone, and the norm is monotone on A_+ : if $0 \le a \le b$ (meaning that $b - a \in A_+$) then $||a|| \le ||b||$.⁵

Definition 2 Let A be a C^* -algebra. An inner product A-module is a complex vector space E such that

(a) E is a right A-module, i.e. there is a bilinear map

$$E \times A \to A : (x, a) \to x \cdot a$$

satisfying $(x \cdot a) \cdot b = x \cdot (ab)$ and $(\lambda x) \cdot a = x \cdot (\lambda a)$ (and $x \cdot \mathbf{1} = x$ when A has a unit **1**). (b) There is a map

$$E \times E \to A : (x, y) \to \langle x, y \rangle$$

satisfying

1. $\langle x, \lambda y + z \rangle = \lambda \langle x, y \rangle + \langle x, y \rangle$

- 2. $\langle x, y \cdot a \rangle = \langle x, y \rangle a$
- 3. $\langle x, y \rangle^* = \langle y, x \rangle$
- 4. $\langle x, x \rangle \in A_+$
- 5. $\langle x, x \rangle = 0 \Rightarrow x = 0$ $(x, y, z \in E, a \in A, \lambda \in \mathbb{C}).$

If only conditions (1) to (4) hold, E is called a semi-inner product A-module.

We prove the Cauchy - Schwarz inequality. We will need the simple observation that $\langle xa, y \rangle = (\langle y, x \rangle a)^* = a^* \langle x, y \rangle$.

³more accurately, is isometrically *-isomorphic to

⁴this is not the original definition of positivity, but it is equivalent to it

⁵Indeed if $a = c^*c$ and $b = d^*d$ the inequality $a \leq b$ gives $||c\xi|| \leq ||d\xi||$ for all $\xi \in \mathcal{H}$ and so $||c|| \leq ||d||$ hence $||a|| \leq ||b||$.

Proposition 3 In a semi-inner product A-module E, for all $x, y \in E$,

$$\begin{split} \langle y, x \rangle \langle x, y \rangle &\leqslant \| \langle x, x \rangle \|_A \langle y, y \rangle \\ hence & \| \langle x, y \rangle \|_A^2 \leqslant \| \langle x, x \rangle \|_A \| \langle y, y \rangle \|_A \end{split}$$

Proof. For $a = \langle x, y \rangle \in A$ and all $t \in \mathbb{R}$, we have

$$0 \leq \langle xa - ty, xa - ty \rangle = \langle xa, xa \rangle - t \langle xa, y \rangle - t \langle y, xa \rangle + t^2 \langle y, y \rangle$$
$$= a^* \langle x, x \rangle a - ta^* a - ta^* a + t^2 \langle y, y \rangle$$
hence $2ta^* a \leq a^* \|\langle x, x \rangle\|_A a + t^2 \langle y, y \rangle$ (*)

(we have used the inequality $a^*ba \leq a^* \|b\| a$, for $b \geq 0$). ⁶ If $\langle x, x \rangle = 0$, the previous inequality gives, for all t > 0

$$0 \leq 2ta^*a \leq t^2 \langle y, y \rangle \quad \Rightarrow \quad 0 \leq 2a^*a \leq t \langle y, y \rangle.$$

Letting $t \to 0$, this forces $a^*a = 0$ and the Cauchy-Schwarz inequality holds. If $\langle x, x \rangle \neq 0$, setting $t = \|\langle x, x \rangle\|_A$, we get from (*)

$$ta^*a \leq t^2 \langle y, y \rangle$$
 or $a^*a \leq \|\langle x, x \rangle\|_A \langle y, y \rangle$

which is the required first inequality.

For the second inequality, since $0 \leq \langle y, x \rangle \langle x, y \rangle \leq ||\langle x, x \rangle||_A \langle y, y \rangle$, monotonicity of the norm on A_+ gives

$$\begin{split} \left\| \left\langle x, y \right\rangle^* \left\langle x, y \right\rangle \right\|_A &\leq \left\| \left\| \left\langle x, x \right\rangle \right\|_A \left\langle y, y \right\rangle \right\|_A \\ &\text{so} \quad \left\| \left\langle x, y \right\rangle \right\|_A^2 &\leq \left\| \left\langle x, x \right\rangle \right\|_A \left\| \left\langle y, y \right\rangle \right\|_A. \end{split}$$

Definition 3 If E is a semi-inner product A-module, we write

$$||x||_E := ||\langle x, x \rangle||_A^{1/2} \qquad (x \in E).$$

This is a seminorm on E; ⁷ it is a norm iff E is an inner product A-module.

