A NOTE ON CUNTZ ALGEBRAS

A.K.

Let J be the set of all pairs of isometries ${}^{1}(S_{1j}, S_{2j})$ acting on a separable Hilbert space H_{i} satisfying the *Cuntz relation*

(C)
$$S_{1j}S_{1j}^* + S_{2j}S_{2j}^* = I.$$

In other words, S_{1j} and S_{2j} are isometries (i.e. their initial projections $S_{1j}^*S_{1j}$ and $S_{2j}^*S_{2j}$ are equal to the identity) whose final (or range) projections $P_{1j} = S_{1j}S_{1j}^*$ and $P_{2j} = S_{2j}S_{2j}^*$ are orthogonal and sum to the identity I. Such isometries exist on any infinite dimensional Hilbert space.

For example, on $L^2([0,1])$ we may define S_1 to be the natural isometry onto $L^2([0,1/2])$ given by $(S_1f)(x) = \sqrt{2}f(2x)$, while S_2 maps onto $L^2([1/2,1])$ and is given by $(S_2f)(x) = \sqrt{2}f(2x-1)$. (In fact, one could consider *n*-tuples rather than pairs, but we stick to the case n = 2 for simplicity of notation.)

Consider the Hilbert space $H = \bigoplus_{i} H_{i}$ and the direct sums

$$S_1 = \bigoplus_j S_{1j}$$
 and $S_2 = \bigoplus_j S_{2j}$

acting on H. Thus, H consists of all functions $j \to x_j$ in $\prod_j H_j$ which are square summable and the operator S_1 is defined on H by $S_1(x_j) = (S_{1j}x_j)$ (this is well-defined since $\sum \|S_{1j}x_j\|^2 \leq \sum \|x_j\|^2$); similarly $S_2(x_j) = (S_{2j}x_j)$. It is clear that S_1 and S_2 are isometries and that they satisfy (C).

Let \mathcal{O}_2 be the closed *-subalgebra of B(H) generated by S_1 and S_2 . By construction, \mathcal{O}_2 has the following

Universal Property. For any pair (T_1, T_2) of isometries acting on a separable Hilbert space K which satisfy (C), there exists a (necessarily contractive) unique *-homomorphism π mapping \mathcal{O}_2 onto the C*-algebra C* (T_1, T_2) generated by the pair (T_1, T_2) such that $\pi(S_1) = T_1$ and $\pi(S_2) = T_2$.

Let $\mathcal{A} \subseteq \mathcal{O}_2$ be the unital *-algebra which is linearly generated by all words in the generators S_1, S_2 and their adjoints. If $\mu = i_1 \dots i_k$ where $i_j \in \{1, 2\}$, we write $S_{\mu} = S_{i_1} \dots S_{i_k}$, where $|\mu| = k$ is the length of the word. We claim that any word in S_1, S_2 and their adjoints may be written in the form $S_{\mu}S_{\lambda}^*$. This follows from

Lemma 1. Suppose $S^*_{\mu}S_{\lambda} \neq 0$.

(i) If $|\mu| = |\lambda|$, then $\mu = \lambda$ and $S^*_{\mu}S_{\lambda} = I$. (ii) If $|\mu| < |\lambda|$, then there is a word ν such that $\lambda = \mu\nu$ and $S^*_{\mu}S_{\lambda} = S_{\nu}$. (iii) If $|\mu| > |\lambda|$, then there is a word ν' such that $\mu = \nu'\lambda$ and $S^*_{\mu}S_{\lambda} = S^*_{\nu'}$.

Date: March 28, 2013.

¹cuntzalg

Proof. If $\mu = \lambda$ then $S^*_{\mu}S_{\lambda} = S^*_{i_k} \dots (S^*_{i_1}S_{i_1}) \dots S_{i_k} = I$. If $\lambda \neq \mu$, and are of equal length, if i_j is the first digit of λ which differs from the corresponding digit i'_j in μ , then $S^*_{i'_j}S_{i_j} = 0$ and so $S^*_{\mu}S_{\lambda} = S^*_{i_k} \dots (S^*_{i'_{\lambda}}S_{i_j}) \dots S_{i_k} = 0.$

The other assertions follow similarly.