A Hilbert C*-module over A is an inner product A-module such that $(E, \|\cdot\|_E)$ is complete.

Remark 4 If E is a semi-inner A-module, then by the last Proposition the set $N = \{x \in E : \|x\|_E = 0\}$ is a closed subspace and an A-submodule (if $x \in N$ then $x \cdot a \in N$) and so the quotient E/N becomes an inner product A-module in the induced operations.

⁶ Proof: assuming $A \subseteq \mathcal{B}(\mathcal{H})$, for all $\xi \in \mathcal{H}$ we have $(a^*ba\xi, \xi) = (b(a\xi), (a\xi)) \ge 0$ and so

 $⁽a^*ba\xi,\xi) = (b(a\xi), (a\xi)) \leqslant \|b\| \|a\xi\|^2 = \|b\| (a\xi, a\xi) = (a^* \|b\| a\xi, \xi).$

 $[\]begin{array}{c} 7 \|\langle x+y,x+y\rangle\|_A \leqslant \|\langle x,x\rangle\|_A + \|\langle x,y\rangle\|_A + \|\langle y,x\rangle_A\| + \|\langle y,y\rangle\|_A \leqslant \|\langle x,x\rangle\|_A + 2\sqrt{\|\langle x,x\rangle\|_A \|\langle y,y\rangle\|_A} + \|\langle y,y\rangle\|_A + \|\langle y,y\rangle\|_A + 2\sqrt{\|\langle x,x\rangle\|_A \|\langle y,y\rangle\|_A} + \|\langle y,y\rangle\|_A + \|\langle y,y\rangle\|_A + \|\langle y,y\rangle\|_A + 2\sqrt{\|\langle x,x\rangle\|_A \|\langle y,y\rangle\|_A} + \|\langle y,y\rangle\|_A + \|\langle y,y\rangle\|_A$

Corollary 5 If E is an inner product A-module, the map $E \times A \rightarrow E : (x, a) \rightarrow x \cdot a$ is continuous; in fact

$$\left\|x\cdot a\right\|_{E} \leq \left\|x\right\|_{E} \left\|a\right\|_{A}.$$

It follows that for each $a \in A$ that map $R_a : E \to E : x \to x \cdot a$ is bounded with $||R_a|| \leq ||a||_A$. Thus the map $R : a \to R_a$ is a contractive anti-homomorphism of the Banach algebra A into the Banach algebra $\mathcal{B}(E)$.

Proposition 6 The closed linear span [EA] of the set $\{x \cdot a : x \in E, a \in A\}$ is the whole of E. We say that E is a non-degenerate A-module.

Proof. If A contains a unit 1, this is obvious from the relation $x \cdot 1 = x$: in fact E = EA in this case. For the general case, we use the fact that every C*-algebra contains a *positive contractive approxi*mate identity, i.s. a net of contractions (e_i) in A_+ such that for all $a \in A$ we have $\lim_i ||ae_i - a|| = 0$ (hence also $\lim_i ||e_ia - a|| = 0$). Thus every $x \in E$ can be approximated by $xe_i \in EA$. Indeed,

$$\begin{split} \|x - xe_i\|_E^2 &= \|\langle x - xe_i, x - xe_i\rangle\|_A = \|\langle x, x\rangle - \langle x, xe_i\rangle + \langle xe_i, xe_i\rangle - \langle xe_i, x\rangle\|_A \\ &= \|\langle x, x\rangle - \langle x, x\rangle e_i + e_i \langle x, x\rangle e_i - e_i \langle x, x\rangle\|_A \\ &\leq \|\langle x, x\rangle - \langle x, x\rangle e_i\|_A + \|e_i(\langle x, x\rangle e_i - \langle x, x\rangle)\|_A \\ &\leq \|\langle x, x\rangle - \langle x, x\rangle e_i\|_A + \|\langle x, x\rangle e_i - \langle x, x\rangle\|_A \to 0. \quad \Box \end{split}$$