The gauge automorphisms of \mathcal{O}_2 . For |z| = 1, we define γ_z as follows. We first put

$$\gamma_z(S_i) = zS_i \quad \gamma_z(S_i^*) = \bar{z}S_i^*, \quad (i = 1, 2).$$

Thus for example $\gamma_z(S_1) = \bigoplus_j z S_{1j}$. The map γ_z uniquely defines a *-automorphism of the unital *-algebra $\mathcal{A} \subseteq \mathcal{O}_2$. On monomials, γ_z is given by

$$\gamma_z(S_\mu S_\lambda^*) = z^{|\mu|} S_\mu z^{-|\lambda|} S_\lambda^*$$

and it extends linearly to \mathcal{A} .

We claim that each γ_z extends to an automorphism of \mathcal{O}_2 . For this, fix a $z \in \mathbb{T}$. Given $j \in J$, consider the pair (zS_{1i}, zS_{2i}) . Observe that it is a pair of separably acting isometries satisfying (C); since J consists of all such pairs, there must exist some $j(z) \in J$ such that $(zS_{1j}, zS_{2j}) = (S_{1j(z)}, S_{2j(z)})$. Since $(\bar{z}S_{1j(z)}, \bar{z}S_{2j(z)}) = (S_{1j}, S_{2j})$, the map $j \to j(z)$ is onto; in other words, z defines a permutation $j \rightarrow j(z)$ of J.

Noting that each $a \in \mathcal{A} \subseteq \mathcal{O}_2$ is a direct sum $\oplus a_i$ where $a_i \in B(H_i)$ is in the unital *-algebra generated by (S_{1j}, S_{2j}) , we see that γ_z will map the *j*-th summand a_j of a to the j(z)-th summand $a_{j(z)}$; that is, γ_z just permutes the summands of a:

$$\gamma_z(a) = \gamma_z(\oplus a_j) = \oplus a_{j(z)}.$$

It therefore follows that

$$\|\gamma_z(a)\| = \sup_j \|a_{j(z)}\| = \sup_j \|a_j\| = \|a\|.$$

Thus γ_z is an isometry of \mathcal{A} for every $z \in \mathbb{T}$ and hence extends to an isometry of \mathcal{O}_2 to itself (which we denote again by γ_z). Since its range contains \mathcal{A} , the extended map is onto \mathcal{O}_2 ; finally, since γ_z is a *-homomorphism on the dense *-subalgebra \mathcal{A} , it will be a *-homomorphism on the whole of \mathcal{O}_2 .

Conclusion: For each $z \in \mathbb{T}$ there is a *-automorphism γ_z of \mathcal{O}_2 uniquely specified by $\gamma_z(S_i) = zS_i \ (i = 1, 2)$. Of course the map $z \to \gamma_z$ is a group homomorphism.

By the Lemma,

$$\mathcal{A} = \operatorname{span}\{S_{\mu}S_{\lambda}^* : \operatorname{all} \mu, \lambda\} \quad \operatorname{hence} \quad \mathcal{O}_2 = \overline{\operatorname{span}}\{S_{\mu}S_{\lambda}^* : \operatorname{all} \mu, \lambda\}.$$

Define $\mathcal{F}_0 = \operatorname{span}\{S_{\mu}S_{\lambda}^* : |\mu| = |\lambda|\}$ and $\mathcal{F} = \overline{\mathcal{F}_0}.$

Now $\mathcal{F}_0 = \bigcup_{k \in \mathbb{N}} \mathcal{F}_k$ where $\mathcal{F}_k = \operatorname{span}\{S_\mu S_\lambda^* : |\mu| = |\lambda| = k\}$. For example $\mathcal{F}_1 = \operatorname{span}\{\widetilde{S}_1 \widetilde{S}_1^*, S_1 S_2^*, S_2 S_1^*, S_2 S_2^*\}$ is *-isomorphic to $M_2(\mathbb{C})$ via the map $S_i S_j^* \to E_{i,j}$. More generally $\mathcal{F}_k \simeq M_{n^k}(\mathbb{C})$. In fact \mathcal{F}_k embeds as a unital subalgebra of \mathcal{F}_{k+1}^2 and so \mathcal{F} is a UHF (uniformly hyperfinite) C^* -subalgebra of \mathcal{O}_2 .