Examples

- Any C*-algebra A is a Hilbert C*-module over A with $\langle a, b \rangle = a^*b$ and $a \cdot b = ab$.
- Any closed right ideal J of A is an A-submodule, hence a Hilbert C*-module over A.
- Any Hilbert space \mathcal{H} is a Hilbert C*-module over \mathbb{C} .
- But \mathcal{H} it is also a Hilbert C*-module E over $\mathcal{B}(\mathcal{H})$. It is clearer to see this for $\mathcal{H} = \ell^2$: We identify each $x \in \ell^2$ with the $1 \times \infty$ matrix $[x_1, x_2, \ldots]$, i.e. with the linear operator $f_x : \eta \to (\sum_n x_n \eta_n) : \mathcal{H} \to \mathbb{C}$. The module action is given by matrix multiplication: for $a = [a_{ij}] \in \mathcal{B}(\mathcal{H})$, the element $x \cdot a$ is the row matrix $[\sum_i x_i a_{i1}, \sum_i x_i a_{i2}, \ldots]$. Finally, the $\mathcal{B}(\mathcal{H})$ -valued inner product is $\langle x, y \rangle = [\bar{x}_i y_j]$. The Hilbert C*-module norm $||x||_E$ actually coincides with the ℓ^2 norm of x.⁸
- The direct sum $\bigoplus_{k=1}^{n} E_k$ of finitely many Hilbert C*-modules over the same C*-algebra A is the vector space direct sum equipped with coordinate-wise inner product and module action:

$$\langle (x_k), (y_k) \rangle_E := \sum_{k=1}^n \langle x(k), x(k) \rangle_{E_k}$$
 and $(x_k) \cdot a := (x_k \cdot a).$

Example 7 The direct sum $\bigoplus E_k$ of a sequence of Hilbert C^{*}-modules over a fixed C^{*}-algebra A is defined to be

$$E = \bigoplus E_k := \{ x = (x(k)) \in \prod_k E_k : \sum_k \langle x(k), x(k) \rangle_{E_k} \text{ converges in the norm of } A \}.$$

⁸ This can be thought as a $1 \times \infty$ version of the 2×3 example 1.

We prove that E has the properties of a Hilbert C*-modules over A:

Linear space structure Suppose $(x(k)), (y(k)) \in E$; we show that $(x(k) + y(k)) \in E$: Let

$$a_n = \sum_{k \leq n} \langle x(k), x(k) \rangle, \quad b_n = \sum_{k \leq n} \langle y(k), y(k) \rangle, \quad c_n = \sum_{k \leq n} \langle x(k) + y(k), x(k) + y(k) \rangle$$

these are in A_+ . Since

$$0 \leq \langle x+y, x+y \rangle \leq \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = 2 \langle x, x \rangle + 2 \langle y, y \rangle$$

when $n \ge m$ the differences $c_n - c_m$ etc. are finite sums of such terms and hence

$$0 \leq c_n - c_m \leq 2(a_n - a_m) + 2(b_n - b_m) \quad \Rightarrow \quad \|c_n - c_m\|_A \leq 2 \|(a_n - a_m) + (b_n - b_m)\|_A$$

(monotonicity of norm). Since (x(k)) and (y(k)) are in E, the sequences (a_n) and (b_n) converge in A; hence (c_n) is Cauchy in A, showing that (x(k) + y(k)) belongs to E.

Module action Define $(x(k)) \cdot a := (x(k)a)$. This maps E to E because

$$\sum_{k=m}^{n} \langle x(k)a, x(k)a \rangle = \sum_{k=m}^{n} a^* \langle x(k), x(k)a \rangle a = a^* \left(\sum_{k=m}^{n} \langle x(k), x(k) \rangle \right) a$$

which shows that when $\sum_k \langle x(k), x(k) \rangle$ converges in A, so does $\sum_k \langle x(k)a, x(k)a \rangle$.

A-valued product

Define
$$\langle (x(k)), (y(k)) \rangle_E := \sum_k \langle x(k), y(k) \rangle_{E_k}$$

This series converges in A by polarization: we have

$$\begin{split} 4\sum_{k} \langle x(k), y(k) \rangle &= \sum_{k} \langle x(k) + y(k), x(k) + y(k) \rangle - \sum_{k} \langle x(k) - y(k), x(k) - y(k) \rangle \\ &+ i \sum_{k} \langle x(k) + iy(k), x(k) + iy(k) \rangle - i \sum_{k} \langle x(k) - iy(k), x(k) - iy(k) \rangle \end{split}$$

and since $x + i^m y \in E$ (m = 0, 1, 2, 3), the four series on the right converge in A, hence so does the one on the left.

Norm This is of course given by

$$\|(x(k))\|_E^2 = \|\langle (x(k)), (x(k))\rangle_E\|_A = \left\|\sum_k \langle x(k), y(k)\rangle_{E_k}\right\|_A$$

To prove completeness, we need a simple observation: Remark If $(x(k)) \in E$ then for each k, since

$$0 \leqslant \langle x(k), x(k) \rangle \leqslant \sum_{m} \langle x(m), x(m) \rangle \quad \text{in } A_{+}$$

we have $\|x(k)\|_{E_{k}}^{2} = \|\langle x(k), x(k) \rangle\|_{A} \leqslant \left\|\sum_{m} \langle x(m), x(m) \rangle\right\|_{A} = \|(x(k))\|_{E}^{2}$

by monotonicity of the norm. It follows that the coordinate projection $Q_k : E \to E_k$ which is clearly an A-module map, is contractive.

Completeness Suppose (x_n) is a $\|\cdot\|_E$ -Cauchy sequence, where each $x_n = (x_n(k))$ with $x_n(k) \in E_k$. By the last remark, for each fixed k, the sequence $(x_n(k))_n$ is Cauchy in E_k , hence convergent. Thus there exists $y(k) \in E_k$ with $\lim_n \|y(k) - x_n(k)\|_{E_k} = 0$.

Let $y = (y(k)) \in \prod E_k$. We need to prove two things:

- (a) that $y \in E$ and
- (b) that $\lim_{n \to \infty} \|y x_n\|_E = 0.$

(a) Proof that $y \in E$, i.e. that $\sum_k \langle y(k), y(k) \rangle$ converges in A.

Since A is complete, we need to show that this series satisfies the Cauchy criterion: given $\varepsilon > 0$ we need to prove that there exists $P \in \mathbb{N}$ such that

$$m \ge n \ge P \implies \left\|\sum_{k=n}^{m} \langle y(k), y(k) \rangle \right\|_{A} \le \varepsilon^{2}.$$
 (1)

Let us use the notation

$$\left\|z\right\|_{n,m} := \left\|\sum_{k=n}^{m} \left\langle z(k), z(k) \right\rangle \right\|_{A}^{1/2}$$

for all $z = (z(k)) \in \prod E_k$ and $m \ge n$.

Since (x_n) is Cauchy, given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$k \ge l \ge N \implies ||x_k - x_l||_E < \varepsilon/3.$$
 (2)

Now $x_N \in E$, so $\sum_i \langle x_N(i), x_N(i) \rangle$ converges in A; hence we can choose $P \ge N$ such that

$$\left\|\sum_{i=P}^{\infty} \langle x_N(i), x_N(i) \rangle \right\|_A^{1/2} < \varepsilon/3.$$
(3)

Now for each $k \in \mathbb{N}$ we have $y(k) = \lim_M x_M(k)$ in E_k , i.e. $\lim_M ||\langle y(k) - x_M(k), y(k) - x_M(k) \rangle||_A = 0$. Hence for each $m \ge n$ we have

$$\|y - x_M\|_{n,m}^2 = \left\|\sum_{k=n}^m \langle y(k) - x_M(k), y(k) - x_M(k) \rangle\right\|_A \leq \sum_{k=n}^m \|\langle y(k) - x_M(k), y(k) - x_M(k) \rangle\|_A \longrightarrow_{M \to \infty} 0$$

and therefore we may choose $M \ge P$ (depending on m, n) such that

$$\|y - x_M\|_{n,m} < \varepsilon/3. \tag{4}$$

Thus if $m \ge n \ge P$ we have

$$\begin{aligned} \|y\|_{n,m} &\leq \|y - x_M\|_{n,m} + \|x_M - x_N\|_{n,m} + \|x_N\|_{n,m} \\ &\leq \|y - x_M\|_{n,m} + \|x_M - x_N\|_E + \left\|\sum_{i=n}^m \langle x_N(i), x_N(i) \rangle \right\|_A^{1/2} \end{aligned}$$

where we have used the inequality $||x_M - x_N||_{n,m} \leq ||x_M - x_N||_E$. ⁹ The first term is $\langle \varepsilon/3 \rangle$ by (4); the second is $\langle \varepsilon/3 \rangle$ by (2) because $M \geq N$; and the third term is $\langle \varepsilon/3 \rangle$ by (3) because $n \geq P$. Therefore

 $\|y\|_{n,m} < \varepsilon$

which proves (1). Hence $y \in E$.

(b) **Proof that** $\lim_{n} ||y - x_n||_E = 0.$

Given $\varepsilon > 0$, let $n_0 \in \mathbb{N}$ be such that

$$n, m \ge n_0 \implies ||x_n - x_m||_E < \varepsilon.$$

Then, if $n, m \ge n_0$, we have for all $N \in \mathbb{N}$

$$\sum_{k=1}^{N} \langle x_n(k) - x_m(k), x_n(k) - x_m(k) \rangle \Bigg\|_A < \varepsilon^2.$$