²for example $S_1 S_2^* = S_1 (S_1 S_1^* + S_2 S_2^*) S_2^* = S_1 S_1 S_1^* S_1^* + S_1 S_2 S_2^* S_2^* \in \text{span}\{S_\mu S_\lambda^* : |\mu| = |\lambda| = 2\}$

The conditional expectation. Note that for each $a \in \mathcal{O}_2$ the map

$$f_a: [0, 2\pi] \to \mathcal{O}_2: t \to \gamma_{e^{it}}(a)$$

is continuous, hence Riemann integrable. We define

$$E_0(a) = \frac{1}{2\pi} \int_0^{2\pi} f_a(t) dt$$

and we note that $||E_0(a)|| \leq ||a||$. It is easy to see that, since $\gamma_z(S_\mu S_\lambda^*) = z^{|\mu| - |\lambda|} S_\mu S_\lambda^*$, we have

$$E_0(S_{\mu}S_{\lambda}^*) = \begin{cases} 0, & |\mu| \neq |\lambda| \\ S_{\mu}S_{\lambda}^*, & |\mu| = |\lambda| \end{cases}$$

It follows that E_0 maps $\mathcal{A} = \operatorname{span}\{S_{\mu}S_{\lambda}^* : \operatorname{all} \mu, \lambda\}$ onto $\mathcal{F}_0 = \operatorname{span}\{S_{\mu}S_{\lambda}^* : |\mu| = |\lambda|\}$ and is the identity map on \mathcal{F}_0 . By continuity, E_0 maps \mathcal{O}_2 (contractively) into \mathcal{F} and is the identity on \mathcal{F} . Thus it is a unital contractive idempotent of \mathcal{O}_2 onto \mathcal{F} . Finally, if $a = b^*b$ is a positive nonzero element of \mathcal{O}_2 , then $\gamma_z(a) = \gamma_z(b)^*\gamma_z(b)$ is positive and nonzero for all $z \in \mathbb{T}$, and hence the integral $E_0(a)$ does not vanish.

Conclusion: E_0 is a *faithful* conditional expectation.

Simplicity of \mathcal{O}_2 . Let $a \in \mathcal{O}_2$ and $b \in \mathcal{F}$. Since $\gamma_z(ab) = \gamma_z(a)\gamma_z(b) = \gamma_z(a)b$, it follows that $E_0(ab) = E_0(a)b$ and similarly $E_0(ba) = bE_0(a)$.

It follows that if $\mathcal{J} \subseteq \mathcal{O}_2$ is a (closed, two-sided) ideal, then the closure \mathcal{J}_0 of $E_0(\mathcal{J})$ is an ideal of \mathcal{F} ; and if \mathcal{J} contains a nonzero element a, then it will contain a nonzero positive element a^*a , hence \mathcal{J}_0 will contain the nonzero positive element $b = E_0(a^*a)$ and will thus be nontrivial.

Then for each $k \in \mathbb{N}$ the intersection $\mathcal{J}_0 \cap \mathcal{F}_k$ will be an ideal \mathcal{J}_k of \mathcal{F}_k . But recall that \mathcal{F}_k is isomorphic to $M_{n^k}(\mathbb{C})$ which is simple. Thus either some intersection \mathcal{J}_k contains the identity of \mathcal{F}_k , which is the identity of \mathcal{O}_2 , or else all the intersections are $\{0\}$. In the first case the ideal \mathcal{J} contains the identity hence $\mathcal{J} = \mathcal{O}_2$. In the second case, for each k the map

$$\mathcal{F}_k \to \mathcal{F}/\mathcal{J}_0 : x \to x + \mathcal{J}_0$$

is a *-homomorphism and it is injective because $\mathcal{J}_0 \cap \mathcal{F}_k = \{0\}$. But $\mathcal{F}/\mathcal{J}_0$ and \mathcal{F}_k are C*-algebras, hence the above map is an isometry. Thus $||x + \mathcal{J}_0|| = \operatorname{dist}(x, \mathcal{J}_0) = ||x||$ for all $x \in \mathcal{F}_k$. But $b \in \mathcal{F} = \overline{\cup \mathcal{F}_k}$ and so there are $b_k \in \mathcal{F}_k$ with $||b_k - b|| \to 0$. But then

$$||b_k|| = \operatorname{dist}(b_k, \mathcal{J}_0) \leq ||b_k - b|| \to 0$$

which forces $b = \lim b_k = 0$.

Therefore \mathcal{O}_2 cannot have nontrivial ideals.

Conclusion: Any *-representation of \mathcal{O}_2 is necessarily faithful (i.e. 1-1), because its kernel is an ideal. Therefore, any pair T_1, T_2 of isometries satisfying the Cuntz relation (C) generates a C*-algebra $C^*(T_1, T_2)$ which is isomorphic to \mathcal{O}_2 .

... and there are many interesting such representations, on separable Hilbert space.