Letting $m \to \infty$, since each $x_m(k) \to y(k)$ in E_k and there are finitely many terms, we obtain

$$\left\|\sum_{k=1}^{N} \langle x_n(k) - y(k), x_n(k) - y(k) \rangle \right\|_A \leq \varepsilon^2$$

for all $n \ge n_0$. But now we know from part (a) that $x_n - y \in E$ and so the series

$$\sum_{k=1}^{\infty} \langle x_n(k) - y(k), x_n(k) - y(k)
angle$$

converges in A_+ . Thus if we set

$$a_N = \sum_{k=1}^N \langle x_n(k) - y(k), x_n(k) - y(k) \rangle \quad \text{and} \quad a = \sum_{k=1}^\infty \langle x_n(k) - y(k), x_n(k) - y(k) \rangle$$

then $||a_N - a||_A = 0$ and so $||a||_A = \lim_N ||a_N||_A$. Since each $||a_N||_A \leq \varepsilon^2$, it follows that $||a||_A \leq \varepsilon^2$. But this says precisely that $||y - x_n||_E \leq \varepsilon$ for all $n \geq n_0$, as required. \Box

Remark 8 On the defining condition for the norm of x = (x(k)):

$$\|(\boldsymbol{x}(k))\|_E^2 = \|\langle (\boldsymbol{x}(k)), (\boldsymbol{x}(k))\rangle_E\|_A = \left\|\sum_k \langle \boldsymbol{x}(k), \boldsymbol{y}(k)\rangle_{E_k}\right\|_A.$$

⁹ Indeed for all $z \in E$ we have

$$0 \leq \sum_{k=n}^{m} \langle z(k), z(k) \rangle \leq \sum_{k=1}^{\infty} \langle z(k), z(k) \rangle \quad \text{in } A_{+}, \quad \text{hence} \quad \left\| z \right\|_{n,m}^{2} \leq \left\| z \right\|_{E}^{2}$$

by monotonicity of the norm.

Since the partial sums $a_n = \sum_{k \leq n} \langle x(k), y(k) \rangle_{E_k}$ form an increasing sequence in A_+ such that $\lim_n \|a_n - a\|_A = 0$ where $a = \sum_{k=1}^{\infty} \langle x(k), y(k) \rangle_{E_k}$, we have

$$\|(x(k))\|_{E}^{2} = \|a\|_{A} = \lim_{n} \|a_{n}\|_{A} = \lim_{n} \left\|\sum_{k \leq n} \langle x(k), y(k) \rangle\right\|_{A}$$

Note that IF the series converges *absolutely*, i.e. if we require that $\sum_{k=1}^{\infty} \|\langle x(k), y(k) \rangle \|_A < \infty$, then certainly $(x(k)) \in E$; but this is too strong a condition.¹⁰

On the other hand, if we merely assume that the partial sums $\sum_{k \leq n} \langle x(k), y(k) \rangle$ are bounded above, then the series *need not converge in the norm of* A although it does converge strongly (but its limit need not be in A); for example we may take each $E_k = A$ = the compact operators, and (x(k)) to be a sequence of orthogonal rank one projections: the sum is not compact.

A special case of the direct sum is partcularly important for the theory.

Definition 4 The standard C*-module over a C*-algebra A, sometimes denoted \mathcal{H}_A , is the direct sum $\bigoplus E_K$, where each E_k equals the Hilbert C*-module A. Thus

$$\mathcal{H}_A := \{ x = (x(k)) : each \ x(k) \in A \ and \ \sum_k x(k)^* x(k) \ converges \ in \ the \ norm \ of \ A \}.$$

Thus, in case $A = \mathbb{C}$, the standard module is just $\ell^2(\mathbb{N})$.

References

- Claire Debord and Jean-Marie Lescure. Index theory and groupoids. In *Geometric and topological methods for quantum field theory*, pages 86–158. Cambridge Univ. Press, Cambridge, 2010. http://arxiv.org/abs/0801.3617
- [2] Kjeld Knudsen Jensen and Klaus Thomsen. Elements of KK-theory. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, 1991.
- [3] E. C. Lance. Hilbert C*-modules, volume 210 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists.
- [4] V. M. Manuilov and E. V. Troitsky. *Hilbert C*-modules*, volume 226 of *Translations of Math-ematical Monographs*. American Mathematical Society, Providence, RI, 2005. Translated from the 2001 Russian original by the authors.
- [5] Iain Raeburn and Dana P. Williams. Morita equivalence and continuous-trace C*-algebras, volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
- [6] N. E. Wegge-Olsen. K-theory and C*-algebras. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1993. A friendly approach.

¹⁰ Exercise: Find a sequence (f_k) of elements of $A = c_0$ such that $\sum_k |f_k|^2$ converges in the norm of A, but $\sum_k ||f_k||_{\infty}^2 = +\infty$. Can you do the same in the algebra C([0, 1)]?